
An Introduction to the GenomicRanges Package

Marc Carlson, Patrick Aboyoun, Hervé Pagès, and Martin
Morgan

September 20, 2018; updated 11 January, 2018

Contents

1 Introduction . 1

2 GRanges: Genomic Ranges . 2

2.1 Splitting and combining GRanges objects 4

2.2 Subsetting GRanges objects 5

2.3 Basic interval operations for GRanges objects 7

2.4 Interval set operations for GRanges objects 10

3 GRangesList : Groups of Genomic Ranges 12

3.1 Basic GRangesList accessors 13

3.2 Combining GRangesList objects 15

3.3 Basic interval operations for GRangesList objects 16

3.4 Subsetting GRangesList objects 18

3.5 Looping over GRangesList objects 20

4 Interval overlaps involving GRanges and GRangesList objects 23

5 Session Information . 24

1 Introduction

The GenomicRanges package serves as the foundation for representing genomic locations
within the Bioconductor project. In the Bioconductor package hierarchy, it builds upon the
IRanges (infrastructure) package and provides support for the BSgenome (infrastructure),
Rsamtools (I/O), ShortRead (I/O & QA), rtracklayer (I/O), GenomicFeatures (infrastruc-
ture), GenomicAlignments (sequence reads), VariantAnnotation (called variants), and many
other Bioconductor packages.

This package lays a foundation for genomic analysis by introducing three classes (GRanges,
GPos, and GRangesList), which are used to represent genomic ranges, genomic positions, and
groups of genomic ranges. This vignette focuses on the GRanges and GRangesList classes
and their associated methods.

http://bioconductor.org/packages/GenomicRanges
http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/BSgenome
http://bioconductor.org/packages/Rsamtools
http://bioconductor.org/packages/ShortRead
http://bioconductor.org/packages/rtracklayer
http://bioconductor.org/packages/GenomicFeatures
http://bioconductor.org/packages/GenomicAlignments
http://bioconductor.org/packages/VariantAnnotation

An Introduction to the GenomicRanges Package

The GenomicRanges package is available at https://bioconductor.org and can be installed
via biocLite:

> source("https://bioconductor.org/biocLite.R")

> biocLite("GenomicRanges")

A package only needs to be installed once. Load the package into an R session with

> library(GenomicRanges)

2 GRanges: Genomic Ranges

The GRanges class represents a collection of genomic ranges that each have a single start
and end location on the genome. It can be used to store the location of genomic features
such as contiguous binding sites, transcripts, and exons. These objects can be created by
using the GRanges constructor function. For example,

> gr <- GRanges(

+ seqnames = Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),

+ ranges = IRanges(101:110, end = 111:120, names = head(letters, 10)),

+ strand = Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),

+ score = 1:10,

+ GC = seq(1, 0, length=10))

> gr

GRanges object with 10 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 101-111 - | 1 1

b chr2 102-112 + | 2 0.888888888888889

c chr2 103-113 + | 3 0.777777777777778

.

h chr3 108-118 + | 8 0.222222222222222

i chr3 109-119 - | 9 0.111111111111111

j chr3 110-120 - | 10 0

seqinfo: 3 sequences from an unspecified genome; no seqlengths

> options(warn=2)

creates a GRanges object with 10 genomic ranges. The output of the GRanges show method
separates the information into a left and right hand region that are separated by | symbols.
The genomic coordinates (seqnames, ranges, and strand) are located on the left-hand side
and the metadata columns (annotation) are located on the right. For this example, the
metadata is comprised of score and GC information, but almost anything can be stored in
the metadata portion of a GRanges object.

The components of the genomic coordinates within a GRanges object can be extracted using
the seqnames, ranges, and strand accessor functions.

> seqnames(gr)

2

http://bioconductor.org/packages/GenomicRanges
https://bioconductor.org

An Introduction to the GenomicRanges Package

factor-Rle of length 10 with 4 runs

Lengths: 1 3 2 4

Values : chr1 chr2 chr1 chr3

Levels(3): chr1 chr2 chr3

> ranges(gr)

IRanges object with 10 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

a 101 111 11

b 102 112 11

c 103 113 11

.

h 108 118 11

i 109 119 11

j 110 120 11

> strand(gr)

factor-Rle of length 10 with 5 runs

Lengths: 1 2 2 3 2

Values : - + * + -

Levels(3): + - *

The genomic ranges can be extracted without corresponding metadata with granges

> granges(gr)

GRanges object with 10 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

a chr1 101-111 -

b chr2 102-112 +

c chr2 103-113 +

.

h chr3 108-118 +

i chr3 109-119 -

j chr3 110-120 -

seqinfo: 3 sequences from an unspecified genome; no seqlengths

Annotations for these coordinates can be extracted as a DataFrame object using the mcols

accessor.

