
MANOR: Micro-Array NORmalization of

array-CGH data

Pierre Neuvial 1,2,3, Philippe Hupé 1,2,3,4, Isabel Brito 1,2,3, Emmanuel Barillot 1,2,3

May 11, 2018

1. Institut Curie, 26 rue d’Ulm, Paris cedex 05, F-75248 France
2. INSERM, U900, Paris, F-75248 France

3. École des Mines de Paris, ParisTech, Fontainebleau, F-77300 France
4. UMR 144 CNRS, Paris, F-75248 France

manor@curie.fr

Contents

1 Overview 2

2 arrayCGH class 3

3 flag class 3
3.1 Attributes . 4

3.1.1 Exclusion and correction flags 4
3.1.2 Permanent and temporary flags 5

3.2 Methods . 5
3.2.1 to.flag . 5
3.2.2 flag.arrayCGH . 5
3.2.3 flag.summary . 6

4 qscore class 6
4.1 Attributes . 7
4.2 Methods . 7

4.2.1 to.qscore . 7
4.2.2 qscore.arrayCGH . 7
4.2.3 qscore.summary.arrayCGH 7

1

5 Data 8
5.1 edge . 8
5.2 gradient . 8

6 Graphical representations 11
6.1 genome.plot . 11
6.2 report.plot . 12

7 Sample MANOR sessions 12
7.1 array edge . 14

7.1.1 Data preparation: import 14
7.1.2 Normalization: norm 14
7.1.3 Quality assessment: qscore.summary.arrayCGH . . . 15
7.1.4 Highlights of the normalization process: html.report 16

7.2 array gradient . 16
7.2.1 Data preparation: import 16
7.2.2 Normalization: norm 17
7.2.3 Quality assessment: qscore.summary.arrayCGH . . . 18
7.2.4 Highlights of the normalization process: html.report 19

8 Session information 20

9 Supplementary data 20

1 Overview

This document gives an overview of the MANOR package, which is devoted
to the normalization of Array Comparative Genomic Hybridization (array-
CGH) data(9; 7; 8; 4; 3). Normalization is a crucial step of microarray
analysis which aims at separating biologically relevant signal from experi-
mental artifacts. Typical input data is a file generated by an image analysis
software such as Genepix or SPOT (5), containing several measurements
for each biological variable of interest, i.e. several replicated spots for each
clone; this spot-level data is filtered with various statistical criteria (includ-
ing a spatial bias detection step which is described in (6)), and aggregated
into clean clone-level data.

Using the arrayCGH framework developped in the package GLAD, which
is available under Bioconductor. We propose the formalism of flags to han-
dle clone and spot filtering: the core of the normalization process consists

2

http://www.moleculardevices.com/Products/Instruments/Microarray-Scanners.html
http://bioinfo.curie.fr/projects/glad
http://www.bioconductor.org

in applying to an arrayCGH object a list of flags that successively exclude
from the data all irrelevant spots or clones.

We also define quality scores (qscores) that quantify the quality of an
array after normalization: these scores can be used directly to compare
the quality of different arrays after the same normalization process, or to
compare the efficiency of different normalization processes on a given array
or on a given batch of arrays.

This document is organized as follows: after a short description of op-
tional items we add to arrayCGH objects (section 2, we introduce the classes
flag (section 3) and qscore (section 4) with their attributes and dedicated
methods; then we describe two useful graphical representation functions
(section 6), namely genome.plot and report.plot; Afterwards we give a
short description of the array-CGH datasets we provide (section 5); finally
we illustrate the usage of MANOR by a sample R script (section 7).

2 arrayCGH class

For the purpose of normalization we have added several optional items to
the arrayCGH objects defined in the R package GLAD , including:

cloneValues a data frame with aggregated (clone-level) information, quite
similar to profileCGH objects of GLAD

id.rep the name of a variable common to cloneValues and arrayValues,
that can be used as an identifier for the replicates.

3 flag class

We view the process of filtering microarray data, and especially array-CGH
data, as a succession of steps consisting in excluding from the data unreliable
spots or clones (according to criteria such as signal to noise ratio or repli-
cate consistency), and correcting signal values from various non-biologically
relevant sources of variations (such as spotting effects, spatial effects, or
intensity effects).

We introduce the formalism of flags to deal with this filtering issue:
in the two following subsections, we describe the attributes and methods
devoted to flag objects.

3

3.1 Attributes

A flag object f is a list whose most important items are a function (f$FUN)
which has to be applied to an object of class arrayCGH , and a character
value (f$char) which identifies flagged spots. Optionally further arguments
can be passed to f$FUN via f$args, and a label can be added via f$label.
The examples of this subsection use the function to.flag, which is explained
in subsection 3.2.

3.1.1 Exclusion and correction flags

As stated above, we make the distinction between flags that exclude spots
from further analysis and flags that correct signal values:

exclusion flags If f is an exclusion flag, f$FUN returns a list of spots
to exclude and f$char is a non NULL value that quickly identifies the flag.
In the following example, we define SNR.flag, a flag objects that excludes
spots whose signal to noise ratio lower than the threshold snr.thr.

> SNR.FUN <- function(arrayCGH, var.FG, var.BG, snr.thr) {

+ which(arrayCGH$arrayValues[[var.FG]] < arrayCGH$arrayValues[[var.BG]]*snr.thr)

+ }

> SNR.char <- "B"

> SNR.label <- "Low signal to noise ratio"

> SNR.flag <- to.flag(SNR.FUN, SNR.char, args=alist(var.FG="REF_F_MEAN", var.BG="REF_B_MEAN", snr.thr=3))

correction flags If f is a correction flag, f$FUN returns an object of type
arrayCGH and f$char is NULL. In the following example, global.spatial.flag
computes a spatial trend on the array, and corrects the signal log-ratios from
this spatial trend:

> global.spatial.FUN <- function(arrayCGH, var)

+ {

+ if (!is.null(arrayCGH$arrayValues$Flag))

+ arrayCGH$arrayValues$LogRatio[which(arrayCGH$arrayValues$Flag!="")] <- NA

+ ## Trend <- arrayTrend(arrayCGH, var, span=0.03, degree=1, iterations=3, family="symmetric")

+ Trend <- arrayTrend(arrayCGH, var, span=0.03, degree=1, iterations=3)

+ arrayCGH$arrayValues[[var]] <- Trend$arrayValues[[var]]-Trend$arrayValues$Trend

+ arrayCGH

+ }

> global.spatial.flag <- to.flag(global.spatial.FUN, args=alist(var="LogRatio"))

4

3.1.2 Permanent and temporary flags

We introduce an additional distinction between permanent and temporary
flags in order to deal with the case of spots or clone that are known to be
biologically relevant, but that have not to be taken into account for the
computation of a scaling normalization coefficient. For example in breast
cancer, when the reference DNA comes from a male, we expect a gain of
the X chromosome and a loss of the Y chromosome in the tumoral sample,
and we do not want log-ratio values for X and Y chromosome to bias the
estimation of a scaling normalization coefficient.

