
Using clusterStab

James W. MacDonald

October 30, 2018

1 Overview

This document provides a brief guide to the clusterStab package, which is
intended to be used for two things:

• Determining the number of clusters in a set of microarray data.

• Deciding how ’good’ these clusters are.

Clustering microarray data and producing so-called heatmaps is a
very common thing to do. However, there are some significant drawbacks to
this technique. First, clustering is not an inferential technique, so there are
no p-values associated with the heatmap to indicate how likely it is that the
results arose simply by chance. Second, most clustering techniques are quite
sensitive to the input data, so it is possible to get a very different result by
simply adding or removing a single sample (or by adding or removing genes).
This, of course, would result in a completely different interpretation. Third,
clustering methods are intended to show previously unknown patterns in
high dimensional data, but are often used to show expected patterns. This
can result in a self-fulfilling prophecy, if for instance, the data are filtered
based on an expected pattern. An example would be filtering the data based
on the difference in expression between two sample types and then clustering
the data. Since the filtered genes by definition are those that are different
between the two groups, the heatmap will clearly show this difference. This
is usually an uninteresting result, as permuting the sample labels, re-filtering
the data and re-clustering will almost always result in a heatmap as striking
as the original, yet will be based on sample groups that are not expected to
be different.

This third point is quite important. In order to create a heatmap that
is small enough to be useful, it is often necessary to filter out genes that are

1

not differentially expressed in any samples without unintentionally selecting
genes that fulfill an a priori assumption about the number of clusters. A
good approach is to select genes that have a high coefficient of variation
(CV), which implies that there is a high variation in expression relative to
the average expression for that gene.

When using hierarchical clustering to detect a priori unknown groups
in data, there are thus two questions that arise; how many clusters are there,
and given a number of clusters, how likely is it that they simply arose by
chance? We answer both questions by relying on the fact that clustering
solutions can be sensitive to changes in the input data. To test for the likely
number of clusters, we repeatedly select subsets of the samples, cluster them,
and then see for each number of clusters (from 2 to N) how often we get
similar results. If the results are not often similar for a given number of
clusters, it is not likely that there are that many clusters in our data. We
assess similarity using a Jaccard coefficient, and use histograms to compare
different numbers of clusters.

Once we have decided how many clusters we think there are, we can
test to see how likely it is that this number came about simply by chance.
Again, this is done by selecting subsets of the data and clustering. However,
in this case we are selecting subsets of genes (using all samples). The basic
idea here is the same; repeatedly subset the data and compare the resulting
clustering solutions. If we keep getting the same clusters over and over,
then this gives evidence that the cluster is stable, which implies that it is
not likely that this result arose simply by chance.

Note that these functions are based on hierarchical clustering using
the hclust() function, although they can be generalized to most clustering
techniques. Incorporation of different clustering algorithms will be based on
user requests.

2 A Simple Example

For this example we will be using the fibroEset package, which contains
an ExpressionSet object with 46 samples and 12625 genes. There are 11
bonobo samples, 12 gorilla samples, and 23 human samples, so I would
expect either two or three clusters, depending on how well the bonobo and
gorilla samples cross-hybridize to Affymetrix HG-U95Av2 chips.

This is of course too many genes to cluster, so we will start by
selecting only those genes that appear to be differentially expressed. Here
I will use those genes that have a CV greater than 0.1. However, there are

2

many other possibilites that can be used; see the genefilter package for more
suggestions.

> library(clusterStab)

> library(genefilter)

> library(fibroEset)

> data(fibroEset)

> exprs(fibroEset) <- log2(exprs(fibroEset))

> filt <- cv(0.1, Inf)

> index <- genefilter(fibroEset, filt)

> fb <- fibroEset[index,]

> bh <- benhur(fb, 0.7, 6, seednum = 12345) #seednum only used to ensure reproducibility

There are 721 genes for which the CV is greater than 0.1. We will
now use these genes to decide how many different sample types (clusters)
there are in our data, using the benhur function. The number of clusters
is determined by taking random samples of the microarrays and then clus-
tering. Similarity between pairwise clusters is estimated using a Jaccard
coefficient; stable clusters will tend to have similar results on repeated sam-
pling, whereas unstable clusters will tend to have very different results. This
can be visualized using either histograms or empirical cumulative distribu-
tion function (eCDF) plots. We first look at the histograms using the hist()
function.

Figure 1 shows individual histograms for each of the 2 - 6 possible
clusters that were tested. Each histogram shows the distribution of the
Jaccard coefficients for a particular number of clusters. What we are looking
for is the histogram with the majority of the data at or near one. This gives
the most likely number of clusters in our data. It appears that the most
likely number of clusters is one, as each of the other histograms have data
that are not clustered near one.

Figure 2 shows the dendrogram for this clustering result. The fi-
broEset data are Affy HG-U95av2 chips that were run on human, bonobo,
and gorilla samples (labeled h, b, and g in the dendrogram). It is not sur-
prising that the bonobo and gorilla samples cluster together considering that
they were analyzed using a human chip. In addition, there are at least two
smaller clusters within the human samples

We can also look at the eCDF plot, using the ecdf() function.
Figure 3 shows the eCDFs for each number of clusters. Again, it

appears that there are probably only two real clusters here.
Once we have decided how many clusters there are in our sample, we

3

> hist(bh)

k = 2

Frequency

0.6 0.8 1.0

0
20

40
60

80
10

0

k = 3

Frequency

0.6 0.8 1.0

0
10

20
30

40
50

k = 4

Frequency

0.6 0.8 1.0

0
20

40
60

k = 5

Frequency

0.6 0.8 1.0

0
10

20
30

40

k = 6

Frequency

0.6 0.8 1.0

0
5

10
15

20
25

30

Figure 1: Histograms of the fibroEset data

4

b b
b b

b
b b b b

b b
g

g g
g

g
g g

g g g
g g

h
h

h
h h

h h
h h

h h
h

h
h

h h
h h

h
h h

h h

0
10

20
30

40
50

60

Cluster Dendrogram

H
ei

gh
t

Figure 2: Cluster of the fibroEset data

5

> plot(hclust(dist(t(exprs(fibroEset[index,])))), labels = pData(fibroEset)[,2], sub="", xlab="")

> ecdf(bh)

b b
b b

b
b b b b

b b
g

g g
g

g
g g

g g g
g g

h
h

h
h h

h h
h h

h h
h

h
h

h h
h h

h
h h

h h

0
10

20
30

40
50

60

Cluster Dendrogram

H
ei

gh
t

Figure 3: Empirical CDF plots of the fibroEset Data

6

can test to see how stable the clusters are. For this, we use the clusterComp
function.

> cmp <- clusterComp(fb, 2)

> cmp

Results from running clusterComp:

1 2

Cluster stability: 100% 100%

Iterations: 100

Subsampling frequency: 80%

Agglomeration method: average

Original cluster membership:

1 2 2

7

	Overview
	A Simple Example

