
Using the a4 package

Willem Talloen, Tobias Verbeke

October 30, 2018

Contents

1 Introduction 2

2 Preparation of the Data 2
2.1 ExpressionSet object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Some data manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Unsupervised data exploration 3

4 Filtering 4

5 Detecting differential expression 5
5.1 T-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.2 Limma for comparing two groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.3 Limma for linear relations with a continuous variable . . . . . . . . . . . . . . . . . 7

6 Class prediction 8
6.1 PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.2 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.3 Forward filtering with various classifiers . . . . . . . . . . . . . . . . . . . . . . . . 9
6.4 Penalized regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.5 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.6 Receiver operating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Visualization of interesting genes 16
7.1 Plot the expression levels of one gene . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.2 Plot the expression levels of two genes versus each other . . . . . . . . . . . . . . . 20
7.3 Plot expression line profiles of multiple genes/probesets across samples . . . . . . . 21
7.4 Smoothscatter plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.5 Gene lists of log ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 Pathway analysis 28
8.1 Minus log p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9 Software used 28

1



1 Introduction

The a4 suite of packages is a suite for convenient analysis of Affymetrix microarray experiments
which supplements Goehlmann and Talloen (2010). The suite currently consists of several packages
which are centered around particular tasks:

• a4Preproc: package for preprocessing of microarray data. Currently the only function in
the package adds complementary annotation information to the ExpressionSet objects (in
function addGeneInfo). Many of the subsequent analysis functions rely on the presence of
such information.

• a4Core: package made to allow for easy interoperability with the nlcv package which is
currently being developed on R-Forge at http://r-forge.r-project.org/projects/nlcv.

• a4Base: all basic functionality of the a4 suite

• a4Classif: functionality for classification work that has been split off a.o. in order to reduce
a4Base loading time

• a4Reporting: a package which provides reporting functionality and defines xtable-methods
that are foreseen for tables with hyperlinks to public gene annotation resources.

This document provides an overview of the typical analysis workflow for such microarray ex-
periments using functionality of all of the mentioned packages.

2 Preparation of the Data

First we load the package a4 and the example real-life data set ALL.

R> library(a4)

R> require(ALL)

R> data(ALL, package = "ALL")

For illustrative purposes, simulated data sets can also be very valuable (but not used here).

R> require(nlcv)

R> esSim <- simulateData(nEffectRows=50, betweenClassDifference = 5, nNoEffectCols = 5, withinClassSd = 0.2)

2.1 ExpressionSet object

The data are assumed to be in an expressionSet object. Such an object structure combines different
sources of information into a single structure, allowing easy data manipulation (e.g., subsetting,
copying) and data modelling.

The textttfeatureData slot is typically not yet containing all relevant information about the
genes. This interesting extra gene information can be added using addGeneInfo.

R> ALL <- addGeneInfo(ALL)

2.2 Some data manipulation

The ALL data consists out of samples obtained from two types of cells with very distinct expression
profiles; B-cells and T-cells. To have a more subtle signal, gene expression will also be compared
between the BCR/ABL and the NEG group within B-cells only. To this end, we create the
expressionSet bcrAblOrNeg containing only B-cells with BCR/ABL or NEG.

R> Bcell <- grep("^B", as.character(ALL$BT)) # create B-Cell subset for ALL

R> subsetType <- "BCR/ABL" # other subsetType can be "ALL/AF4"

R> bcrAblOrNegIdx <- which(as.character(ALL$mol) %in% c("NEG", subsetType))

R> bcrAblOrNeg <- ALL[, intersect(Bcell, bcrAblOrNegIdx)]

R> bcrAblOrNeg$mol.biol <- factor(bcrAblOrNeg$mol.biol)
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3 Unsupervised data exploration

Spectral maps are very powerful techniques to get an unsupervised picture of how the data look
like. A spectral map of the ALL data set shows that the B- and the T-subtypes cluster together
along the x-axis (the first principal component). The plot also indicates which genes contribute in
which way to this clustering. For example, the genes located in the same direction as the T-cell
samples are higher expressed in these T-cells. Indeed, the two genes at the left (TCF7 and CD3D)
are well known to be specifically expressed by T-cells (Wetering 1992, Krissansen 1986).