> mcols(gr)

DataFrame with 10 rows and 2 columns

score GC

<integer> <numeric>

1 1 1

2 2 0.888888888888889

3 3 0.777777777777778

...

3

An Introduction to the GenomicRanges Package

8 8 0.222222222222222

9 9 0.111111111111111

10 10 0

> mcols(gr)$score

[1] 1 2 3 4 5 6 7 8 9 10

Information about the lengths of the various sequences that the ranges are aligned to can
also be stored in the GRanges object. So if this is data from Homo sapiens, we can set the
values as:

> seqlengths(gr) <- c(249250621, 243199373, 198022430)

And then retrieves as:

> seqlengths(gr)

chr1 chr2 chr3

249250621 243199373 198022430

Methods for accessing the length and names have also been defined.

> names(gr)

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

> length(gr)

[1] 10

2.1 Splitting and combining GRanges objects

GRanges objects can be devided into groups using the split method. This produces a
GRangesList object, a class that will be discussed in detail in the next section.

> sp <- split(gr, rep(1:2, each=5))

> sp

GRangesList object of length 2:

$1

GRanges object with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 101-111 - | 1 1

b chr2 102-112 + | 2 0.888888888888889

c chr2 103-113 + | 3 0.777777777777778

d chr2 104-114 * | 4 0.666666666666667

e chr1 105-115 * | 5 0.555555555555556

$2

GRanges object with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

f chr1 106-116 + | 6 0.444444444444444

4

An Introduction to the GenomicRanges Package

g chr3 107-117 + | 7 0.333333333333333

h chr3 108-118 + | 8 0.222222222222222

i chr3 109-119 - | 9 0.111111111111111

j chr3 110-120 - | 10 0

seqinfo: 3 sequences from an unspecified genome

Separate GRanges instances can be concatenated by using the c and append methods.

> c(sp[[1]], sp[[2]])

GRanges object with 10 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 101-111 - | 1 1

b chr2 102-112 + | 2 0.888888888888889

c chr2 103-113 + | 3 0.777777777777778

.

h chr3 108-118 + | 8 0.222222222222222

i chr3 109-119 - | 9 0.111111111111111

j chr3 110-120 - | 10 0

seqinfo: 3 sequences from an unspecified genome

2.2 Subsetting GRanges objects

GRanges objects act like vectors of ranges, with the expected vector-like subsetting operations
available

> gr[2:3]

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

b chr2 102-112 + | 2 0.888888888888889

c chr2 103-113 + | 3 0.777777777777778

seqinfo: 3 sequences from an unspecified genome

A second argument to the [subset operator can be used to specify which metadata columns
to extract from the GRanges object. For example,

> gr[2:3, "GC"]

GRanges object with 2 ranges and 1 metadata column:

seqnames ranges strand | GC

<Rle> <IRanges> <Rle> | <numeric>

b chr2 102-112 + | 0.888888888888889

c chr2 103-113 + | 0.777777777777778

seqinfo: 3 sequences from an unspecified genome

5

An Introduction to the GenomicRanges Package

Elements can also be assigned to the GRanges object. Here is an example where the second
row of a GRanges object is replaced with the first row of gr.

> singles <- split(gr, names(gr))

> grMod <- gr

> grMod[2] <- singles[[1]]

> head(grMod, n=3)

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 101-111 - | 1 1

b chr1 101-111 - | 1 1

c chr2 103-113 + | 3 0.777777777777778

seqinfo: 3 sequences from an unspecified genome

There are methods to repeat, reverse, or select specific portions of GRanges objects.

> rep(singles[[2]], times = 3)

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

b chr2 102-112 + | 2 0.888888888888889

b chr2 102-112 + | 2 0.888888888888889

b chr2 102-112 + | 2 0.888888888888889

seqinfo: 3 sequences from an unspecified genome

> rev(gr)

GRanges object with 10 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

j chr3 110-120 - | 10 0

i chr3 109-119 - | 9 0.111111111111111

h chr3 108-118 + | 8 0.222222222222222

.

c chr2 103-113 + | 3 0.777777777777778

b chr2 102-112 + | 2 0.888888888888889

a chr1 101-111 - | 1 1

seqinfo: 3 sequences from an unspecified genome

> head(gr,n=2)

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 101-111 - | 1 1

b chr2 102-112 + | 2 0.888888888888889

6

An Introduction to the GenomicRanges Package

seqinfo: 3 sequences from an unspecified genome

> tail(gr,n=2)