Any flag object therefore contains an argument called type, which de-
faults to "perm" (permanent) but can be set to "temp" in the case of a
temporary flag. In the following example, chromosome.flag is a temporary
flag that identifies clones correcponding to X and Y chromosome:

> chromosome.FUN <- function(arrayCGH, var) {

+ var.rep <- arrayCGH$id.rep

+ w <- which(!is.na(match(as.character(arrayCGH$cloneValues[[var]]), c("X", "Y"))))

+ l <- arrayCGH$cloneValues[w, var.rep]

+ which(!is.na(match(arrayCGH$arrayValues[[var.rep]], as.character(l))))

+ }

> chromosome.char <- "X"

> chromosome.label <- "Sexual chromosome"

> chromosome.flag <- to.flag(chromosome.FUN, chromosome.char, type="temp.flag", args=alist(var="Chromosome"), label=chromosome.label)

3.2 Methods

3.2.1 to.flag

The function to.flag is used of the creation of flag objects, with the speci-
ficities described in subsection 3.1.

> args(to.flag)

function (FUN, char = NULL, args = NULL, type = "perm.flag",

label = NULL)

NULL

3.2.2 flag.arrayCGH

Function flag.arrayCGH simply applies function flag$FUN to a flag object
for filtering, and returns:

5

� a filtered array with field arrayCGH$arrayValues$Flag filled with the
value of flag$char for each spot to be excluded from further analysis
in the case of an exclusion flag;

� an array with corrected signal value in the case of a correction flag.

> args(flag.arrayCGH)

function (flag, arrayCGH)

NULL

3.2.3 flag.summary

Function flag.summary computes spot-level information about normaliza-
tion (including the number of flagged spots and numeric normalization pa-
rameters), and displays it in a convenient way. This function can either be
applied to an object of type arrayCGH :

> args(flag.summary.arrayCGH)

function (arrayCGH, flag.list, flag.var = "Flag", nflab = "not flagged",

...)

NULL

or to plain spot-level information, by using the default method:

> args(flag.summary.default)

function (spot.flags, flag.list, nflab = "not flagged", ...)

NULL

4 qscore class

As we point out in the introduction of this document, evaluating the quality
of an array-CGH after normalization is of major importance, since it helps
answering the following questions:

- which is the best normalization process ?

- which array is of best quality ?

- what is the quality of a given array ?

To this purpose we define quality scores (qscores), which attributes and
methods are explianed in the two following subsections.

6

4.1 Attributes

A qscore object qs is a list which contains a function (qs$FUN), a name
(qs$name), and optionnally a label (qs$label) and arguments to be passed
to qs$FUN (qs$args). In the following example, the quality score pct.spot.qscore
evaluates the percentage of spots that have passed the filtering steps of nor-
malization; it provides an evaluation of the array quality for a given normal-
ization process. The function to.qscore is explained in subsection 4.2.

> pct.spot.FUN <- function(arrayCGH, var) {

+ 100*sum(!is.na(arrayCGH$arrayValues[[var]]))/dim(arrayCGH$arrayValues)[1]

+ }

> pct.spot.name <- "SPOT_PCT"

> pct.spot.label <- "Proportion of spots after normalization"

> pct.spot.qscore <- to.qscore(pct.spot.FUN, name=pct.spot.name, args=alist(var="LogRatioNorm"), label=pct.spot.label)

4.2 Methods

4.2.1 to.qscore

The function to.qscore is used of the creation of qscore objects, with the
specificities described in subsection 4.1.

> args(to.qscore)

function (FUN, name = NULL, args = NULL, label = NULL, dec = 3)

NULL

4.2.2 qscore.arrayCGH

Function qscore.arrayCGH simply computes and returns the value of qscore
for arrayCGH :

> args(qscore.arrayCGH)

function (qscore, arrayCGH)

NULL

4.2.3 qscore.summary.arrayCGH

Function qscore.summary.arrayCGH computes all quality scores of a list
(using function qscore.arrayCGH), and displays the results in a convenient
way.

7

> args(qscore.summary.arrayCGH)

function (arrayCGH, qscore.list)

NULL

5 Data

We provide examples of array-CGH data coming from two different plat-
forms. These data illustrate the need for appropriate within-array normal-
ization methods, and especially the need for methods that handle spatial
effects.

> data(spatial)

For each array we provide raw data (generated by Genepix or SPOT
(5)), as well as the corresponding arrayCGH object before and after nor-
malization.

These arrays illustrate the main source of non biological variability of
these data sets, namely spatial effects. We classify these effects into two non
exclusive types: local bias and global gradients. In the case of local bias,
entire areas of the array show lower or higher signal values than the rest of
the array, with no biological explanation (array edge); to our experience,
this particular type of artifact roughly affects an array out of two. In the
case of global gradients, the array shows an obvious signal gradient from one
side of the slide to the other (array gradient).

5.1 edge

Bladder cancer tumors were collected at Henri Mondor Hospital (Créteil,
France) (1) and hybridized on arrays CGH composed of 2464 Bacterian Ar-
tificial Chromosomes (F. Radvanyi, D. Pinkel et al., unpublished results);
each of these BAC is spotted three times on the array, and the three repli-
cates are neighbors on the array. We give the example of an arrayCGH

with local spatial effects (figure 1): high log-ratios cluster in the upper-right
corner of the array.

5.2 gradient

We give the example of two arrays from a breast cancer data set from Institut
Curie (O. Delattre, A. Aurias et al., unpublished results). These arrays
consist of 3342 clones, organized as a 4 × 4 superblock that is replicated

8

http://www.axon.com/gn_GenePixSoftware.html

> data(spatial)

> ## edge: example of array with local spatial effects

> arrayPlot(edge, "LogRatio", main="Local spatial effects", zlim=c(-1,1), mediancenter=TRUE, bar="h")

Local spatial effects

−
1

−
0.

67

−
0.

33 0

0.
33

0.
67 1

Figure 1: array with local spatial effects.

9

three times. This data set is affected by the two types of spatial effects:
local bias areas (as for the previous data set), and spatial gradients from
one side of the array to the other. The array gradient illustrates this
second type of spatial effect.

> data(spatial)

> arrayPlot(gradient, "LogRatio", main="Spatial gradient" , zlim=c(-2,2), mediancenter=TRUE, bar="h")

Spatial gradient

−
2

−
1.

3

−
0.

67 0

0.
67 1.

3 2

Figure 2: Example of array with spatial gradient.

10

6 Graphical representations

As for any type of data analysis, appropriate graphical representations are
of major importance for data understanding. Array-CGH data are typically
ratios or log-ratios, that correspond to locations on the array (spots) and to
locations on the genome (clones). Therefore in the case of array-CGH data
normalization, two complementary types of representations are necessary:

- a dotplot of the array, that takes into account the array design. This
is a crucial tool in the case of array-CGH data normalization for two
reasons: first it provides an easy way to identify spatial artifacts such
as row, column, print-tip group effects, as well as spatial bias and
spatial gradients on the array; then it performs a post-normalization
control, to ensure that the normalization procedure reached its goals,
i.e. significantly reduced the observed effects.