R> spectralMap(object = ALL, groups = "BT")

R>

R> # optional argument settings

R> # plot.mpm.args=list(label.tol = 12, zoom = c(1,2), do.smoothScatter = TRUE),

R> # probe2gene = TRUE)
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A spectral map of the bcrAblOrNeg data subset does not show a clustering of BCR/ABL or
NEG cells.

R> spectralMap(object = bcrAblOrNeg, groups = "mol.biol", probe2gene = TRUE)
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4 Filtering

The data can be filtered, for instance based on variance and intensity, in order to reduce the
high-dimensionality.

R> selBcrAblOrNeg <- filterVarInt(object = bcrAblOrNeg)

R> propSelGenes <- round((dim(selBcrAblOrNeg)[1]/dim(bcrAblOrNeg)[1])*100,1)

This filter selected 18.9 % of the genes (2391 of the in total 12625 genes).
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5 Detecting differential expression

5.1 T-test

R> tTestResult <- tTest(selBcrAblOrNeg, "mol.biol")

R> histPvalue(tTestResult[,"p"], addLegend = TRUE)

R> propDEgenesRes <- propDEgenes(tTestResult[,"p"])
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Using an ordinary t-test, there are 171 genes significant at a FDR of 10%. The proportion of
genes that are trully differentially expressed is estimated to be around 32.7.

The toptable and the volcano plot show that three most significant probe sets all target ABL1.
This makes sense as the main difference between BCR/ABL and NEG cells is a mutation in this
particular ABL gene.

R> tabTTest <- topTable(tTestResult, n = 10)

R> xtable(tabTTest,

caption="The top 5 features selected by an ordinary t-test.",

label ="tablassoClass")

R> volcanoPlot(tTestResult, topPValues = 5, topLogRatios = 5)
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5.2 Limma for comparing two groups

In this particular data set, the modified t-test using limmaTwoLevels provides very similar results.
This is because the sample size is relatively large.

R> limmaResult <- limmaTwoLevels(selBcrAblOrNeg, "mol.biol")

R> volcanoPlot(limmaResult)

R> # histPvalue(limmaResult)

R> # propDEgenes(limmaResult)
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It is very useful to put lists of genes in annotated tables where the genes get hyperlinks to
EntrezGene.

R> tabLimma <- topTable(limmaResult, n = 10, coef = 2) # 1st is (Intercept)

Gene logFC AveExpr P.Value adj.P.Val GENENAME
ABL1 -1.10 9.20 0.00 0.00 ABL proto-oncogene 1, non-receptor tyr
ABL1 -1.15 9.00 0.00 0.00 ABL proto-oncogene 1, non-receptor tyr
ABL1 -1.20 7.90 0.00 0.00 ABL proto-oncogene 1, non-receptor tyr
KLF9 -1.78 8.62 0.00 0.00 Kruppel like factor 9
AHNAK -1.35 8.44 0.00 0.00 AHNAK nucleoprotein
TUBA4A -1.15 9.23 0.00 0.00 tubulin alpha 4a
FYN -0.87 7.76 0.00 0.00 FYN proto-oncogene, Src family tyrosin
CASP8 -1.00 8.04 0.00 0.00 caspase 8
ZNF467 -0.48 7.14 0.00 0.00 zinc finger protein 467
MX1 1.41 6.73 0.00 0.00 MX dynamin like GTPase 1

5.3 Limma for linear relations with a continuous variable

Testing for (linear) relations of gene expression with a (continuous) variable is typically done
using regression. A modified t-test approach improves the results by penalizing small slopes. The
modified regressions can be applied using limmaReg.

R>
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6 Class prediction

There are many classification algorithms with profound conceptual and methodological differences.
Given the differences between the methods,there’s probably no single classification method that
always works best, but that certain methods perform better depending on the characteristics of
the data.