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

i chr3 109-119 - | 9 0.111111111111111

j chr3 110-120 - | 10 0

seqinfo: 3 sequences from an unspecified genome

> window(gr, start=2,end=4)

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

b chr2 102-112 + | 2 0.888888888888889

c chr2 103-113 + | 3 0.777777777777778

d chr2 104-114 * | 4 0.666666666666667

seqinfo: 3 sequences from an unspecified genome

> gr[IRanges(start=c(2,7), end=c(3,9))]

GRanges object with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

b chr2 102-112 + | 2 0.888888888888889

c chr2 103-113 + | 3 0.777777777777778

g chr3 107-117 + | 7 0.333333333333333

h chr3 108-118 + | 8 0.222222222222222

i chr3 109-119 - | 9 0.111111111111111

seqinfo: 3 sequences from an unspecified genome

2.3 Basic interval operations for GRanges objects

Basic interval characteristics of GRanges objects can be extracted using the start, end,
width, and range methods.

> g <- gr[1:3]

> g <- append(g, singles[[10]])

> start(g)

[1] 101 102 103 110

> end(g)

[1] 111 112 113 120

> width(g)

[1] 11 11 11 11

7

An Introduction to the GenomicRanges Package

> range(g)

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 101-111 -

[2] chr2 102-113 +

[3] chr3 110-120 -

seqinfo: 3 sequences from an unspecified genome

The GRanges class also has many methods for manipulating the ranges. The methods can
be classified as intra-range methods, inter-range methods, and between-range methods.

Intra-range methods operate on each element of a GRanges object independent of the other
ranges in the object. For example, the flank method can be used to recover regions flanking
the set of ranges represented by the GRanges object. So to get a GRanges object containing
the ranges that include the 10 bases upstream of the ranges:

> flank(g, 10)

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 112-121 - | 1 1

b chr2 92-101 + | 2 0.888888888888889

c chr2 93-102 + | 3 0.777777777777778

j chr3 121-130 - | 10 0

seqinfo: 3 sequences from an unspecified genome

And to include the downstream bases:

> flank(g, 10, start=FALSE)

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 91-100 - | 1 1

b chr2 113-122 + | 2 0.888888888888889

c chr2 114-123 + | 3 0.777777777777778

j chr3 100-109 - | 10 0

seqinfo: 3 sequences from an unspecified genome

Other examples of intra-range methods include resize and shift. The shift method will
move the ranges by a specific number of base pairs, and the resize method will extend the
ranges by a specified width.

> shift(g, 5)

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

8

An Introduction to the GenomicRanges Package

a chr1 106-116 - | 1 1

b chr2 107-117 + | 2 0.888888888888889

c chr2 108-118 + | 3 0.777777777777778

j chr3 115-125 - | 10 0

seqinfo: 3 sequences from an unspecified genome

> resize(g, 30)

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 82-111 - | 1 1

b chr2 102-131 + | 2 0.888888888888889

c chr2 103-132 + | 3 0.777777777777778

j chr3 91-120 - | 10 0

seqinfo: 3 sequences from an unspecified genome

The GenomicRanges help page ?"intra-range-methods" summarizes these methods.

Inter-range methods involve comparisons between ranges in a single GRanges object. For
instance, the reduce method will align the ranges and merge overlapping ranges to produce
a simplified set.

> reduce(g)

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 101-111 -

[2] chr2 102-113 +

[3] chr3 110-120 -

seqinfo: 3 sequences from an unspecified genome

Sometimes one is interested in the gaps or the qualities of the gaps between the ranges
represented by your GRanges object. The gaps method provides this information: reduced
version of your ranges:

> gaps(g)

GRanges object with 12 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 1-249250621 +

[2] chr1 1-100 -

[3] chr1 112-249250621 -

...

[10] chr3 1-109 -

[11] chr3 121-198022430 -

[12] chr3 1-198022430 *

seqinfo: 3 sequences from an unspecified genome

9

http://bioconductor.org/packages/GenomicRanges

An Introduction to the GenomicRanges Package

The disjoin method represents a GRanges object as a collection of non-overlapping ranges:

> disjoin(g)

GRanges object with 5 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 101-111 -

[2] chr2 102 +

[3] chr2 103-112 +

[4] chr2 113 +

[5] chr3 110-120 -

seqinfo: 3 sequences from an unspecified genome

The coverage method quantifies the degree of overlap for all the ranges in a GRanges object.

> coverage(g)

RleList of length 3

$chr1

integer-Rle of length 249250621 with 3 runs

Lengths: 100 11 249250510

Values : 0 1 0

$chr2

integer-Rle of length 243199373 with 5 runs

Lengths: 101 1 10 1 243199260

Values : 0 1 2 1 0

$chr3

integer-Rle of length 198022430 with 3 runs

Lengths: 109 11 198022310

Values : 0 1 0

See the GenomicRanges help page ?"inter-range-methods" for additional help.

