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1 Introduction

The important technological advances we have seen since the publication of the human
genome such as microarrays and NGS technologies have allowed us to produce massive
amounts of data, making data analysis and interpretation the bottleneck in genomic and
epigenomic research. In many cases, this data can be converted to a set of regions in the
genome: the positions of the genes in an expression microarray experiment, the regions with
peaks in ChIP-seq data or the contact regions in Hi-C. Statistically assessing the spatial re-
lations between these region sets and other region sets or even other genomic features is a
fundamental part of this analysis.

regioneR has been created to address this problem and provides functions to statistically
evaluate the associations between region sets using permutation tests. Its permutation test
framework has been specifically designed to work with genomic regions and all functions
are genome- and mask-aware. regioneR includes a number of predefined randomization and
evaluation functions covering the most frequent use cases, but the user can also provide
custom functions to extend its functionality. In addition to textual output, regioneR also can
plot the permutation test results and so it’s possible to go from a set of genomic regions to
a publication ready figure in a few lines of code.

In addition, regioneR includes a set of helper functions based on Bioconductor’s Genomi-
cRanges infrastructure to manage and manipulate region sets with a simple and consistent
interface.

2 Quick Start

One of the most common uses of regioneR is to answer the question: Do the regions in set
A overlap with the regions in B more than expected? For example: Are my ChIP-seq peaks
on the promoters of active genes? or Are the break points in repetitive regions? To answer
question like these we can use the convenience overlapPermTest function in regioneR, that
evaluates the number of overlaps between two sets of regions.

To do that, we need to have the two region sets either as a GRanges, a data.frame or a
bed-like file. An practical way to create a GRanges is to use the toGRanges function. In this
case, as an example, we will create two sets of random regions with about 50% overlap.

A <- createRandomRegions(nregions=50, length.mean=5000000, length.sd=3000000)

B <- c(A[1:25], createRandomRegions(nregions=25, length.mean=500000, length.sd=30000))

numOverlaps(A, B, count.once=TRUE)

## [1] 27
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numOverlaps(randomizeRegions(A), B, count.once=TRUE)

## [1] 6

Once we have the two region sets, we can test if A overlaps with B more than expected. To
do that we will use overlapPermTest.

pt <- overlapPermTest(A=A, B=B, ntimes=50)

## [1] "Note: The minimum p-value with only 50 permutations is 0.0196078431372549. You should consider increasing the number of permutations."

pt

## $numOverlaps

## P-value: 0.0196078431372549

## Z-score: 7.1727

## Number of iterations: 50

## Alternative: greater

## Evaluation of the original region set: 27

## Evaluation function: numOverlaps

## Randomization function: randomizeRegions

##

## attr(,"class")

## [1] "permTestResultsList"

We can see that the test was significant, with a p-value <0.05. Now, to plot it, we can
simply plot the pt object.

plot(pt)
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 p−value:  0.0196 
 Z−score:  7.173 

 n perm:  50 
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We can see a visual representation of the results of the test. In grey the number of overlaps
of the randomized regions with B, clustering around the black bar that represents the mean
and in green the number of overlaps of the original region set A, which is much larger than
expected. The red line denotes the significance limit.

In addition, we can test if the association between the two region sets is highly dependant
on their exact position. To do that, we can use the localZScore function.

lz <- localZScore(pt=pt, A=A, B=B)

plot(lz)
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Which in this case shows that moving the regions in A produces a drop in the z-scores and
so, shows that the association is dependant on the exact position of the regions and is not
a regional effect. More information about the localZScore function can be found at section
4: Local Z-score.

In this small example we have used overlapPermTest to test the number of overlaps between
two region sets. Using the more general permTest function, we can test other types of
association using different evaluation functions (the distance, the evaluation of a function over
the genomes or custom user-defined functions) and applying different types of randomizations.
In addition, this example assumes that the data refers to the human genome and uses a default
mask with regions not available for the randomization. In the next sections, all these options
are explained in detail.

3 Permutation Tests

The core functionality of regioneR is to statistically evaluate the association between dif-
ferent RS or between a RS and other genomic features using a permutation test approach.
This functionality is supported by the permTest function, a parallel and highly customizable
function performing the permutation tests and producing the statistical evaluation of the
results.