On the other hand, these methods are all designed for the same purpose, namely maximizing
classification accuracy. They should consequently all pick up (the same) strong biological signal
when present, resulting in similar outcomes.

Personally, we like to apply four different approaches; PAM, RandomForest, forward filtering
in combination with various classifiers, and LASSO.

All four methods have the property that they search for the smallest set of genes while having
the highest classification accuracy. The underlying rationale and algorithm is very different between
the four approaches, making their combined use potentially complementary.

6.1 PAM

PAM (Tibshirani 2002) applies univariate and dependent feature selection.

R> resultPam <- pamClass(selBcrAblOrNeg, "mol.biol")

R> plot(resultPam)

R> featResultPam <- topTable(resultPam, n = 15)

R> xtable(head(featResultPam$listGenes),

caption = "Top 5 features selected by PAM.")
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6.2 Random forest

Random forest with variable importance filtering (Breiman 2001, Diaz-Uriarte 2006) applies multi-
variate and dependent feature selection. Be cautious when interpreting its outcome, as the obtained
results are unstable and sometimes overoptimistic.
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R> resultRF <- rfClass(selBcrAblOrNeg, "mol.biol")

R> plot(resultRF, which = 2)

R> featResultRF <- topTable(resultRF, n = 15)

R> xtable(head(featResultRF$topList),

caption = "Features selected by Random Forest variable importance.")

GeneSymbol
1635 at ABL1

1636 g at ABL1
316 g at PRDM2
32542 at FHL1
37027 at AHNAK
38052 at F13A1

Table 1: Features selected by Random Forest variable importance.

R>
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6.3 Forward filtering with various classifiers

Forward filtering in combination with various classifiers (like DLDA, SVM, random forest, etc.)
apply an independent feature selection. The selection can be either univariate or multivariate
depending on the chosen selection algorithm; we usually choose Limma as a univariate although
random forest variable importance could also be used as a multivariate selection criterium.

R> mcrPlot_TT <- mcrPlot(nlcvTT, plot = TRUE, optimalDots = TRUE,

layout = TRUE, main = "t-test selection")
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svm
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nFeat optim mean MCR sd MCR
dlda 7.00 0.14 0.05

randomForest 3.00 0.15 0.05
bagg 25.00 0.16 0.05
pam 2.00 0.16 0.07
svm 2.00 0.13 0.07

Table 2: Optimal number of genes per classification method together with the respective misclas-
sification error rate (mean and standard deviation across all CV loops).

R> scoresPlot(nlcvTT, tech = "svm", nfeat = 2)
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6.4 Penalized regression

LASSO (Tibshirani 2002) or elastic net (Zou 2005) apply multivariate and dependent feature
selection.

R> resultLasso <- lassoClass(object = bcrAblOrNeg, groups = "mol.biol")

R> plot(resultLasso, label = TRUE,

main = "Lasso coefficients in relation to degree of penalization.")

R> featResultLasso <- topTable(resultLasso, n = 15)
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Gene Coefficient
ITGA7 -3.80
ABL1 -2.76
TCL1B -2.26
RAB32 -1.01
CHD3 -0.77
SERPINE2 -0.65
NFATC1 -0.64
ZNF467 -0.60
YES1 -0.58
ANXA1 -0.58
PTDSS1 0.53
PTPRJ -0.51
F13A1 -0.49
DSTN 0.47
ALDH1A1 -0.46

Table 3: Features selected by Lasso, ranked from largest to smallest penalized coefficient.
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6.5 Logistic regression

Logistic regression is used for predicting the probability to belong to a certain class in binary
classification problems.

R> logRegRes <- logReg(geneSymbol = "ABL1", object = bcrAblOrNeg, groups = "mol.biol")
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The obtained probabilities can be plotted with ProbabilitiesPlot. A horizontal line indicates
the 50% threshold, and samples that have a higher probability than 50% are indicated with blue
dots. Apparently, using the expression of the gene ABL1, quite a lot of samples predicted to with
a high probability to be NEG, are indeed known to be NEG.