Between-range methods involve operations between two GRanges objects; some of these are
summarized in the next section.

2.4 Interval set operations for GRanges objects

Between-range methods calculate relationships between different GRanges objects. Of central
importance are findOverlaps and related operations; these are discussed below. Additional
operations treat GRanges as mathematical sets of coordinates; union(g, g2) is the union of
the coordinates in g and g2. Here are examples for calculating the union, the intersect and
the asymmetric difference (using setdiff).

> g2 <- head(gr, n=2)

> union(g, g2)

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

10

http://bioconductor.org/packages/GenomicRanges

An Introduction to the GenomicRanges Package

<Rle> <IRanges> <Rle>

[1] chr1 101-111 -

[2] chr2 102-113 +

[3] chr3 110-120 -

seqinfo: 3 sequences from an unspecified genome

> intersect(g, g2)

GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 101-111 -

[2] chr2 102-112 +

seqinfo: 3 sequences from an unspecified genome

> setdiff(g, g2)

GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr2 113 +

[2] chr3 110-120 -

seqinfo: 3 sequences from an unspecified genome

Related methods are available when the structure of the GRanges objects are ’parallel’ to
one another, i.e., element 1 of object 1 is related to element 1 of object 2, and so on. These
operations all begin with a p, which is short for parallel. The methods then perform element-
wise, e.g., the union of element 1 of object 1 with element 1 of object 2, etc. A requirement
for these operations is that the number of elements in each GRanges object is the same, and
that both of the objects have the same seqnames and strand assignments throughout.

> g3 <- g[1:2]

> ranges(g3[1]) <- IRanges(start=105, end=112)

> punion(g2, g3)

GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

a chr1 101-112 -

b chr2 102-112 +

seqinfo: 3 sequences from an unspecified genome

> pintersect(g2, g3)

GRanges object with 2 ranges and 3 metadata columns:

seqnames ranges strand | score GC hit

<Rle> <IRanges> <Rle> | <integer> <numeric> <logical>

a chr1 105-111 - | 1 1 TRUE

b chr2 102-112 + | 2 0.888888888888889 TRUE

seqinfo: 3 sequences from an unspecified genome

11

An Introduction to the GenomicRanges Package

> psetdiff(g2, g3)

GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

a chr1 101-104 -

b chr2 102-101 +

seqinfo: 3 sequences from an unspecified genome

For more information on the GRanges classes be sure to consult the manual page.

> ?GRanges

A relatively comprehensive list of available methods is discovered with

> methods(class="GRanges")

3 GRangesList : Groups of Genomic Ranges

Some important genomic features, such as spliced transcripts that are are comprised of exons,
are inherently compound structures. Such a feature makes much more sense when expressed
as a compound object such as a GRangesList. Whenever genomic features consist of multiple
ranges that are grouped by a parent feature, they can be represented as a GRangesList
object. Consider the simple example of the two transcript GRangesList below created using
the GRangesList constructor.

> gr1 <- GRanges(

+ seqnames = "chr2",

+ ranges = IRanges(103, 106),

+ strand = "+",

+ score = 5L, GC = 0.45)

> gr2 <- GRanges(

+ seqnames = c("chr1", "chr1"),

+ ranges = IRanges(c(107, 113), width = 3),

+ strand = c("+", "-"),

+ score = 3:4, GC = c(0.3, 0.5))

> grl <- GRangesList("txA" = gr1, "txB" = gr2)

> grl

GRangesList object of length 2:

$txA

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 103-106 + | 5 0.45

$txB

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

12

An Introduction to the GenomicRanges Package

[1] chr1 107-109 + | 3 0.3

[2] chr1 113-115 - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

The show method for a GRangesList object displays it as a named list of GRanges objects,
where the names of this list are considered to be the names of the grouping feature. In the
example above, the groups of individual exon ranges are represented as separate GRanges
objects which are further organized into a list structure where each element name is a tran-
script name. Many other combinations of grouped and labeled GRanges objects are possible
of course, but this example is expected to be a common arrangement.