With permTest and the right biological data it is possible to answer different types of biological
questions such as:

• Do my regions contain more SNPs than expected by chance?
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• Are my regions enriched in repetitive regions?

• Are my regions significantly closer to genes?

• Are DNA methylation levels in my RS higher than expected?

• Do my regions overlap with recurrent SCNAs in my samples?

• Are my ChIP peaks associated with that other histone mark?

• Do my ChIP regions associate with repressed genes?

NOTE: It is important to take into account, however, that regioneR’s permutation tests can
only test the association between a set of regions and some other feature but not identify
which regions contribute the most to that association. Therefore, for questions of the type
Identify the region in my RS that associate with something, regioneR is not a suitable choice,
and more specific analysis tools should be used.

3.1 How Does a Permutation Test Work?

There are 3 main elements needed to perform a permutation test: our RS, a randomization
strategy and an evaluation function. Let’s see how it all works with an example:

Imagine we have obtained a set of genes, my special genes, and we want to show they tend
to lie in certain parts of the genome, in our case a set of regions we know are altered, for
example, they present a copy number gain.

First of all we need to have our RSs loaded into R. To do that we can use the toGRanges
function.

# special <- toGRanges("http://gattaca.imppc.org/regioner/data/my.special.genes.bed")

special <- toGRanges(system.file("extdata", "my.special.genes.bed", package="regioneR"))

# all.genes <- toGRanges("http://gattaca.imppc.org/regioner/data/all.genes.bed")

all.genes <- toGRanges(system.file("extdata", "all.genes.bed", package="regioneR"))

#altered <- toGRanges("http://gattaca.imppc.org/regioner/data/my.altered.regions.bed")

altered <- toGRanges(system.file("extdata", "my.altered.regions.bed", package="regioneR"))

length(special)

## [1] 200

length(all.genes)

## [1] 49646

length(altered)

## [1] 8
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Next thing we need is an evaluation function. In our example we want to test the overlap of
our RS with the altered regions, so we will use the numOverlaps function, which, given two
RS returns the number of overlaps between them.

Using numOverlaps we can count the number of overlaps between the two RS, in our case
we can compute the number of special genes overlapping an altered region.

numOverlaps(special, altered)

## [1] 114

But is this number, 114 out of 200, big or small? Does it mean that genes are associated
with the altered regions? or might be just by chance?

Here is where the randomization strategy plays its role. We need a randomization strategy
that creates a new set of regions that is random with respect to our evaluation function but
takes into account the specificities of our original region set. For example, if our original
RS comes from an NGS experiment, all of its regions would lie in mappable parts of the
genome and wouldn’t make any sense to randomize a region into a centromere or any other
non-mappable part of the genome.

To help with that, many randomization functions provided by regioneR accept a mask, indi-
cating where a random region cannot be placed. In any case, selecting the best randomization
strategy is a key part of a permutation test and can have a great impact in the final results.

The least restricted function included in regioneR is randomizeRegions, that given a RS, a
genome and an optional mask, returns a new RS with the same number of regions and of
the same width as the original ones but randomly placed along the non-masked parts of the
genome. This is also the slowest of the randomization functions available.

In our example, since the special genes are a subset of the bigger set of all genes it is much
better to use resampleRegions, that given a universe of regions, randomly selects a subset of
them to create the randomized region sets.

random.RS <- resampleRegions(special, universe=all.genes)

random.RS

## GRanges object with 200 ranges and 2 metadata columns:

## seqnames ranges strand | V4 V6

## <Rle> <IRanges> <Rle> | <factor> <factor>

## [1] chr6 [ 27775976, 27776445] * | NM_003509 +

## [2] chr7 [141618675, 141619620] * | NM_001001656 +

## [3] chr5 [158758525, 158789842] * | NR_037889 +

## [4] chr8 [ 29190578, 29208267] * | NM_001394 -

## [5] chr22 [ 22311396, 22337240] * | NM_001282112 -

## ... ... ... ... . ... ...
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## [196] chrY [24247838, 24293631] * | NR_110413 -