R> probabilitiesPlot(proportions = logRegRes$fit, classVar = logRegRes$y,

sampleNames = rownames(logRegRes), main = "Probability of being NEG")
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R> probabilitiesPlot(proportions = logRegRes$fit, classVar = logRegRes$y, barPlot= TRUE,

sampleNames = rownames(logRegRes), main = "Probability of being NEG")
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6.6 Receiver operating curve

A ROC curve plots the fraction of true positives (TPR = true positive rate) versus the fraction of
false positives (FPR = false positive rate) for a binary classifier when the discrimination threshold
is varied. Equivalently, one can also plot sensitivity versus (1 - specificity).

R> ROCres <- ROCcurve(geneSymbol = "ABL1", object = bcrAblOrNeg, groups = "mol.biol")
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7 Visualization of interesting genes

7.1 Plot the expression levels of one gene

Some potentially interesting genes can be visualized using plot1gene. Here the most significant
gene is plotted.

R> plot1gene(probesetId = rownames(tTestResult)[1],

object = selBcrAblOrNeg, groups = "mol.biol", legendPos = "topright")
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There are some variations possible on the default plot1gene function. For example, the labels
of x-axis can be changed or omitted.

R> plot1gene(probesetId = rownames(tTestResult)[1], object = selBcrAblOrNeg,

groups = "mol.biol", sampleIDs = "mol.biol", legendPos = "topright")
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Another option is to color the samples by another categorical variable than used for ordering.

R> plot1gene(probesetId = rownames(tTestResult)[1], object = selBcrAblOrNeg,

groups = "mol.biol", colgroups = 'BT', legendPos = "topright")
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The above graphs plot one sample per tickmark in the x-axis. This is very useful to explore the
data as one can directly identify interesting samples. If it is not interesting to know which sample
has which expression level, one may want to plot in the x-axis not the samples but the groups of
interest. It is possible to pass arguments to the boxplot function to custopmize the graph. For
example the boxwex argument allows to reduce the width of the boxes in the plot.

R> boxPlot(probesetId = rownames(tTestResult)[1], object = selBcrAblOrNeg, boxwex = 0.3,

groups = "mol.biol", colgroups = "BT", legendPos = "topright")
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7.2 Plot the expression levels of two genes versus each other

R> plotCombination2genes(geneSymbol1 = featResultLasso$topList[1, 1],

geneSymbol2 = featResultLasso$topList[2, 1],

object = bcrAblOrNeg, groups = "mol.biol",

main = "Combination of\nfirst and second gene", addLegend = TRUE,

legendPos = "topright")

20



6.0 6.5 7.0

6

7

8

9

Combination of
first and second gene

ITGA7

A
B

L1

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
BCR/ABL
NEG

7.3 Plot expression line profiles of multiple genes/probesets across sam-
ples

Multiple genes can be plotted simultaneously on a graph using line profiles. Each line reflects one
gene and are colored differenly. As an example, here three probesets that measure the gene LCK,
found to be differentially expressed between B- and T-cells. Apparently, one probeset does not
measure the gene appropriately.

R> myGeneSymbol <- "LCK"

R> probesetPos <- which(myGeneSymbol == featureData(ALL)$SYMBOL)

R> myProbesetIds <- featureNames(ALL)[probesetPos]

R> profilesPlot(object = ALL, probesetIds = myProbesetIds,

orderGroups = "BT", sampleIDs = "BT")
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7.4 Smoothscatter plots

It may be of interest to look at correlations between samples. As each dot represents a gene, there
are typically many dots. It is therefore wise to color the dots in a density dependent way.

R> plotComb2Samples(ALL, "11002", "01003",

xlab = "a T-cell", ylab = "another T-cell")

Figure 1: Correlations in gene expression profiles between two T-cell samples (samples 11002 and
01003).
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If there are outlying genes, one can label them by their gene symbol by specifying the expression
intervals (X- or Y- axis or both) that contain the genes to be highlighted using trsholdX and
trsholdY.