- a plot of the signal values along the genome, which gives a visual
impression of the array quality on the edge of biological relevance;
comparing the signal shape before and after normalization provides a
qualitative idea of the imrpovement in data quality provided by the
normalization method.

The arrayPlot method provided by the GLAD package and based on
maImage (2) addresses the first point; we add two methods to this toolbox:

- the genome.plot method displays a plot of any signal value (e.g. log-
ratios) along the genome;

- the report.plot method successively calls arrayPlot and genome.plot

in order to provide a simultaneous vision of the data using the two rel-
evant metrics (array and genome), with approproate color scales.

6.1 genome.plot

This method provides a convenient way to plot a given signal along the
genome; the signal values can be colored according to their level (which is
the default comportment of the function) or to the level of any other variable,
in the following way:

- if the variable is numeric (e.g. signal to noise ratio), the function
assumes that it is a quantitative variable and adapts a color palette to
its values (figure 3)

11

> data(spatial)

> par(mfrow=c(7,5), mar=par("mar")/2)

> genome.plot(edge.norm, chrLim="LimitChr", cex=1)

●●●●

●

●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●

●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●
●●

●●

●

●●
●●
●●
●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●
●●
●●●●●
●●●●●●●●●●●●●●
●
●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●
●

●
●

●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●

●

●●●●●●●●●●●
●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●

●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

0 500 1500 2500

−
2.

0

Genome position

Figure 3: Pan-genomic profile of the array. Colors are proportional to log-
ratio values.

- if the variable is not numeric (e.g. the copy number variation as es-
timated by GLAD , or a character variable making the disitnction be-
tween flagged and un-flagged clones), the function counts the number
of modalities of the variable and defines an appropriate color scale
using the rainbow function (figure 4).

6.2 report.plot

This method successively calls arrayPlot and genome.plot; it checks for
color scale consistency between plots, and can automatically set the plot
layout (figure 5).

7 Sample MANOR sessions

In this section we illustrate the use of MANOR on two CGH arrays. Our
examples contain several steps, including data preparation, flag definition,
array normalization, quality criteria definition, and quality assessment of
the array, and highlights of the normalization process.

12

> data(spatial)

> edge.norm$cloneValues$ZoneGNL <- as.factor(edge.norm$cloneValues$ZoneGNL)

> par(mfrow=c(7,5), mar=par("mar")/2)

> genome.plot(edge.norm, col.var="ZoneGNL", chrLim="LimitChr", cex=1)

●●●●

●

●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●

●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●
●●

●●

●

●●
●●
●●
●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●
●●
●●●●●
●●●●●●●●●●●●●●
●
●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●
●

●
●

●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●

●

●●●●●●●●●●●
●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●

●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

0 500 1500 2500

−
2.

0

Genome position

Figure 4: Pan-genomic profile of the array. Colors correspond to the values
of the variable “ZoneGNL”.

> data(spatial)

> report.plot(edge.norm, chrLim="LimitChr", zlim=c(-1,1), cex=1)

Array image

−
1

−
0.

67

−
0.

33 0

0.
33

0.
67 1

●

●
●●

●

●

●
●
●

●

●
●●
●

●●●

●●

●

●

●●

●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●●

●

●●

●

●●●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●
●

●

●●

●

●

●●
●
●

●

●●
●

●●

●●

●

●

●

●●
●
●

●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●
●●
●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●●
●

●

●

●●●

●
●

●
●
●
●

●●

●●

●

●●●●●

●
●

●

●

●
●●●
●

●

●

●

●

●
●

●●

●

●●
●
●●●

●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●
●
●

●

●●

●
●

●
●

●
●
●
●●●●
●

●●

●

●
●

●
●
●●
●

●

●

●

●

●
●
●
●

●
●
●

●

●

●

●

●
●●
●●

●
●
●

●
●

●
●
●●

●

●

●
●
●

●

●
●

●

●

●

●

●●●●
●●
●
●
●●
●
●

●

●

●

●
●●

●

●
●
●
●●

●●●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●●●
●
●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●
●●●●●
●●

●

●●
●

●

●
●

●●
●
●●

●

●

●

●

●

●
●
●

●●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●
●

●

●

●
●

●

●●
●●

●

●●

●

●
●

●
●

●

●

●
●

●
●
●
●

●●●

●●

●

●
●
●
●

●

●

●

●

●
●

●
●●

●
●●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●
●●
●
●
●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●●

●

●●
●

●●

●
●

●
●

●

●
●
●

●

●

●

●
●●
●

●
●
●●

●

●●

●●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●●

●●●

●

●

●
●

●●
●

●
●
●●
●

●●●●
●

●

●
●

●●●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●●●●●
●

●

●

●

●
●

●

●
●

●

●
●
●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●

●
●
●

●

●●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●
●●
●
●●

●
●

●

●

●●
●

●

●
●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●
●
●
●

●
●

●

●

●●
●●

●

●
●

●
●
●

●

●
●

●
●

●

●●●

●

●

●
●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●●
●●
●●
●

●

●
●
●
●●●●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●●
●●●
●

●

●

●

●

●●

●
●●

●
●

●

●

●
●●●

●

●

●
●

●
●
●●

●

●

●

●●
●

●

●
●

●

●

●●
●

●

●●●
●●

●

●

●

●

●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●●

●
●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●
●

●

●
●
●
●●
●

●●

●

●
●
●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●●
●

●
●

●
●

●

●●

●●

●

●

●

●●
●

●

●●

●

●

●

●
●
●

●

●●●

●

●

●●●
●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●●
●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●
●●●

●
●

●

●

●●

●

●

●

●
●●
●●

●
●

●

●●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●

●●
●

●

●

●

●●

●

●●
●

●
●
●
●●

●

●

●

●

●

●

●

●
●
●
●●

●

●●
●●●
●
●

●

●
●
●

●●

●

●
●
●

●

●

●
●●

●

●●●●
●
●

●

●

●●
●●

●

●
●
●●

●
●

●●●
●

●

●

●
●
●
●

●

●

●

●●
●●
●
●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●
●
●
●

●

●

●
●

●

●

●●●●
●

●

●

●

●
●

●

●

●
●●
●

●

●

●

●
●

●

●

●
●
●
●

●●●
●
●

●●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●●
●
●

●

●
●●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●●
●

●●●

●

●

●
●

●

●

●
●
●
●

●
●●
●

●

●

●
●

●

●

●●

●●●●

●

●

●

●

●

●●●●

●●

●
●

●

●

●●●

●

●●●●●●
●●

●
●
●
●
●

●
●

●

●●
●

●

●●●
●●●

●

●

●●
●●

●●
●●
●●

●

●

●

●

●
●
●
●
●
●●

●

●

●

●
●●

●

●
●

●●
●

●
●●

●●
●

●

●

●
●
●
●●

●
●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●

●

●
●
●

●
●●

●

●
●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●
●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●
●