3.1 Basic GRangesList accessors

Just as with GRanges object, the components of the genomic coordinates within a GRanges-
List object can be extracted using simple accessor methods. Not surprisingly, the GRangesList
objects have many of the same accessors as GRanges objects. The difference is that many
of these methods return a list since the input is now essentially a list of GRanges objects.
Here are a few examples:

> seqnames(grl)

RleList of length 2

$txA

factor-Rle of length 1 with 1 run

Lengths: 1

Values : chr2

Levels(2): chr2 chr1

$txB

factor-Rle of length 2 with 1 run

Lengths: 2

Values : chr1

Levels(2): chr2 chr1

> ranges(grl)

IRangesList of length 2

$txA

IRanges object with 1 range and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 103 106 4

$txB

IRanges object with 2 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 107 109 3

[2] 113 115 3

13

An Introduction to the GenomicRanges Package

> strand(grl)

RleList of length 2

$txA

factor-Rle of length 1 with 1 run

Lengths: 1

Values : +

Levels(3): + - *

$txB

factor-Rle of length 2 with 2 runs

Lengths: 1 1

Values : + -

Levels(3): + - *

The length and names methods will return the length or names of the list and the seqlengths
method will return the set of sequence lengths.

> length(grl)

[1] 2

> names(grl)

[1] "txA" "txB"

> seqlengths(grl)

chr2 chr1

NA NA

The elementNROWS method returns a list of integers corresponding to the result of calling NROW

on each individual GRanges object contained by the GRangesList. This is a faster alternative
to calling lapply on the GRangesList.

> elementNROWS(grl)

txA txB

1 2

isEmpty tests if a GRangesList object contains anything.

> isEmpty(grl)

[1] FALSE

In the context of a GRangesList object, the mcols method performs a similar operation to
what it does on a GRanges object. However, this metadata now refers to information at the
list level instead of the level of the individual GRanges objects.

> mcols(grl) <- c("Transcript A","Transcript B")

> mcols(grl)

DataFrame with 2 rows and 1 column

value

<character>

1 Transcript A

14

An Introduction to the GenomicRanges Package

2 Transcript B

Element-level metadata can be retrieved by unlisting the GRangesList, and extracting the
metadata

> mcols(unlist(grl))

DataFrame with 3 rows and 2 columns

score GC

<integer> <numeric>

1 5 0.45

2 3 0.3

3 4 0.5

3.2 Combining GRangesList objects

GRangesList objects can be unlisted to combine the separate GRanges objects that they
contain as an expanded GRanges.

> ul <- unlist(grl)

> ul

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

txA chr2 103-106 + | 5 0.45

txB chr1 107-109 + | 3 0.3

txB chr1 113-115 - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

Append lists using append or c.

A support site user had two GRangesList objects with ’parallel’ elements, and wanted to
combined these element-wise into a single GRangesList. One solution is to use pc() – parallel
(element-wise) c(). A more general solution is to concatenate the lists and then re-group by
some factor, in this case the names of the elements.

> grl1 <- GRangesList(

+ gr1 = GRanges("chr2", IRanges(3, 6)),

+ gr2 = GRanges("chr1", IRanges(c(7,13), width = 3)))

> grl2 <- GRangesList(

+ gr1 = GRanges("chr2", IRanges(9, 12)),

+ gr2 = GRanges("chr1", IRanges(c(25,38), width = 3)))

> pc(grl1, grl2)

GRangesList object of length 2:

$gr1

GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr2 3-6 *

15

https://support.bioconductor.org/p/89339/

An Introduction to the GenomicRanges Package

[2] chr2 9-12 *

$gr2

GRanges object with 4 ranges and 0 metadata columns:

seqnames ranges strand

[1] chr1 7-9 *
[2] chr1 13-15 *
[3] chr1 25-27 *
[4] chr1 38-40 *

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> grl3 <- c(grl1, grl2)

> regroup(grl3, names(grl3))

GRangesList object of length 2:

$gr1

GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr2 3-6 *
[2] chr2 9-12 *

$gr2

GRanges object with 4 ranges and 0 metadata columns:

seqnames ranges strand

[1] chr1 7-9 *
[2] chr1 13-15 *
[3] chr1 25-27 *
[4] chr1 38-40 *

seqinfo: 2 sequences from an unspecified genome; no seqlengths

3.3 Basic interval operations for GRangesList objects

For interval operations, many of the same methods exist for GRangesList objects that exist
for GRanges objects.

> start(grl)

IntegerList of length 2

[["txA"]] 103

[["txB"]] 107 113

> end(grl)

IntegerList of length 2

[["txA"]] 106

[["txB"]] 109 115

16

An Introduction to the GenomicRanges Package

> width(grl)

IntegerList of length 2

[["txA"]] 4

[["txB"]] 3 3

These operations return a data structure representing, e.g., IntegerList, a list where all ele-
ments are integers; it can be convenient to use mathematical and other operations on *List
objects that work on each element, e.g.,

> sum(width(grl)) # sum of widths of each grl element

txA txB

4 6

Most of the intra-, inter- and between-range methods operate on GRangesList objects, e.g.,
to shift all the GRanges objects in a GRangesList object, or calculate the coverage. Both of
these operations are also carried out across each GRanges list member.