R> plotComb2Samples(ALL, "84004", "01003",

trsholdX = c(10,12), trsholdY = c(4,6),

xlab = "a B-cell", ylab = "a T-cell")

Figure 2: Correlations in gene expression profiles between a B-cell and a T-cell (samples 84004 and
01003). Some potentially interesting genes are indicated by their gene symbol.
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One can also show multiple pairwise comparisons in a pairwise scatterplot matrix.

R> plotCombMultSamples(exprs(ALL)[,c("84004", "11002", "01003")])

R> # text.panel= function(x){x, labels = c("a B-cell", "a T-cell", "another T-cell")})

Figure 3: Correlations in gene expression profiles between a B-cell and two T-cell samples (respec-
tively samples 84004, 11002 and 01003).
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7.5 Gene lists of log ratios

When analyzing treatments that are primarily interesting relative to a control treatment, it may
be of value to look at the log ratios of several treatments (in columns) for a selected list of genes
(in rows).

R> ALL$BTtype <- as.factor(substr(ALL$BT,0,1))

R> ALL2 <- ALL[,ALL$BT != 'T1'] # omit subtype T1 as it only contains one sample

R> ALL2$BTtype <- as.factor(substr(ALL2$BT,0,1)) # create a vector with only T and B

R> # Test for differential expression between B and T cells

R> tTestResult <- tTest(ALL, "BTtype", probe2gene = FALSE)

R> topGenes <- rownames(tTestResult)[1:20]

R> # plot the log ratios versus subtype B of the top genes

R> LogRatioALL <- computeLogRatio(ALL2, reference = list(var="BT", level="B"))

R> a <- plotLogRatio(e = LogRatioALL[topGenes,], openFile = FALSE, tooltipvalues = FALSE,

device = "pdf", filename = "GeneLRlist",

colorsColumnsBy = "BTtype",

main = 'Top 20 genes most differentially between T- and B-cells',
orderBy = list(rows = "hclust"), probe2gene = TRUE)

Top 20 genes most differentially between T− and B−cells

B1 B2 B3 B4 T T2 T3 T4

HLA−DPB1 − major histocompatibility complex, class

HLA−DPB1 − major histocompatibility complex, class

CD19 − CD19 molecule

BLNK − B cell linker

CD79B − CD79b molecule

CD9 − CD9 molecule

NA − NA

CD74 − CD74 molecule

HLA−DRA − major histocompatibility complex, class 

IGHM − immunoglobulin heavy constant mu

HLA−DPA1 − major histocompatibility complex, class

HLA−DMA − major histocompatibility complex, class 

LCK − LCK proto−oncogene, Src family tyrosine kina

LCK − LCK proto−oncogene, Src family tyrosine kina

TRAT1 − T cell receptor associated transmembrane a

PRKCQ − protein kinase C theta

CD3G − CD3g molecule

CD3D − CD3d molecule

SH2D1A − SH2 domain containing 1A

YME1L1 − YME1 like 1 ATPase

Error bars show the pooled standard deviation

Tue Oct 30 19:53:50 2018 ; R version 3.5.1 Patched (2018−07−12 r74967) ; Biobase version  2.42.0

Figure 4: Log ratios of the 20 genes that are most differentially expressed between B-cell and two
T-cells.

The following example demonstrates how to display log ratios for four compounds for which
gene expression was measured on four timepoints.

R> load(system.file("extdata", "esetExampleTimeCourse.rda", package = "a4"))

R> logRatioEset <- computeLogRatio(esetExampleTimeCourse, within = "hours",

reference = list(var = "compound", level = "DMSO"))

R> # re-order

R> idx <- order(pData(logRatioEset)$compound, pData(logRatioEset)$hours)

R> logRatioEset <- logRatioEset[,idx]

R> # plot LogRatioEset across all

R> cl <- "TEST"

R> compound <- "COMPOUND"

R> shortvarnames <- unique(interaction(pData(logRatioEset)$compound, pData(logRatioEset)$hours))