●●●
●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●●
●

●

●●
●

●

●

●
●

●●
●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●●●
●
●

●

●

●

●●
●
●●●

●

●
●

●

●●
●
●
●

●

●●

●

●●
●

●

●●●
●
●

●

●●●
●
●
●

●

●

●
●

●

●
●

●

●

●●

●

●
●●

●

●

●●
●

●

●●

●

●

●

●●●
●
●
●●
●●
●
●●
●

●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●
●
●
●

●

●
●●

●

●

●

●

●●
●

●

●
●
●
●●

●

●

●

●

●

●

●

●
●

●●●
●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●●

●●

●

●

●
●●

●●
●

●

●

●

●
●
●

●●

●

●

●●●
●
●

●
●

●

●

●

●●●
●●
●
●●
●

●
●

●●

●

●

●

●●●

●

●

●●●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●
●

●
●

●
●

●

●●

●

●●
●

●
●

●
●
●
●
●
●
●
●

●

●

●
●
●

●

●●

●

●

●
●
●
●
●
●●●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●
●●
●

●

●
●●

●

●
●

●

●●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●
●

●●●

●●

●

●

●

●●●

●
●

●

●
●

●

●

●●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●
●
●

●
●●

●

●
●

●
●
●

●●

●
●

●

●

●

●

●

●
●●●

●

●●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●●●●
●
●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●●
●●

●

●●●

●●

●

●
●
●●

●
●

●

●●
●
●

●

●●
●●●

●●

●

●

●

0 500 1000 1500 2000 2500

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

Pan−genomic representation

Genome position

D
N

A
 C

op
y

N
um

be
r

V
ar

ia
tio

n

Figure 5: report.plot: array image and pan-genomic profile after normal-
ization.

13

7.1 array edge

7.1.1 Data preparation: import

> dir.in <- system.file("extdata", package="MANOR")

> ## import from 'spot' files

> spot.names <- c("LogRatio", "RefFore", "RefBack", "DapiFore", "DapiBack", "SpotFlag", "ScaledLogRatio")

> clone.names <- c("PosOrder", "Chromosome")

> edge <- import(paste(dir.in, "/edge.txt", sep=""), type="spot",

+ spot.names=spot.names, clone.names=clone.names, add.lines=TRUE)

[1] "number of lines does not match array design: adding empty lines..."

7.1.2 Normalization: norm

Figure 6 shows the results of the normalization process.

> data(flags)

> data(spatial)

> ## local.spatial.flag$args <- alist(var="ScaledLogRatio", by.var=NULL, nk=5, prop=0.25, thr=0.15, beta=1, family="symmetric")

> local.spatial.flag$args <- alist(var="ScaledLogRatio", by.var=NULL, nk=5, prop=0.25, thr=0.15, beta=1, family="gaussian")

> flag.list <- list(spatial=local.spatial.flag, spot=spot.corr.flag, ref.snr=ref.snr.flag, dapi.snr=dapi.snr.flag, rep=rep.flag, unique=unique.flag)

> edge.norm <- norm(edge, flag.list=flag.list, FUN=median, na.rm=TRUE)

[1] "spatial"

**

*** Spatial Classification with EM algorithm ***

**

Data : nb points = 7392

grid size = 88 rows, 84 columns

Neighborhood system :

max neighb = 4

Default 1st-order neighbors (horizontal and vertical)

NEM parameters :

beta = 1.00 | nk = 5

14

Computing initial partition (sort variable 1) ...

criterion NEM = 19782.898 / Ps-Like = 5035.969 / Lmix = 9250.229

NEM converged after 173 iterations

[1] "mean of unbiased zone : -0.0233232743043007"

[1] "Spatial bias has been detected"

zone.number mu effectif effectif.cumul frequency.cumul biased.zone

4 5 0.467833333 66 66 0.009189641 1

3 4 0.046085967 1582 1648 0.229462545 0

5 3 0.005084592 2648 4296 0.598162072 0

1 2 -0.032626474 1866 6162 0.857978279 0

2 1 -0.080052941 1020 7182 1.000000000 0

[1] "spot"

[1] "ref.snr"

[1] "dapi.snr"

[1] "rep"

[1] "unique"

> edge.norm <- sort(edge.norm, position.var="PosOrder")

> report.plot(edge.norm, chrLim="LimitChr", zlim=c(-1,1), cex=1)

Array image

−
1

−
0.

67

−
0.

33 0

0.
33

0.
67 1

●

●
●●

●

●

●
●
●

●

●
●●
●

●●●

●●

●

●

●●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●●

●

●●

●

●●●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●
●

●

●●

●

●

●●
●
●

●

●●
●

●●

●●

●

●

●

●●
●
●

●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●
●●
●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●●
●

●

●

●●●

●
●

●
●
●
●

●●

●●

●

●●●●
●

●
●

●

●

●
●●●
●

●

●

●

●

●
●

●●

●

●●
●
●●●

●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●
●
●

●

●●

●
●

●
●

●
●
●
●●●●
●

●●

●

●
●

●
●
●●
●

●

●

●

●

●
●
●
●

●
●
●

●

●

●

●

●
●●
●●

●
●
●

●
●

●
●
●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●●●
●●
●
●
●●
●
●

●

●

●

●
●●

●

●
●
●
●●

●●●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●●●
●
●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●
●●●●●
●●

●

●●
●

●

●
●

●●
●
●●

●

●

●

●

●

●
●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●
●

●

●

●
●

●

●●
●●

●

●

●●

●

●
●

●
●

●

●

●
●

●
●
●
●

●●●

●●

●

●
●
●
●

●

●

●

●

●
●

●
●●

●
●●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●
●●
●
●
●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●
●●

●

●●
●

●●

●
●

●
●

●

●
●
●

●

●

●

●
●●
●

●
●
●●

●

●●

●●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●●

●●●

●

●

●
●

●●
●

●
●
●●
●

●●●●
●

●

●
●

●●●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●●●●●
●

●

●

●

●
●

●

●
●

●

●
●
●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●

●
●
●

●

●●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●
●●
●
●●

●
●

●

●

●●
●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●●
●●

●

●
●

●
●
●

●

●
●

●
●

●

●●●

●

●

●
●
●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●●
●●
●●
●

●

●
●
●
●●●●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●●
●●●
●

●

●

●

●

●●

●
●●

●
●

●

●

●
●●●

●

●

●
●

●
●
●●

●

●
●

●●
●

●

●
●

●

●

●●
●

●

●●●
●●

●

●

●

●

●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●●

●
●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●
●

●

●
●

●

●●
●

●●

●

●
●
●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●●
●

●
●

●
●

●

●●

●●

●

●

●

●●
●

●

●●

●

●

●

●
●
●

●

●●●

●

●

●●
●
●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●●
●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●
●

