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1 Introduction

Classification is a supervised learning technique that in the context of microarray analysis is
most frequently used to identify genes whose expression is correlated with specific phenotypes
of the samples. Typically, the interest is in identifying genes that are predictive of disease. In
such cases, both the accuracy of the prediction and the number of genes necessary to obtain a
given accuracy is important. In particular, methods that select a small number of relevant genes
and provide accurate classification of microarray samples aid in the development of simpler
diagnostic tests. In addition, methods that adopt a weighted average approach over multiple
models have the potential to provide more accurate predictions than methods that do not take
model uncertainty into consideration. Hence, we developed the Bayesian Model Averaging
(BMA) method for gene selection and classification of microarray data (Yeung et al., 2005).
Typical gene selection and classification procedures ignore model uncertainty and use a single
set of relevant genes (model) to predict the class labels. BMA is a multivariate technique that
takes the interaction of variables (typically genes) and model uncertainty into consideration.
In addition, the output of BMA contains posterior probabilities for each prediction which can
be useful in assessing the correctness of a given call (diagnosis).

1.1 Bayesian Model Averaging (BMA)

Bayesian Model Averaging (BMA) takes model uncertainty into consideration by averaging
over the posterior distributions of a quantity of interest based on multiple models, weighted
by their posterior model probabilities (Raftery, 1995). The posterior probability that a test
sample belongs to a given class is equal to the weighted average of the posterior probability
that the test sample belongs to the given class computed using the set of relevant genes in
model Mk multiplied by the posterior probability of model Mk, summed over a set of “good”
models Mk.

1.2 Iterative Bayesian Model Averaging (BMA) algorithm

The BMA algorithm we have described is limited to data in which the number of variables
is greater than the number of responses. In the case of classifying samples using microarray
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data, there are typically thousands or tens of thousands of genes (variables) under a few dozens
samples (responses).

In this package, the iterative BMA algorithm for the binary classification problem is im-
plemented. In the binary iterative BMA algorithm, we start by ranking the genes in order
using a univariate measure such as the ratio of between-group to within-group sum of squares
(BSS/WSS) (Dudoit et al., 2002). In this initial preprocessing step, genes with large BSS/WSS
ratios (i.e., genes with relatively large variation between classes and relatively small variation
within classes) receive high rankings. We then apply the traditional BMA algorithm to the
maxNvar top ranked genes, where we used maxNvar = 30. This is because the traditional
BMA algorithm employs the leaps and bounds algorithm that is inefficient for numbers of
genes (variables) much greater than 30. Then genes to which the BMA algorithm gives low
posterior probabilities of being in the predictive model are removed. In our study, we used 1%
as the threshold and removed genes with posterior probabilities < 1%. Suppose m genes are
removed. The next m genes from the rank ordered BSS/WSS ratios are added back to the
set of genes so that we maintain a window of maxNvar genes and apply the traditional BMA
algorithm again. These steps of gene swaps and iterative applications of BMA are continued
until all genes are subsequently considered.

2 Some examples

The R packages BMA, leaps and Biobase are required to run the key commands in this package.

> library ("Biobase")

> library("BMA")

> library("iterativeBMA")

An adapted leukemia dataset (Golub et al., 1999) is included for illustration purposes. The
adapted leukemia dataset consists of the top 100 genes selected using the BSS/WSS statistic.
The training set consists of 38 samples, while the test set consists of 34 samples.

> ## use the sample training data. The {\it ExpressionSet} is called trainData.

> data(trainData)

> ## the class vector (0,1) is called trainClass

> data(trainClass)

The function iterateBMAglm.train selects relevant variables by iteratively applying the
bic.glm function from the BMA package. The data is assumed to consist of two classes. Logistic
regression is used for classification. In the training phase, only the training dataset and the
corresponding class labels are required as input. The parameter p represents the number of
top BSS/WSS ranked genes used in the iterative process. Our studies showed that a relatively
large p typically yields good results (Yeung et al., 2005). In this example, there are 100 genes
in the sample training set, and we used p= 100 in the iterative BMA algorithm.

> ## training phase: select relevant genes

> ret.bic.glm <- iterateBMAglm.train (train.expr.set=trainData, trainClass, p=100)
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[1] "5: explored up to variable ## 100"

> ret.bic.glm$namesx

[1] "U50136_rna1_at" "X95735_at"

[3] "M30703_s_at" "AFFX-HUMTFRR/M11507_3_at"

[5] "Y12670_at" "M23197_at"

[7] "X17042_at" "Z69881_at"

[9] "X51521_at" "U05572_s_at"

[11] "U62136_at" "X12451_at"

[13] "X62535_at" "M54995_at"

[15] "M11722_at" "M63379_at"

[17] "M31523_at" "X85116_rna1_s_at"

[19] "X59350_at" "M20203_s_at"

[21] "Y00339_s_at" "M27783_s_at"

[23] "J04615_at" "X97748_s_at"

[25] "X76648_at" "M13792_at"

[27] "U85767_at" "M91432_at"