## [197] chr17 [44320929, 44323154] * | NR_026901 +

## [198] chr11 [35160416, 35253949] * | NM_001202556 +

## [199] chr3 [49209017, 49213919] * | NM_173546 +

## [200] chr19 [56283170, 56284545] * | NM_001277397 +

## -------

## seqinfo: 24 sequences from an unspecified genome; no seqlengths

Now, we can use the evaluation function to test the level of association of the randomized
RS with the altered regions. And we can repeat that and get different evaluations.

random.RS <- resampleRegions(special, universe=all.genes)

numOverlaps(random.RS, altered)

## [1] 50

random.RS <- resampleRegions(special, universe=all.genes)

numOverlaps(random.RS, altered)

## [1] 53

random.RS <- resampleRegions(special, universe=all.genes)

numOverlaps(random.RS, altered)

## [1] 59

random.RS <- resampleRegions(special, universe=all.genes)

numOverlaps(random.RS, altered)

## [1] 47

If we do this many times we will build a distribution of the evaluation obtained from random
RS and so, we can compare our initial evaluation with those obtained randomly and determine
whether it is plausible that our original evaluation was obtained by chance or not. Actually,
just counting the number of times the evaluation of the random RS is higher (or lower)
than our original evaluation, we can compute the probability of seeing our original evaluation
by chance, and that value is exactly the p-value of the permutation test. In addition, we
compute the z-score which is the distance between the evaluation of the original RS and the
mean of the random evaluations divided by the standard deviation of the random evaluations.
The z-score, although not directly comparable, can help in assessing "the strength" of the
evaluation.
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3.2 How to perform a permutation test with regioneR

The main function to perform a permutation test with regioneR is permTest, a function
taking a a region set (RS) in any of the accepted formats (see section 4 - Region Sets), a
randomization function and an evaluation function and returning a permTestResults object.

The function performs the whole permutation test analysis described above, evaluating the
original RS, creating a number of randomizations and evaluating them and nally computing
the p-value and z-score. It takes advantage of the parallel package to randomize and evaluate
in parallel where possible.

In addition to the 3 required parameters, permTest accepts other fixed parameters -ntimes
to specify the number of randomizations, verbose to toggle the drawing of a progress bar,
force.parallel to force or forbid the use of multiple cores to run the analysis...- and it also
accepts any additional parameter required by the randomization function (usually a genome
and a mask) or the evaluation function.

For example to check whether my regions overlap with repeats more than expected, we could
use:

# NOT RUN

pt <- permTest(A=my.regions, B=repeats, randomize.function=randomizeRegions,

evaluate.function=numOverlaps)

or if we want to check if my special genes have higher methylation levels we could use a test
like this:

# NOT RUN

pt <- permTest(A=my.genes, randomize.function=resampleRegions, universe=all.genes,

evaluate.function=meanInRegions, x=methylation.levels.450K)

Following our example before with my special genes and the altered regions we could call
permTest like this:

pt <- permTest(A=special, ntimes=50, randomize.function=resampleRegions, universe=all.genes,

evaluate.function=numOverlaps, B=altered, verbose=FALSE)

## [1] "Note: The minimum p-value with only 50 permutations is 0.0196078431372549. You should consider increasing the number of permutations."

NOTE: Since permTest uses the ellipsis operator (...) to forward the required additional
parameters to the evaluation and randomization functions it is strongly recommended to
always use named parameters (e.g. A=RS1 instead of only RS1). Failing to do that can
result in hard to debug errors.
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In any case we would get a permTestResults object with the results of the analysis. To view
this result we can just print it or use summary. In this case we can see that the association
is statistically significant and so we can conclude that the special genes are associated with
my altered regions.

pt

## $numOverlaps

## P-value: 0.0196078431372549

## Z-score: 9.0296

## Number of iterations: 50

## Alternative: greater

## Evaluation of the original region set: 114

## Evaluation function: numOverlaps

## Randomization function: resampleRegions

##

## attr(,"class")

## [1] "permTestResultsList"

summary(pt)