●●●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●
●●●
●●●

●
●

●

●

●●

●

●

●

●
●●
●●

●
●

●

●●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●

●●
●

●

●

●

●●

●

●●
●

●
●
●
●●

●

●

●

●

●

●

●

●
●
●
●●

●

●●
●●●
●
●

●

●
●
●

●●

●

●
●
●

●

●

●
●●
●

●●●●
●
●

●

●

●●
●●

●

●
●
●●

●
●

●●●
●

●

●

●
●
●
●

●

●

●

●●
●●
●
●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●
●
●
●

●

●

●
●

●

●

●●●●
●

●

●

●

●
●

●

●

●
●●
●

●

●

●

●
●

●

●

●
●
●
●

●●●
●
●

●●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●●
●
●

●

●
●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●●
●

●●●

●

●

●
●

●

●

●
●
●
●

●
●●
●

●

●

●
●

●

●

●●

●●●●

●

●

●

●

●

●●●●

●●

●
●

●

●

●●●

●

●●●●●●
●●

●
●
●
●
●
●
●

●

●●
●

●

●●●
●●●

●

●

●●
●●

●●
●●
●●

●

●

●

●

●
●
●
●
●
●●

●

●

●

●
●●

●

●
●

●●●

●
●●

●●
●

●

●

●
●
●
●●

●
●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●
●
●

●
●●

●

●
●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●
●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●
●

●●●
●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●●
●

●

●●
●

●

●

●
●

●●
●

●

●
●

●

●●
●

●

●●

●

●

●

●

●
●

●●

●●●
●
●

●

●

●

●●
●
●●●

●

●
●

●

●●
●
●
●

●

●●

●

●●
●

●

●●●
●
●

●

●●●
●
●
●

●

●

●
●

●

●
●

●

●

●●

●

●
●●

●

●

●●
●

●

●●

●

●

●

●●●
●
●
●●
●●
●
●●
●

●

●

●
●
●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●
●
●
●

●

●
●●

●

●

●

●

●●
●

●

●
●
●
●●

●

●

●

●

●

●

●

●
●

●●●
●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●●

●●

●

●

●
●●

●●
●

●

●

●

●
●
●

●●

●

●

●●●
●
●

●
●

●

●

●

●●●
●●
●
●●
●

●
●

●●

●

●

●

●●●

●

●

●●●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●
●

●
●

●
●

●

●●

●

●●
●

●
●

●
●
●
●
●
●
●
●

●

●

●
●
●

●

●●

●

●

●
●
●
●
●
●●●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●
●●
●

●

●
●●

●

●
●

●

●●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●
●

●●●

●●

●

●

●

●●●

●
●

●

●
●

●

●

●●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●
●
●

●
●●

●

●
●

●
●
●

●●

●
●

●

●

●

●

●

●
●●●

●

●●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●●●●
●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●●

●

●●●
●●

●

●
●
●●

●
●

●

●●
●
●

●

●●
●●●

●●

●

●

●

0 500 1000 1500 2000 2500

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

Pan−genomic representation

Genome position

D
N

A
 C

op
y

N
um

be
r

V
ar

ia
tio

n

Figure 6: array ’edge’ after normalization.

7.1.3 Quality assessment: qscore.summary.arrayCGH

> ##DNA copy number assessment: GLAD

> profileCGH <- as.profileCGH(edge.norm$cloneValues)

> profileCGH <- daglad(profileCGH, smoothfunc="lawsglad", lkern="Exponential", model="Gaussian", qlambda=0.999, bandwidth=10, base=FALSE, round=2, lambdabreak=6, lambdaclusterGen=20, param=c(d=6), alpha=0.001, msize=2, method="centroid", nmin=1, nmax=8, amplicon=1, deletion=-5, deltaN=0.10, forceGL=c(-0.15,0.15), nbsigma=3, MinBkpWeight=0.35, verbose=FALSE)

15

[1] "Smoothing for each Chromosome"

[1] "Optimization of the Breakpoints and DNA copy number calling"

[1] "Check Breakpoints Position"

[1] "Results Preparation"

> edge.norm$cloneValues <- as.data.frame(profileCGH)

> edge.norm$cloneValues$ZoneGNL <- as.factor(edge.norm$cloneValues$ZoneGNL)

> data(qscores)

> ## list of relevant quality scores

> qscore.list <- list(smoothness=smoothness.qscore,

+ var.replicate=var.replicate.qscore,

+ dynamics=dynamics.qscore)

> edge.norm$quality <- qscore.summary.arrayCGH(edge.norm, qscore.list)

> edge.norm$quality

name label score

1 LOCAL_SMOOTHNESS Local signal variability along the genome 0.021

2 VAR_REPLICATE Average variability among replicates 0.011

3 SIGNAL_DYNAMICS Dynamics of the DNA copy number variation 0.398

7.1.4 Highlights of the normalization process: html.report

Function html.report generates an HTML file with key features of the
normalization process: array image and genomic profile before and after
normalization, spot-level flag report, and value of the quality criteria.

> html.report(edge.norm, dir.out=".", array.name="an array with local bias", chrLim="LimitChr", light=FALSE, pch=20, zlim=c(-2,2), file.name="edge")

The results of the previous command can be viewed in the file edge.html.

7.2 array gradient

Here we give the example of the normalization of an array with spatial
gradient.

7.2.1 Data preparation: import

> ## import from 'gpr' files

> spot.names <- c("Clone", "FLAG", "TEST_B_MEAN", "REF_B_MEAN", "TEST_F_MEAN", "REF_F_MEAN", "ChromosomeArm")

> clone.names <- c("Clone", "Chromosome", "Position", "Validation")

> ac <- import(paste(dir.in, "/gradient.gpr", sep=""), type="gpr", spot.names=spot.names, clone.names=clone.names, sep="\t", comment.char="@", add.lines=TRUE)

16

edge.html

[1] "number of lines does not match array design: adding empty lines..."

[1] "calculating array design..."

> ## compute log-ratio

> ac$arrayValues$F1 <- log(ac$arrayValues[["TEST_F_MEAN"]], 2)

> ac$arrayValues$F2 <- log(ac$arrayValues[["REF_F_MEAN"]], 2)

> ac$arrayValues$B1 <- log(ac$arrayValues[["TEST_B_MEAN"]], 2)

> ac$arrayValues$B2 <- log(ac$arrayValues[["REF_B_MEAN"]], 2)

> Ratio <- (ac$arrayValues[["TEST_F_MEAN"]]-ac$arrayValues[["TEST_B_MEAN"]])/

+ (ac$arrayValues[["REF_F_MEAN"]]-ac$arrayValues[["REF_B_MEAN"]])

> Ratio[(Ratio<=0)|(abs(Ratio)==Inf)] <- NA

> ac$arrayValues$LogRatio <- log(Ratio, 2)

> gradient <- ac

7.2.2 Normalization: norm

Figure 7 shows the results of the normalization process.