> shift(grl, 20)

GRangesList object of length 2:

$txA

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 123-126 + | 5 0.45

$txB

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

[1] chr1 127-129 + | 3 0.3

[2] chr1 133-135 - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> coverage(grl)

RleList of length 2

$chr2

integer-Rle of length 106 with 2 runs

Lengths: 102 4

Values : 0 1

$chr1

integer-Rle of length 115 with 4 runs

Lengths: 106 3 3 3

Values : 0 1 0 1

17

An Introduction to the GenomicRanges Package

3.4 Subsetting GRangesList objects

A GRangesList object is behaves like a list: [returns a GRangesList containing a subset of
the original object; [[or $ returns the GRanges object at that location in the list.

> grl[1]

> grl[[1]]

> grl["txA"]

> grl$txB

In addition, subsetting a GRangesList also accepts a second parameter to specify which of
the metadata columns you wish to select.

> grl[1, "score"]

GRangesList object of length 1:

$txA

GRanges object with 1 range and 1 metadata column:

seqnames ranges strand | score

<Rle> <IRanges> <Rle> | <integer>

[1] chr2 103-106 + | 5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> grl["txB", "GC"]

GRangesList object of length 1:

$txB

GRanges object with 2 ranges and 1 metadata column:

seqnames ranges strand | GC

<Rle> <IRanges> <Rle> | <numeric>

[1] chr1 107-109 + | 0.3

[2] chr1 113-115 - | 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

The head, tail, rep, rev, and window methods all behave as you would expect them to for
a list object. For example, the elements referred to by window are now list elements instead
of GRanges elements.

> rep(grl[[1]], times = 3)

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 103-106 + | 5 0.45

[2] chr2 103-106 + | 5 0.45

[3] chr2 103-106 + | 5 0.45

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> rev(grl)

18

An Introduction to the GenomicRanges Package

GRangesList object of length 2:

$txB

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 107-109 + | 3 0.3

[2] chr1 113-115 - | 4 0.5

$txA

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

[1] chr2 103-106 + | 5 0.45

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> head(grl, n=1)

GRangesList object of length 1:

$txA

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 103-106 + | 5 0.45

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> tail(grl, n=1)

GRangesList object of length 1:

$txB

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 107-109 + | 3 0.3

[2] chr1 113-115 - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> window(grl, start=1, end=1)

GRangesList object of length 1:

$txA

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 103-106 + | 5 0.45

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> grl[IRanges(start=2, end=2)]

19

An Introduction to the GenomicRanges Package

GRangesList object of length 1:

$txB

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 107-109 + | 3 0.3

[2] chr1 113-115 - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

3.5 Looping over GRangesList objects

For GRangesList objects there is also a family of apply methods. These include lapply,
sapply, mapply, endoapply, mendoapply, Map, and Reduce.

The different looping methods defined for GRangesList objects are useful for returning differ-
ent kinds of results. The standard lapply and sapply behave according to convention, with
the lapply method returning a list and sapply returning a more simplified output.

> lapply(grl, length)

$txA

[1] 1

$txB

[1] 2

> sapply(grl, length)

txA txB

1 2

As with IRanges objects, there is also a multivariate version of sapply, called mapply, defined
for GRangesList objects. And, if you don’t want the results simplified, you can call the Map

method, which does the same things as mapply but without simplifying the output.

> grl2 <- shift(grl, 10)

> names(grl2) <- c("shiftTxA", "shiftTxB")

> mapply(c, grl, grl2)

$txA

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 103-106 + | 5 0.45

[2] chr2 113-116 + | 5 0.45

seqinfo: 2 sequences from an unspecified genome; no seqlengths

$txB

GRanges object with 4 ranges and 2 metadata columns:

20

An Introduction to the GenomicRanges Package

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 107-109 + | 3 0.3

[2] chr1 113-115 - | 4 0.5

[3] chr1 117-119 + | 3 0.3

[4] chr1 123-125 - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> Map(c, grl, grl2)

$txA

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 103-106 + | 5 0.45

[2] chr2 113-116 + | 5 0.45

seqinfo: 2 sequences from an unspecified genome; no seqlengths

$txB

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 107-109 + | 3 0.3

[2] chr1 113-115 - | 4 0.5

[3] chr1 117-119 + | 3 0.3

[4] chr1 123-125 - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

Sometimes you will want to get back a modified version of the GRangesList that you originally
passed in.

An endomorphism is a transformation of an object to another instance of the same class .
This is achieved using the endoapply method, which will return the results as a GRangesList
object.