## Permutation tests: 1

## Significant permutation tests: 1

## Iterations: 50

## Randomization Function: resampleRegions

## Tests Results:

## pvalue zscore test

## numOverlaps 0.01960784 9.0296 greater

And we can get a graphic representing the results of the permutation test using plot. It
depicts a gray histogram representing the evaluation of the randomized RS with a fitted
normal, a black bar representing the mean of the randomized evaluations and a green bar
representing the evaluation of the original RS. In addition, a red bar (and red shading)
represents the significance limit (by default 0.05). Thus, if the green bar is in the red shaded
region it means that the original evaluation is extremely unlikely and so the p-value will be
significant.

plot(pt)
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To compare, imagine we have a second subset of genes, my regular genes, that are not
associated with the altered regions. We can run the same test with them and we will get a
negative result. In this case we get a non-significant p-value and we can see in the plot that
the original evaluation is close to the mean of the randomized ones.

regular <- toGRanges("http://gattaca.imppc.org/regioner/data/my.regular.genes.bed")

length(regular)

## [1] 200

numOverlaps(regular, altered)

## [1] 46

pt.reg <- permTest(A=regular, ntimes=50, randomize.function=resampleRegions, universe=all.genes,

evaluate.function=numOverlaps, B=altered, verbose=FALSE)

## [1] "Note: The minimum p-value with only 50 permutations is 0.0196078431372549. You should consider increasing the number of permutations."

pt.reg

## $numOverlaps

## P-value: 0.392156862745098

## Z-score: -0.3679

## Number of iterations: 50

## Alternative: less
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## Evaluation of the original region set: 46

## Evaluation function: numOverlaps

## Randomization function: resampleRegions

##

## attr(,"class")

## [1] "permTestResultsList"

plot(pt.reg)

 p−value:  0.3922 
 Z−score:  −0.368 
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3.3 A note on the number of permutations

Choosing the right number of permutations is not a simple task. A large number of permu-
tations will produce more accurate results and a nicer-looking plot but a permutation test
can be computationally expensive and depending on the number of regions in the RS and the
randomization strategy selected it might take up to several hours to perform a permutation
test with a few thousand permutations. On the other hand, the lowest p-value is limited
by the number of permutations and performing a permutation test with a low permutation
number can produce less accurate results. A good strategy could be to try first with a low
number of permutations and continue only if the results look promising or at least unclear,
since if after some tens of permutations the original evaluation is really close to the mean of
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the randomizations, the probability it will end up being significant is really small. With a low
number of permutations, regioneR will generate a note stating the lowest p-value achievable
and ecouraging to increase the permutation number.

As an example, the two permutation tests above, if run with 5000 permutations would produce
a plot like these.

#NOT RUN - See Figure 1

pt.5000 <- permTest(A=special, ntimes=5000, randomize.function=resampleRegions,

universe=all.genes, evaluate.function=numOverlaps, B=altered, verbose=TRUE)

plot(pt.5000)

 p−value:  0.0002 
 Z−score:  10.825 

 n perm:  5000 
 randomization:  resampleRegions

numOverlaps
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Figure 1: Significant permutation test This is the plot of a significant permutation test with 5000
permutations

#NOT RUN - See Figure 2

pt.5000.reg <- permTest(A=regular, ntimes=5000, randomize.function=resampleRegions,

universe=all.genes, evaluate.function=numOverlaps, B=altered, verbose=TRUE)

plot(pt.5000.reg)

3.4 Randomization Functions

Choosing a good randomization strategy is crucial when performing a permutation test. One
should choose a randomization strategy that ramdomizes the regions with respect to the
association being evaluated while maintaining as much as possible the intrinsic structure and
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 p−value:  0.2819 
 Z−score:  −0.493 
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Figure 2: Non significant permutation test This is the plot of a non significant permutation test with
5000 permutations

characteristics of the regions. For example, in general it will not make sense to randomize
a region into a centromere or into any unavailable region such an unmappable region with
NGS data.

In regioneR, a randomization function is any function that takes a RS as an argument and
returns a RS with the randomized regions. Different randomization functions are included
in the package, but it is also possible to create custom randomization functions for more
specific needs (see section 4 - Region Sets).

3.4.1 randomizeRegions

This is the most general randomization strategy. It randomly places all regions along the
genome independently. The function takes every region in the original RS and randomizes
the chromosome and position, while maintaining its size and any associated metadata. The
optional mask argument might be used to specify parts of the genome where a region cannot
be placed (e.g. centromeres).