> data(spatial)

> data(flags)

> flag.list <- list(local.spatial=local.spatial.flag, spot=spot.flag, SNR=SNR.flag, global.spatial=global.spatial.flag, val.mark=val.mark.flag, position=position.flag, unique=unique.flag, amplicon=amplicon.flag, chromosome=chromosome.flag, replicate=replicate.flag)

> gradient.norm <- norm(gradient, flag.list=flag.list, FUN=median, na.rm=TRUE)

[1] "local.spatial"

**

*** Spatial Classification with EM algorithm ***

**

Data : nb points = 10800

grid size = 180 rows, 60 columns

Neighborhood system :

max neighb = 4

Default 1st-order neighbors (horizontal and vertical)

NEM parameters :

beta = 1.00 | nk = 7

17

Computing initial partition (sort variable 1) ...

Warning : pt 0 density = 0

criterion NEM = 12882.131 / Ps-Like = -11189.528 / Lmix = 9832.894

NEM converged after 1555 iterations

[1] "mean of unbiased zone : 8.43314654871377"

[1] "There is no spatial bias"

zone.number mu effectif effectif.cumul frequency.cumul biased.zone

3 6 8.442003 1441 1441 0.1436404 0

2 5 8.439306 1455 2896 0.2886762 0

1 1 8.438509 1437 4333 0.4319179 0

7 2 8.432485 1405 5738 0.5719697 0

4 4 8.430193 1418 7156 0.7133174 0

5 7 8.429484 1434 8590 0.8562600 0

6 3 8.428779 1442 10032 1.0000000 0

[1] "spot"

[1] "SNR"

[1] "global.spatial"

[1] "val.mark"

[1] "position"

[1] "unique"

[1] "amplicon"

[1] "chromosome"

[1] "replicate"

> gradient.norm <- sort(gradient.norm)

7.2.3 Quality assessment: qscore.summary.arrayCGH

> ##DNA copy number assessment: GLAD

> profileCGH <- as.profileCGH(gradient.norm$cloneValues)

> profileCGH <- daglad(profileCGH, smoothfunc="lawsglad", lkern="Exponential", model="Gaussian", qlambda=0.999, bandwidth=10, base=FALSE, round=2, lambdabreak=6, lambdaclusterGen=20, param=c(d=6), alpha=0.001, msize=2, method="centroid", nmin=1, nmax=8, amplicon=1, deletion=-5, deltaN=0.10, forceGL=c(-0.15,0.15), nbsigma=3, MinBkpWeight=0.35, verbose=FALSE)

[1] "Smoothing for each Chromosome"

[1] "Optimization of the Breakpoints and DNA copy number calling"

[1] "Check Breakpoints Position"

[1] "Results Preparation"

> gradient.norm$cloneValues <- as.data.frame(profileCGH)

> gradient.norm$cloneValues$ZoneGNL <- as.factor(gradient.norm$cloneValues$ZoneGNL)

18

> genome.plot(gradient.norm, chrLim="LimitChr", cex=1)

●●●●●●

●●

●
●●

●

●

●
●
●●●
●●
●●●●
●

●●●

●●

●●●
●
●●

●

●

●

●

●

●
●
●

●

●●●

●

●

●●

●

●

●

●
●●
●●
●
●
●
●
●
●●●●●●●●
●
●

●
●●

●
●●●
●

●
●●●●●
●
●
●
●●
●
●

●

●

●●●●●●
●●●
●
●

●
●
●
●
●
●
●●

●

●

●
●

●

●

●
●

●

●●
●

●
●●
●●●●●
●
●

●

●●●
●●●

●

●
●●

●
●
●
●
●
●●●
●●

●

●
●
●
●●
●
●●●
●
●

●

●

●●
●●
●●
●

●

●●
●
●●●●
●

●

●
●●
●
●
●

●
●●●
●●

●

●●●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●
●

●

●●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●●
●●

●
●
●●
●
●

●

●

●

●
●●
●
●

●

●●
●●●
●
●●●
●
●●
●●

●

●
●

●

●

●

●
●●
●●

●

●

●
●
●
●
●
●
●

●●

●

●

●

●●●
●
●●
●●

●●
●
●

●●

●

●●

●

●●
●

●

●●

●

●

●●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●
●
●●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●●●
●

●

●
●

●
●
●
●●●●

●

●
●
●

●

●
●
●●

●

●●●

●

●

●
●

●

●
●
●●

●

●●●

●
●

●
●
●●
●

●

●
●
●●

●
●
●
●
●●●●●
●●●
●
●
●

●

●
●
●●●●●
●
●
●

●

●

●

●
●
●
●
●

●
●
●●●
●●●
●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●
●

●

●●
●

●

●

●

●●
●●●
●

●

●

●●●

●

●

●

●

●
●

●●

●
●

●

●
●
●
●

●

●

●

●
●

●

●

●
●
●
●
●

●
●●●
●
●●
●
●
●
●●
●
●●●

●

●

●

●
●

●

●

●
●
●
●

●●
●●

●

●
●
●

●

●

●●
●●

●

●

●

●
●
●
●

●

●
●●

●
●

●

●●
●

●●●
●●
●
●
●
●
●
●

●

●
●
●

●●

●
●
●

●

●
●
●

●

●●

●
●●

●

●

●●●

●

●

●●●●
●●●●

●

●
●
●●

●●

●●
●●●●
●●
●
●●●
●
●●
●●●●

●

●●●●
●●

●

●●●●●

●
●

●
●
●
●
●●
●

●
●

●
●
●●
●

●●

●
●

●
●

●
●●

●

●
●●
●

●

●
●●
●●
●

●●●●
●

●
●

●

●●
●●
●

●

●
●●●

●

●●
●

●
●

●
●

●

●●●●

●

●
●
●
●●
●●

●

●●
●●
●

●

●
●
●
●●●

●●
●
●●
●●

●

●●
●
●
●
●●
●
●
●

●●●
●●●
●
●●
●●
●

●●
●
●
●●●

●

●

●

●
●●
●

●
●
●
●●
●

●
●●●●
●
●
●

●

●●

●
●
●

●
●

●

●●

●
●●●

●●

●●

●
●
●

●
●
●
●
●

●●
●
●
●
●●
●●
●
●●●
●

●

●

●●

●

●

●

●
●

●
●
●

●

●
●●●

●

●●

●

●
●

●●●

●
●
●
●
●
●
●●
●

●

●

●●
●●
●●
●

●

●

●

●

●

●●

●
●

●

●

●●●●●
●●

●
●

●

●

●

●

●●●●
●

●

●●
●
●

●
●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●●●●
●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●
●