R> shortvarnames <- shortvarnames[-grep("DMSO", shortvarnames), drop=TRUE]

R> plotLogRatio(e = logRatioEset, mx = 1, filename = "logRatioOverallTimeCourse.pdf",

gene.fontsize = 8,

orderBy = list(rows = "hclust", cols = NULL), colorsColumnsBy = c('compound'),
within = "hours", shortvarnames = shortvarnames, exp.width = 1,

main = paste("Differential Expression (trend at early time points) in",

cl, "upon treatment with", compound),

reference = list(var = "compound", level = "DMSO"), device = 'pdf')
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Differential Expression (trend at early time points) in TEST upon treatment with COMPOUND

A.2 A.4 A.6 A.22 B.2 B.4 B.6 B.22 C.2 C.4 C.6 C.22 D.2 D.4 D.6 D.22

ARRDC4 − arrestin domain containing 4
EGR1 − early growth response 1
SPRY4 − sprouty homolog 4 (Drosophila)
BHLHE40 − basic helix−loop−helix family, member e4
ZFP36 − zinc finger protein 36, C3H type, homolog 
DUSP5 − dual specificity phosphatase 5
PLAUR − plasminogen activator, urokinase receptor
SERPINE1 − serpin peptidase inhibitor, clade E (ne
INSIG1 − insulin induced gene 1
IER3 − immediate early response 3
NPC1 − Niemann−Pick disease, type C1
LDLR − low density lipoprotein receptor
HMGCS1 − 3−hydroxy−3−methylglutaryl−Coenzyme A syn
SC4MOL − sterol−C4−methyl oxidase−like
LPIN1 − lipin 1
HMGCR − 3−hydroxy−3−methylglutaryl−Coenzyme A redu
FDFT1 − farnesyl−diphosphate farnesyltransferase 1
DHCR7 − 7−dehydrocholesterol reductase
IDI1 − isopentenyl−diphosphate delta isomerase 1
PCSK9 − proprotein convertase subtilisin/kexin typ

Error bars show the pooled standard deviation

Tue Oct 30 19:53:51 2018 ; R version 3.5.1 Patched (2018−07−12 r74967) ; Biobase version  2.42.0

Figure 5: Log ratios for four compounds at four time points (for 20 genes).
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8 Pathway analysis

8.1 Minus log p

The MLP method is one method of pathway analysis that is commonly used by the a4 suite user
base. Although the method is explained in detail in the MLP package vignette we briefly walk
throught the analysis steps using the same example dataset used in the preceding parts of the
analysis. In order to detect whether certain gene sets are enriched in genes with low p values, we
obtain the vector of p values for the genes and the corresponding relevant gene sets:

R> require(MLP)

R> # create groups

R> labels <- as.factor(ifelse(regexpr("^B", as.character(pData(ALL)$BT))==1, "B", "T"))

R> pData(ALL)$BT2 <- labels

R> # generate p-values

R> limmaResult <- limmaTwoLevels(object = ALL, group = "BT2")

R> pValues <- limmaResult@MArrayLM$p.value

R> pValueNames <- fData(ALL)[rownames(pValues), 'ENTREZID']
R> pValues <- pValues[,2]

R> names(pValues) <- pValueNames

R> pValues <- pValues[!is.na(pValueNames)]

R> geneSet <- getGeneSets(species = "Human",

geneSetSource = "GOBP",

entrezIdentifiers = names(pValues)

)

R> tail(geneSet, 3)

$`GO:2001303`
[1] "239" "246"

$`GO:2001304`
[1] "239"

$`GO:2001306`
[1] "239"

Next, we run the MLP analysis:

R> mlpOut <- MLP(

geneSet = geneSet,

geneStatistic = pValues,

minGenes = 5,

maxGenes = 100,

rowPermutations = TRUE,

nPermutations = 50,

smoothPValues = TRUE,

probabilityVector = c(0.5, 0.9, 0.95, 0.99, 0.999, 0.9999, 0.99999),

df = 9)

The results can be visualized in many ways, but for Gene Ontology based gene set definitions,
the following graph may be useful:

R> pdf(file = "GOgraph.pdf")

R> plot(mlpOut, type = "GOgraph", nRow = 25)

R> dev.off()

9 Software used

• R version 3.5.1 Patched (2018-07-12 r74967), x86_64-apple-darwin15.6.0
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• Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Running under: OS X El Capitan 10.11.6

• Matrix products: default

• BLAS:
/Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib

• LAPACK:
/Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

• Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, stats4,
utils

• Other packages: ALL 1.23.0, AnnotationDbi 1.44.0, Biobase 2.42.0, BiocGenerics 0.28.0,
Category 2.48.0, GO.db 3.7.0, GOstats 2.48.0, IRanges 2.16.0, KEGG.db 3.2.3,
KernSmooth 2.23-15, MASS 7.3-51, MLInterfaces 1.62.0, MLP 1.30.0, Matrix 1.2-14,
ROCR 1.0-7, Rgraphviz 2.26.0, S4Vectors 0.20.0, XML 3.98-1.16, a4 1.30.0, a4Base 1.30.0,
a4Classif 1.30.0, a4Core 1.30.0, a4Preproc 1.30.0, a4Reporting 1.30.0, affy 1.60.0,
annaffy 1.54.0, annotate 1.60.0, cluster 2.0.7-1, foreach 1.4.4, gdata 2.18.0, genefilter 1.64.0,
glmnet 2.0-16, gmodels 2.18.1, gplots 3.0.1, graph 1.60.0, gtools 3.8.1, hgu95av2.db 3.2.3,
limma 3.38.0, mpm 1.0-22, multtest 2.38.0, nlcv 0.3.5, org.Hs.eg.db 3.7.0, pamr 1.55,
plotrix 3.7-4, randomForest 4.6-14, survival 2.43-1, varSelRF 0.7-8, xtable 1.8-3

• Loaded via a namespace (and not attached): AnnotationForge 1.24.0, BiocManager 1.30.3,
DBI 1.0.0, DEoptimR 1.0-8, GSEABase 1.44.0, R6 2.3.0, RBGL 1.58.0,
RColorBrewer 1.1-2, RCurl 1.95-4.11, RSQLite 2.1.1, Rcpp 0.12.19, affyio 1.52.0,
assertthat 0.2.0, base64enc 0.1-3, bindr 0.1.1, bindrcpp 0.2.2, bit 1.1-14, bit64 0.9-7,
bitops 1.0-6, blob 1.1.1, caTools 1.17.1.1, class 7.3-14, codetools 0.2-15, compiler 3.5.1,
crayon 1.3.4, crosstalk 1.0.0, digest 0.6.18, diptest 0.75-7, dplyr 0.7.7, e1071 1.7-0,
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flexmix 2.3-14, fpc 2.1-11.1, gbm 2.1.4, ggvis 0.4.4, glue 1.3.0, gridExtra 2.3, gtable 0.2.0,
htmltools 0.3.6, htmlwidgets 1.3, httpuv 1.4.5, hwriter 1.3.2, igraph 1.2.2, ipred 0.9-7,
iterators 1.0.10, kernlab 0.9-27, later 0.7.5, lattice 0.20-35, lava 1.6.3, magrittr 1.5,
mclust 5.4.1, memoise 1.1.0, mime 0.6, mlbench 2.1-1, modeltools 0.2-22, mvtnorm 1.0-8,
nnet 7.3-12, pillar 1.3.0, pkgconfig 2.0.2, pls 2.7-0, prabclus 2.2-6, preprocessCore 1.44.0,
prodlim 2018.04.18, promises 1.0.1, purrr 0.2.5, rda 1.0.2-2.1, rlang 0.3.0.1,
robustbase 0.93-3, rpart 4.1-13, sfsmisc 1.1-2, shiny 1.1.0, splines 3.5.1, threejs 0.3.1,
tibble 1.4.2, tidyselect 0.2.5, tools 3.5.1, trimcluster 0.1-2.1, zlibbioc 1.28.0
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