In addition there are two addition parameters:

• non.overlapping (default=FALSE): by default, two randomized regions can overlap.
Setting non.overlapping to TRUE will force all randomized regions to be non-overlapping.
Creating non-overlapping regions is slower.
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• per.chromosome (default=FALSE): if this option is set to true, the chromosome is
not randomized, but only the position within it. This option can be useful when there
original data is intrinsically biased towards some chromosomes or there is an association
between the regions and the crhomosomes.

As an example, we can create a RS A with 3 regions in chromosome 1.

A <- toGRanges(data.frame(chr=c("chr1", "chr1", "chr1"), start=c(20000, 50000, 100000),

end=c(22000, 70000, 400000)))

We can randomize it along the whole genome:

randomizeRegions(A, genome="hg19")

## GRanges object with 3 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr4 [147152081, 147154081] *

## [2] chr18 [ 45823110, 45843110] *

## [3] chr12 [ 79781547, 80081547] *

## -------

## seqinfo: 93 sequences from an unspecified genome; no seqlengths

In contrast, if we set per.chromosome to TRUE, all randomized regions will be in chr1.

randomizeRegions(A, genome="hg19", per.chromosome=TRUE)

## GRanges object with 3 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr1 [34180014, 34182014] *

## [2] chr1 [ 1924009, 1944009] *

## [3] chr1 [54694655, 54994655] *

## -------

## seqinfo: 93 sequences from an unspecified genome; no seqlengths

3.4.2 circularRandomizeRegions

Another randomization function available in regioneR is the circularRandomizeRegion. In this
case, instead of randomizing all regions independently, the randomization process maintains
the order and distance of the regions, while changing their position in the chromosome.
Conceptually, each chromosome is "circularized" and given a random spin while keeping
the regions steady. If a mask is specified, in this case, given the greater constrains in the
randomization process, it is not possible to ensure that no region will overlap the mask.
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Instead of that the user can specify the maximum proportion of the regions overlapping the
mask. If apter spinning the chromosome too much overlap is detected, a new random spin
will be applied. This process will be repeated until a suitable solution if found or max.retries
spins have been applied. If after the spinning, a region lies between the end and the start of
the chromosome, it will be splitted into two regions. Therefore, the number of regions is not
guarateed to be the same as teh original RS. circularRandomizeRegions can be significantly
faster than randomizeRegions.

As an example, we can randomize the same the same RS as before, and observe how the
randomized regions are in the same chromosome and at the same relative distance:

circularRandomizeRegions(A, genome="hg19", mask=NA)

## GRanges object with 3 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr1 [243365787, 243367787] *

## [2] chr1 [243395787, 243415787] *

## [3] chr1 [243445787, 243745787] *

## -------

## seqinfo: 1 sequence from an unspecified genome; no seqlengths

3.4.3 resampleRegions

The last available randomization function is resampleRegions. In this case, the original RS is
a subset of a finite set of all valid regions called universe. For example, a small set of genes
as a subset of all genes in the genome. The randomization process in this case consists in
selecting other random members of the universe, it is, resampling it.

3.5 Evaluation Functions

The evaluation functions are the functions that define what is being tested in the permutation
test. Some evaluation functions are provided in regioneR covering the most common uses
but it is possible (and easy) to create your own custom evaluation functions (see section
2.6.1). In general, an evaluation function is simply a function taking a RS and returning a
single numeric value.
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3.5.1 numOverlaps

The numOverlaps function receives 2 RS A and B and returns the number of regions in A
that overlap a region in B. This is the evaluation function used when testing whether our
RS A overlaps with a second RS more (or less) than expected by chance -i.e Do my set of
ChIP-seq peaks tend to lie on CpG islands?

3.5.2 meanDistance

If instead of evaluating the overlap between two RS we want to test their distance, we can
use meanDistance, which given two RS A and B, computes the mean of the distance from
every region in A to the closest region in B. It is useful to answer question of the type "Are
my highly expressed genes closer to a certain TFBS than expected by chance?"

3.5.3 meanInRegion

The meanInRegion function is useful when we want to evaluate the relation of a RS against
some sort of numeric value. For example, we could test whether the methylation levels of
our RS is higher than expected, or if it accumulates fewer mutation than one would expect.