●
●

●
●●●
●●●●●●●
●

●●●

●

●●●

●●●

●●●

●

●●
●
●●●
●
●

●

●●
●
●

●
●●
●

●

●
●

●

●

●

●
●●●
●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●
●
●●
●

●

●●

●

●●
●●

●

●

●
●
●

●

●

●

●●

●

●●●
●●●
●

●

●

●

●

●●

●

●

●●
●
●

●●
●●
●

●
●●

●

●
●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●●●●●●

●

●

●

●
●●
●
●

●
●

●
●

●
●●
●●●
●●

●
●●

●

●●
●●●

●

●

●
●●
●
●●●

●

●

●

●
●

●●
●

●●

●

●●●

●

●
●

●●
●●●●

●
●

●●
●

●●
●

●

●
●

●
●

●

●●
●
●●

●
●●
●●
●
●
●
●
●

●
●●●
●●

●●

●

●

●
●

●

●
●●●

●

●
●
●

●●●●●●●
●
●
●●●

●

●

●

●
●
●
●
●
●
●●
●●

●

●●●
●
●

●●

●
●●
●●

●

●
●

●●●●●●
●●●
●

●●●

●
●●
●●●●
●●

●
●●

●
●

●

●

●

●
●

●●

●

●

●●

●

●●●●
●
●●

●

●

●

●●

●●●

●
●●●
●

●●
●

●

●

●
●
●●

●
●

●

●
●

●

●

●●●●

●●

●

●●

●●

●●

●
●
●

●●

●

●●

●
●

●

●

●

●

●

●
●
●

●●
●

●

●●●
●
●●
●
●●●
●
●
●
●●

●

●●●
●●●

●
●●

●

●

●

●

●

●
●●
●
●●

●
●●

●

●

●●

●

●

●

●

●
●
●●●●
●
●●
●
●
●●

●

●●
●

●

●

●

●●

●●●
●

●

●●●
●

●●

●
●
●

●

●

●

●
●

●●
●●●
●●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●●●
●

●●

●
●●
●
●

●
●●●

●
●

●

●
●
●

●

●

●

●
●●
●

●
●

●
●

●

●

●

●

●
●

●●

●
●
●

●

●
●●●
●
●

●●

●

●

●
●
●●

●
●

●
●

●

●
●●
●

●

●
●

●

●●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●●
●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●
●
●
●●

●●
●
●

●
●

●
●
●●
●

●

●●
●
●●●
●

●

●
●
●
●

●
●
●

●
●
●

●●
●●

●

●●
●●

●
●
●
●
●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●
●
●
●
●

●

●
●●●

●

●●
●●●
●

●

●

●●
●

●

●
●
●

●

●●●
●
●●●
●
●
●
●
●
●
●●●●

●

●

●

●

●●
●●
●●
●●●●
●
●
●●
●●●●

●
●
●

●●

●●

●

●

●
●

●

●

●
●

●

●●
●
●

●

●●

●●
●

●

●
●
●●
●●

●●

●

●
●

●

●

●

●●●●
●
●●
●

●
●●
●
●
●
●●

●●●●●
●
●

●

●●●
●●●
●●

●

●

●●●
●

●
●

●

●●●●●

●

●

●

●●
●●
●●●
●●
●

●
●

●●
●
●

●●
●

●●

●
●●

●

●

●●

●

●

●●
●●

●●

●

●

●

●
●
●

●●●●●

●

●●●●

●●
●

●
●
●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●●●●
●
●
●
●
●

●●

●

●
●

●

●

●
●
●

●●●

●

●
●●

●

●
●
●●●

●

●●

●
●
●●
●

●

●●●

●

●
●
●
●
●
●●●
●
●

●

●●
●●
●●
●
●
●
●
●
●

●●
●●

●
●

●●
●
●

●

●
●
●
●

●
●●

●

●●
●
●●

●

●●
●

●
●●

●

●
●
●
●
●

●

●
●●

●

●

●
●

●

●
●●

●●
●
●

●
●●
●

●

●
●

●
●
●

●

●
●
●

●

●

●

●●●
●
●●
●

●

●
●
●

●●
●●

●

●●

●

●●
●

●

●
●●
●
●●

●

●

●

●

●●●●●
●
●

●

●
●●
●
●
●●

●●

●

●

●●

●
●

●

●●

●●

●

●●
●
●

●

●

●

●

●

●

●

●●

●
●

●
●
●●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●●●
●●●

●
●

●
●●

●

●

●●

●●

●
●
●
●
●●
●
●●
●

●

●

●
●
●

●●●

●

●
●
●

●●●●●●

●

●

●

●●

●
●
●
●

●
●

●
●

●

●

●
●
●

●
●

●

●

●

●
●
●

●

●●
●●●

●
●
●
●
●
●

●

●●
●

●

●

●

●

●

●●

●

●
●●●●●
●
●

●●●
●

●●

●
●

●
●

●

●●

●

●
●

●
●

●

●●

●
●

●
●

●●
●
●

●

●
●

●

●

●
●

●

●
●●
●
●

●

●

●

●
●

●

●
●

●

●

●
●
●
●

●

●
●●
●

●

●●

●

●
●
●●●●

●

●
●●
●●●
●
●●●
●
●

●
●
●

●

●
●
●
●
●

●●●●●●

●

●
●●●
●
●
●
●

●

●

●

●●
●

●

●●
●●

●

●
●

●
●●●●●●
●
●
●●●●●●
●●●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●●●
●