> endoapply(grl, rev)

GRangesList object of length 2:

$txA

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 103-106 + | 5 0.45

$txB

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

[1] chr1 113-115 - | 4 0.5

[2] chr1 107-109 + | 3 0.3

21

An Introduction to the GenomicRanges Package

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> mendoapply(c, grl, grl2)

GRangesList object of length 2:

$txA

GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 103-106 + | 5 0.45

[2] chr2 113-116 + | 5 0.45

$txB

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | score GC

[1] chr1 107-109 + | 3 0.3

[2] chr1 113-115 - | 4 0.5

[3] chr1 117-119 + | 3 0.3

[4] chr1 123-125 - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

The Reduce method will allow the GRanges objects to be collapsed across the whole of the
GRangesList object.

> Reduce(c, grl)

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr2 103-106 + | 5 0.45

[2] chr1 107-109 + | 3 0.3

[3] chr1 113-115 - | 4 0.5

seqinfo: 2 sequences from an unspecified genome; no seqlengths

Explicit element-wise operations (lapply() and friends) on GRangesList objects with many
elements can be slow. It is therefore beneficial to explore operations that work on *List

objects directly (e.g., many of the ‘group generic’ operators, see ?S4groupGeneric, and the
set and parallel set operators (e.g., union, punion). A useful and fast strategy is to unlist

the GRangesList to a GRanges object, operate on the GRanges object, then relist the
result, e.g.,

> gr <- unlist(grl)

> gr$log_score <- log(gr$score)

> grl <- relist(gr, grl)

> grl

GRangesList object of length 2:

$txA

GRanges object with 1 range and 3 metadata columns:

seqnames ranges strand | score GC log_score

22

An Introduction to the GenomicRanges Package

<Rle> <IRanges> <Rle> | <integer> <numeric> <numeric>

txA chr2 103-106 + | 5 0.45 1.6094379124341

$txB

GRanges object with 2 ranges and 3 metadata columns:

seqnames ranges strand | score GC log_score

txB chr1 107-109 + | 3 0.3 1.09861228866811

txB chr1 113-115 - | 4 0.5 1.38629436111989

seqinfo: 2 sequences from an unspecified genome; no seqlengths

See also ?extractList.

For more information on the GRangesList classes be sure to consult the manual page and
available methods

> ?GRangesList

> methods(class="GRangesList") # _partial_ list

4 Interval overlaps involving GRanges and GRanges-
List objects

Interval overlapping is the process of comparing the ranges in two objects to determine if
and when they overlap. As such, it is perhaps the most common operation performed on
GRanges and GRangesList objects. To this end, the GenomicRanges package provides a
family of interval overlap functions. The most general of these functions is findOverlaps,
which takes a query and a subject as inputs and returns a Hits object containing the index
pairings for the overlapping elements.

> mtch <- findOverlaps(gr, grl)

> as.matrix(mtch)

queryHits subjectHits

[1,] 1 1

[2,] 2 2

[3,] 3 2

As suggested in the sections discussing the nature of the GRanges and GRangesList classes,
the index in the above matrix of hits for a GRanges object is a single range while for a
GRangesList object it is the set of ranges that define a "feature".

Another function in the overlaps family is countOverlaps, which tabulates the number of
overlaps for each element in the query.

> countOverlaps(gr, grl)

txA txB txB

1 1 1

23

http://bioconductor.org/packages/GenomicRanges

An Introduction to the GenomicRanges Package

A third function in this family is subsetByOverlaps, which extracts the elements in the query
that overlap at least one element in the subject.

> subsetByOverlaps(gr,grl)

GRanges object with 3 ranges and 3 metadata columns:

seqnames ranges strand | score GC log_score

<Rle> <IRanges> <Rle> | <integer> <numeric> <numeric>

txA chr2 103-106 + | 5 0.45 1.6094379124341

txB chr1 107-109 + | 3 0.3 1.09861228866811

txB chr1 113-115 - | 4 0.5 1.38629436111989

seqinfo: 2 sequences from an unspecified genome; no seqlengths

Finally, you can use the select argument to get the index of the first overlapping element in
the subject for each element in the query.