3.6 Custom Functions

It is possible to use custom randomization and evaluation strategies in permTest. To do
so, the user simply needs to create a suitable function and give it as an argument to the
permTest function.

3.6.1 Custom Evaluation

An evaluation function can be any function with at least a RS as its first parameter and an
ellipsis (...) returning a single numeric value. It can also include any other parameters.

For example, this is a valid (although very slow) function to evaluate the GC content of our
regions.

gcContent <- function(A, bsgenome, ...) {

A <- toGRanges(A)

reg.seqs <- getSeq(bsgenome, A)

base.frequency <- alphabetFrequency(reg.seqs)

gc.pct <- (sum(base.frequency[,"C"]) + sum(base.frequency[,"G"]))/sum(width(A))

return(gc.pct)
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}

3.6.2 Custom Randomization

A randomization function is any function with at least a RS and an ellipsis as parameters
and returning a RS. Defining a different and meaningful randomization function, though, is
not as easy as coming up with an interesting evaluation function.

For example, a valid randomization strategy could be to permute the metada values associated
with each region. This is a simple function that permutes the first column of metadata and
returns the permuted RS.

permuteRegionsMetadata <- function(A, ...) {

A <- toGRanges(A)

mcols(A)[,1] <- mcols(A)[sample(length(A)),1]

return(A)

}

3.7 A note on reproducibility

In order to create reproducible code with functions that use random numbers such as the
permutation testing in regioneR, it is necessary to use set.seed. However, since regioneR uses
parallel to perform the test it is also necessary to set the mc.set.seed parameter to FALSE
to ensure reproducibility.

A <- createRandomRegions(nregions=50, length.mean=5000000, length.sd=3000000)

B <- c(A[1:25], createRandomRegions(nregions=25, length.mean=500000, length.sd=30000))

#Without mc.set.seed=FALSE

set.seed(123)

overlapPermTest(A, B, ntimes=10, force.parallel=TRUE)

## [1] "Note: The minimum p-value with only 10 permutations is 0.0909090909090909. You should consider increasing the number of permutations."

## $numOverlaps

## P-value: 0.0909090909090909

## Z-score: 12.8706

## Number of iterations: 10

## Note: less than 20 iterations might produce unreliable results

## Alternative: greater

## Evaluation of the original region set: 37

## Evaluation function: numOverlaps
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## Randomization function: randomizeRegions

##

## attr(,"class")

## [1] "permTestResultsList"

set.seed(123)

overlapPermTest(A, B, ntimes=10, force.parallel=TRUE)

## [1] "Note: The minimum p-value with only 10 permutations is 0.0909090909090909. You should consider increasing the number of permutations."

## $numOverlaps

## P-value: 0.0909090909090909

## Z-score: 12.8706

## Number of iterations: 10

## Note: less than 20 iterations might produce unreliable results

## Alternative: greater

## Evaluation of the original region set: 37

## Evaluation function: numOverlaps

## Randomization function: randomizeRegions

##

## attr(,"class")

## [1] "permTestResultsList"

#With mc.set.seed=FALSE

set.seed(123)

overlapPermTest(A, B, ntimes=10, mc.set.seed=FALSE, force.parallel=TRUE)

## [1] "Note: The minimum p-value with only 10 permutations is 0.0909090909090909. You should consider increasing the number of permutations."

## $numOverlaps

## P-value: 0.0909090909090909

## Z-score: 12.8706

## Number of iterations: 10

## Note: less than 20 iterations might produce unreliable results

## Alternative: greater

## Evaluation of the original region set: 37

## Evaluation function: numOverlaps

## Randomization function: randomizeRegions

##

## attr(,"class")

## [1] "permTestResultsList"

set.seed(123)

overlapPermTest(A, B, ntimes=10, mc.set.seed=FALSE, force.parallel=TRUE)

## [1] "Note: The minimum p-value with only 10 permutations is 0.0909090909090909. You should consider increasing the number of permutations."
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## $numOverlaps

## P-value: 0.0909090909090909

## Z-score: 12.8706

## Number of iterations: 10

## Note: less than 20 iterations might produce unreliable results

## Alternative: greater

## Evaluation of the original region set: 37

## Evaluation function: numOverlaps

## Randomization function: randomizeRegions

##

## attr(,"class")

## [1] "permTestResultsList"

4 Local Z-score

The minimum p-value achievable by permutation depends on the number of permutations
used. On the other hand, the z-score is a measure of the strength of the association that
is independent of the number of permutations. It is defined as the distance between the
expected value and the observed one, measured in standard deviations.