●●

●●

●
●

●●●
●
●
●●
●

●

●●●●●

●
●

●

●

●
●
●

●

●

●

●
●
●

●

●

●●
●

●
●●●
●
●●

●
●
●●
●●
●

●
●●●

●
●

●●

●

●

●●
●●●
●
●
●

●
●●
●
●●

●●

●
●
●
●
●
●●
●●●
●
●●

●

●●
●
●

●

●

●

●

●

●

●

●●
●

●●
●
●
●●

●●

●●
●
●
●●
●
●

●

●
●●
●
●●

●
●●

●
●
●●●●

●

●
●
●

●

●

●
●

●
●●●
●
●●●●
●●
●
●●

●
●

●

●

●

●
●

●

●●●
●●
●●

●●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●
●●●

●
●
●
●

●

●
●

●●●

●
●

●●
●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●

●
●●

●

●
●●●

●

●

●

●
●
●
●

●●
●
●

●
●
●

●

●●
●

●

●●

●
●

●●●●
●
●●
●

●

●

●
●●

●●
●
●●●
●●
●

●

●●
●●

●
●

●●

●
●●
●
●

●

●●
●●
●

●

●●
●

●

●●
●
●●

●●

●

●●
●
●
●

●●

●

●
●●
●●

●
●

●

●

●
●

●

●●

●
●
●
●●●

●
●
●
●

●

●
●●●●
●

●

●

●
●

●

●●

●●●
●●
●

●

●●

●

●

●
●

●

●
●

●●●

●

●
●

●

●
●

●

●

●
●●
●
●

●●

●●

●●
●●
●

●

●

●

●
●●

●

●●●
●●

●
●

●

●●
●
●

●

●●
●

●
●

●
●
●
●●

●

●

●●
●

●

●

●
●
●
●
●

●●●
●

●●
●●

●

●
●●
●●

●
●●●
●
●
●

●
●●

●

●
●●
●●

●

●
●●●●

●

●

●
●

●
●●●●●●

●●

●●
●
●

●●

●
●
●
●●

●
●

●

●

●

●●

●

●

●
●
●●
●
●
●●

●

●

●

●●

●●●

●

●
●
●

●

●●
●●●●●●
●
●

●

●●

●●
●

●

●
●
●

●

●●

●

●

●●

●

●
●

●

●●
●
●

●

●

●●●
●
●

●
●

●

●●

●

●

●

●

●

●
●●
●

●●●
●
●
●

●

●

●
●
●●
●●
●●●
●
●
●●

●

●
●

●

●
●●
●
●
●●

●

●

●
●
●
●

●
●●

●

●●
●●
●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●●●

●

●
●

●●

●
●
●

●

●

●

●

●
●●

●●

●

●●

●

●
●
●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●●
●

●

●

●

●
●
●
●●

●

●
●

●
●

●
●

●
●●
●

●

●
●

●
●●●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

0 500 1000 1500 2000 2500 3000

−
3

−
2

−
1

0
1

2

Genome position

D
N

A
 C

op
y

N
um

be
r

V
ar

ia
tio

n

Figure 7: array gradient after normalization.

> data(qscores)

> ## list of relevant quality scores

> qscore.list <- list(smoothness=smoothness.qscore, var.replicate=var.replicate.qscore, dynamics=dynamics.qscore)

> gradient.norm$quality <- qscore.summary.arrayCGH(gradient.norm, qscore.list)

> gradient.norm$quality

name label score

1 LOCAL_SMOOTHNESS Local signal variability along the genome 0.033

2 VAR_REPLICATE Average variability among replicates 0.050

3 SIGNAL_DYNAMICS Dynamics of the DNA copy number variation 0.294

7.2.4 Highlights of the normalization process: html.report

Function html.report generates an HTML file with key features of the
normalization process: array image and genomic profile before and after
normalization, spot-level flag report, and value of the quality criteria.

> html.report(gradient.norm, dir.out=".", array.name="an array with spatial gradient", chrLim="LimitChr", light=FALSE, pch=20, zlim=c(-2,2), file.name="gradient")

The results of the previous command can be viewed in the file gradi-
ent.html.

19

gradient.html
gradient.html

8 Session information

The version number of R and packages loaded for generating this document
are:

> sessionInfo()

R version 3.5.0 Patched (2018-05-03 r74699)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2012 R2 x64 (build 9600)

Matrix products: default

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] MANOR_1.52.1 GLAD_2.44.0

loaded via a namespace (and not attached):

[1] compiler_3.5.0 tools_3.5.0

9 Supplementary data

The package MANOR provides sample gpr and spot files, as examples to
the import funciton. However, due to space limitations, only the first 100
lines these file are provided in the current distribution of MANOR. The full
files can be downloaded from here:

� ’gpr’ file: gradient.gpr

� ’spot’ file: edge.txt

20

gradient.gpr
edge.txt

References

[1] C. Billerey, D. Chopin, M. H. Aubriot-Lorton, D. Ricol, S. Gil Diez de Medina, B. Van Rhijn, M. P.

Bralet, M. A. Lefrere-Belda, J. B. Lahaye, C. C. Abbou, J. Bonaventure, E. S. Zafrani, T. van der

Kwast, J. P. Thiery, and F. Radvanyi. Frequent FGFR3 mutations in papillary non-invasive bladder

(pTa) tumors. Am. J. Pathol., 158:955–1959, 2001.

[2] S. Dudoit and Y. H. Yang. Bioconductor R packages for exploratory analysis and normalization of

cDNA microarray data. In G. Parmigiani, E. S. Garrett, R. A. Irizarry, and S. L. Zeger, editors,

The Analysis of Gene Expression Data: Methods and Software. Springer, New York, 2003.

[3] P. Hupé, N. Stransky, J-P. Thiery, F. Radvanyi, and E. Barillot. Analysis of array CGH data: from

signal ratios to gain and loss of DNA regions. Bioinformatics, 20:3413 – 3422, 2004.

[4] A. S. Ishkanian, C. A. Malloff, S. K. Watson, R. J. DeLeeuw, B. Chi, B. P. Coe, A. Snijders, D. G.

Albertson, D. Pinkel, M. A. Marra, V. Ling, C. MacAulay, and W. L. Lam. A tiling resolution

DNA microarray with complete coverage of the human genome. Nat. Genet., 36:299–303, 2004.

[5] A. N. Jain, T. A. Tokuyasu, A. M. Snijders, R. Segraves, D. G. Albertson, and D. Pinkel. Fully

automatic quantification of microarray image data. Genome Res., 12:325–332, 2002.

[6] P. Neuvial, P. Hupé, I. Brito, S. Liva, E. Manié, C. Brennetot, F. Radvanyi, A. Aurias, and

E. Barillot. Spatial normalization of array-CGH data. BMC Bioinformatics, 7(1):264, May 2006.

[7] D. Pinkel, R. Segraves, D. Sudar, S. Clark, I. Poole, D. Kowbel, C. Collins, W. L. Kuo, C. Chen,

Y. Zhai, S. H. Dairkee, B. M. Ljung, J. W. Gray, and D. G. Albertson. High resolution analysis of

DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet.,

20:207–211, 1998.

[8] A. M. Snijders, N. Nowak, R. Segraves, S. Blackwood, N. Brown, J. Conroy, G. Hamilton, A. K.

Hindle, B. Huey, K. Kimura, S. Law S, K. Myambo, J. Palmer, B. Ylstra, J. P. Yue, J. W. Gray,

A. N. Jain, D. Pinkel, and D. G. Albertson. Assembly of microarrays for genome-wide measurement

of DNA copy number. Nat. Genet., 29:263–4, 2001.

[9] S. Solinas-Toldo, S. Lampel, S. Stilgenbauer, J. Nickolenko, A. Benner, H. Dohner, T. Cremer,

and P. Lichter. Matrix-based comparative genomic hybridization: Biochips to screen for genomic

imbalances. Genes Chromosomes Cancer, 20:399–407, 1997.

21

	Overview
	arrayCGH class
	flag class
	Attributes
	Exclusion and correction flags
	Permanent and temporary flags

	Methods
	to.flag
	flag.arrayCGH
	flag.summary

	qscore class
	Attributes
	Methods
	to.qscore
	qscore.arrayCGH
	qscore.summary.arrayCGH

	Data
	edge
	gradient

	Graphical representations
	genome.plot
	report.plot

	Sample MANOR sessions
	array edge
	Data preparation: import
	Normalization: norm
	Quality assessment: qscore.summary.arrayCGH
	Highlights of the normalization process: html.report

	array gradient
	Data preparation: import
	Normalization: norm
	Quality assessment: qscore.summary.arrayCGH
	Highlights of the normalization process: html.report

	Session information
	Supplementary data