[29] "U41813_at" "D26308_at"

> ret.bic.glm$probne0

[1] 19.8 47.2 6.6 6.6 13.2 26.4 6.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

[16] 0.0 0.0 13.2 0.0 0.0 13.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6

> ## get the selected genes with probne0 > 0

> ret.gene.names <- ret.bic.glm$namesx[ret.bic.glm$probne0 > 0]

> ret.gene.names

[1] "U50136_rna1_at" "X95735_at"

[3] "M30703_s_at" "AFFX-HUMTFRR/M11507_3_at"

[5] "Y12670_at" "M23197_at"

[7] "X17042_at" "X85116_rna1_s_at"

[9] "Y00339_s_at" "D26308_at"

> ## get the posterior probabilities for the selected models

> ret.bic.glm$postprob

[1] 0.40650525 0.06594386 0.06594386 0.06594386 0.06594386 0.06594386

[7] 0.06594386 0.06594386 0.06594386 0.06594386

The iterateBMAglm.train function returns an object of class bic.glm from the last iter-
ation of bic.glm. The object is a list consisting of many components. Here are some of the
relevant components:

• namesx: the names of the variables in the last iteration of bic.glm.
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• postprob: the posterior probabilities of the models selected. The length of this vector
indicates the number of models selected by BMA.

• which: a logical matrix with one row per model and one column per variable indicating
whether that variable is in the model.

• probne0: the posterior probability that each variable is non-zero (in percent) in the last
iteration of bic.glm. The length of this vector should be identical to that of namesx.

• mle: matrix with one row per model and one column per variable giving the maximum
likelihood estimate of each coefficient for each model.

In the training phase, the relevant variables (genes) are selected using the training data
and the corresponding class labels. In the test phase, we use the selected variables (genes),
the selected models, and the corresponding posterior probabilities to compute the predicted
posterior probabilities that each sample belongs to class 1. The predicted posterior probability
of a test sample is equal to the weighted average of the predicted probability of the test sample
under each selected model, multiplied by the predicted posterior probability of each model.
Note that in this case, a model consists of a set of genes, and different models can potentially
have overlapping genes. The posterior probability of a gene is equal to the sum of the posterior
probabilities of all the models that the gene belongs to.

> ## The test ExpressionSet is called testData.

> data (testData)

> ## get the subset of test data with the genes from the last iteration of bic.glm

> curr.test.dat <- t(exprs(testData)[ret.gene.names,])

> ## to compute the predicted probabilities for the test samples

> y.pred.test <- apply (curr.test.dat, 1, bma.predict, postprobArr=ret.bic.glm$postprob, mleArr=ret.bic.glm$mle)

> ## compute the Brier Score if the class labels of the test samples are known

> data (testClass)

> brier.score (y.pred.test, testClass)

[1] 2.106802

The Brier Score computes the sum of squares of the differences between the true class and
the predicted probability over all test samples. If the predicted probabilities are constrained
to equal to 0 or 1, the Brier Score is equal to the total number of classification errors.

The function iterateBMAglm.train.predict combines the training and prediction phases,
and returns the predicted posterior probabilities that each test sample belongs to class 1.

> ## train and predict

> ret.vec <- iterateBMAglm.train.predict (train.expr.set=trainData, test.expr.set=testData, trainClass, p=100)

[1] "5: explored up to variable ## 100"

> ## compute the Brier Score

> data (testClass)

> brier.score (ret.vec, testClass)

4



[1] 2.221017

The function iterateBMAglm.train.predict.test combines the training, prediction and
test phases, and returns a list consisting of the numbers of selected genes and models using
the training data, the number of classification errors and the Brier Score on the test set.

> iterateBMAglm.train.predict.test (train.expr.set=trainData, test.expr.set=testData, trainClass, testClass, p=100)

[1] "5: explored up to variable ## 100"

$num.genes

[1] 10

$num.model

[1] 10

$num.err

[1] 1

$brierScore

[1] 2.221017

This package also contains the imageplot.iterate.bma function, which allows us to create
a heatmap-style image to visualize the selected genes and models (see Figure 1).

In Figure 1, the BMA selected variables are shown on the vertical axis, and the BMA
selected models are shown on the horizontal axis. The variables (genes) are sorted in decreasing
order of the posterior probability that the variable is not equal to 0 (probne0) from top
to bottom. The models are sorted in decreasing order of the model posterior probability
(postprob) from left to right.
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Models selected by iterativeBMA

Model #
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Figure 1: An image plot showing the selected genes and models.

6



A.E. Raftery. Bayesian model selection in social research (with discussion). Sociological Method-
ology, 25:111–196, 1995.

K.Y. Yeung, R.E. Bumgarner, and A.E. Raftery. Bayesian Model Averaging: Development of
an improved multi-class, gene selection and classification tool for microarray data. Bioin-
formatics, 21(10):2394–2402, 2005.

7


	Introduction
	Bayesian Model Averaging (BMA)
	Iterative Bayesian Model Averaging (BMA) algorithm

	Some examples