> findOverlaps(gr, grl, select="first")

[1] 1 2 2

> findOverlaps(grl, gr, select="first")

[1] 1 2

5 Session Information

All of the output in this vignette was produced under the following conditions:
> sessionInfo()

R version 3.5.1 Patched (2018-07-12 r74967)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.5 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.7-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.7-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats4 stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] BSgenome.Scerevisiae.UCSC.sacCer2_1.4.0

[2] KEGGgraph_1.40.0

24

An Introduction to the GenomicRanges Package

[3] KEGG.db_3.2.3

[4] BSgenome.Hsapiens.UCSC.hg19_1.4.0

[5] BSgenome_1.48.0

[6] rtracklayer_1.40.6

[7] edgeR_3.22.3

[8] limma_3.36.5

[9] DESeq2_1.20.0

[10] AnnotationHub_2.12.1

[11] TxDb.Athaliana.BioMart.plantsmart22_3.0.1

[12] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2

[13] TxDb.Dmelanogaster.UCSC.dm3.ensGene_3.2.2

[14] GenomicFeatures_1.32.2

[15] AnnotationDbi_1.42.1

[16] GenomicAlignments_1.16.0

[17] Rsamtools_1.32.3

[18] Biostrings_2.48.0

[19] XVector_0.20.0

[20] SummarizedExperiment_1.10.1

[21] DelayedArray_0.6.6

[22] BiocParallel_1.14.2

[23] matrixStats_0.54.0

[24] Biobase_2.40.0

[25] pasillaBamSubset_0.18.0

[26] GenomicRanges_1.32.7

[27] GenomeInfoDb_1.16.0

[28] IRanges_2.14.12

[29] S4Vectors_0.18.3

[30] BiocGenerics_0.26.0

loaded via a namespace (and not attached):

[1] bitops_1.0-6 bit64_0.9-7

[3] RColorBrewer_1.1-2 progress_1.2.0

[5] httr_1.3.1 rprojroot_1.3-2

[7] tools_3.5.1 backports_1.1.2

[9] R6_2.2.2 rpart_4.1-13

[11] Hmisc_4.1-1 DBI_1.0.0

[13] lazyeval_0.2.1 colorspace_1.3-2

[15] nnet_7.3-12 gridExtra_2.3

[17] tidyselect_0.2.4 prettyunits_1.0.2

[19] bit_1.1-14 curl_3.2

[21] compiler_3.5.1 graph_1.58.0

[23] htmlTable_1.12 checkmate_1.8.5

[25] scales_1.0.0 genefilter_1.62.0

[27] stringr_1.3.1 digest_0.6.17

[29] foreign_0.8-71 rmarkdown_1.10

[31] base64enc_0.1-3 pkgconfig_2.0.2

[33] htmltools_0.3.6 htmlwidgets_1.2

[35] rlang_0.2.2 rstudioapi_0.7

[37] RSQLite_2.1.1 BiocInstaller_1.30.0

[39] shiny_1.1.0 bindr_0.1.1

[41] acepack_1.4.1 dplyr_0.7.6

[43] VariantAnnotation_1.26.1 RCurl_1.95-4.11

[45] magrittr_1.5 GenomeInfoDbData_1.1.0

[47] Formula_1.2-3 Matrix_1.2-14

[49] Rcpp_0.12.18 munsell_0.5.0

25

An Introduction to the GenomicRanges Package

[51] stringi_1.2.4 yaml_2.2.0

[53] zlibbioc_1.26.0 plyr_1.8.4

[55] grid_3.5.1 blob_1.1.1

[57] promises_1.0.1 crayon_1.3.4

[59] lattice_0.20-35 splines_3.5.1

[61] annotate_1.58.0 hms_0.4.2

[63] locfit_1.5-9.1 knitr_1.20

[65] pillar_1.3.0 geneplotter_1.58.0

[67] biomaRt_2.36.1 XML_3.98-1.16

[69] glue_1.3.0 evaluate_0.11

[71] latticeExtra_0.6-28 data.table_1.11.6

[73] httpuv_1.4.5 gtable_0.2.0

[75] purrr_0.2.5 assertthat_0.2.0

[77] ggplot2_3.0.0 mime_0.5

[79] xtable_1.8-3 later_0.7.5

[81] survival_2.42-6 tibble_1.4.2

[83] memoise_1.1.0 bindrcpp_0.2.2

[85] cluster_2.0.7-1 interactiveDisplayBase_1.18.0

[87] BiocStyle_2.8.2

26

	1 Introduction
	2 GRanges: Genomic Ranges
	2.1 Splitting and combining GRanges objects
	2.2 Subsetting GRanges objects
	2.3 Basic interval operations for GRanges objects
	2.4 Interval set operations for GRanges objects

	3 GRangesList: Groups of Genomic Ranges
	3.1 Basic GRangesList accessors
	3.2 Combining GRangesList objects
	3.3 Basic interval operations for GRangesList objects
	3.4 Subsetting GRangesList objects
	3.5 Looping over GRangesList objects

	4 Interval overlaps involving GRanges and GRangesList objects
	5 Session Information