When performing an association analysis it is possible to detect associations that, while
statistically significant, are not biologically relevant. For example, with ChIP-seq data, it
is uaual to detect a significant overlap between broad chromatin marks covering gene-rich
regions and transcription factors. This association, while true, is indirect and based on the
fact that both regions tend to cluster around genes.

While we can’t detect if an association is biologically relevant, with the localZscore function
we can at least check if the association is specifically linked to the exact position of the
regions in the RS. To do that, the RS is shifted a number of bases to 5’ and 3’ from its
original position and the evaluation function is computed for every shifted RS. Plotting the
evaluations over the shifted positions we can estimate how the value of the z-score changes
when moving the regions in the RS: a sharp peak at the center indicates that the association
is highly dependent on the exact position of the regions while a flat profile will indicate
that the association is regional, since we can move the regions around and obtain the same
association values.

For example, in a previous example, we have identified a positive association between a set
of "special" genes and a set of altered regions in the genome. The special genes tend to lie
inside these alterede regions, but is the association highly dependant on their exact position?
Or is it a regional association? To test that, we can move around the position of the genes
as evaluate how this position change would affect the z-score.
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pt <- permTest(A=special, ntimes=50, randomize.function=resampleRegions, universe=all.genes,

evaluate.function=numOverlaps, B=altered, verbose=FALSE)

## [1] "Note: The minimum p-value with only 50 permutations is 0.0196078431372549. You should consider increasing the number of permutations."

lz <- localZScore(A=special, pt=pt, window=10*mean(width(special)),

step=mean(width(special))/2, B=altered)

plot(lz)
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In this case we can see that there is no change in the z-scores if we move the regions around.
This is expected, since the altered regions are much bigger than the special genes and have
a size of tens of megabases and thus, the association is not highly dependant on the exact
position of the regions.

On the contrary, we can create an example for an association highly dependant on the exact
position by testing the association of a RS with a subset of it.

genome <- filterChromosomes(getGenome("hg19"), keep.chr="chr1")

B <- createRandomRegions(nregions=100, length.mean=10000, length.sd=20000, genome=genome,

non.overlapping=FALSE)

A <- B[sample(20)]

pt <- overlapPermTest(A=A, B=B, ntimes=100, genome=genome, non.overlapping=FALSE)

pt

## $numOverlaps
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## P-value: 0.0099009900990099

## Z-score: 40.6786

## Number of iterations: 100

## Alternative: greater

## Evaluation of the original region set: 21

## Evaluation function: numOverlaps

## Randomization function: randomizeRegions

##

## attr(,"class")

## [1] "permTestResultsList"

lz <- localZScore(A=A, B=B, pt=pt, window=10*mean(width(A)), step=mean(width(A))/2 )

plot(lz)
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In this case we can see how as soon as we displace the regions a bit away from their original
position, the z-score drops almost to 0.

5 Region Sets

In regioneR, a genomic region is a part of a genome and is defined by three parameters:
chromosome, start and end, where start is less than or equal to end and both are inside the
limits of the chromosome. This definition includes from single bases (start equal to end) to
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whole chromosomes. In addition, genomic regions can have associated data or annotations
which will usually depend on the nature of the data. A region set, then, is defined as a group
of one or more genomic regions and is referred to as RS along this document.

Internally, regioneR uses GRanges to represent a RS, and all functions returning an RS return
a GRanges object. However, regioneR accepts different data formats as input thanks to its
toGRanges function. In particular, it accepts:

• GRanges: A GRanges object from the GenomicRanges Bioconductor package.

• Data Frames: A data.frame or any other class inheriting from it with a "BED-like"
structure with the first three columns representing chromosome, start and end. There
are a few restrictions regarding the naming of the columns in the data frame which are
detailed in the toGRanges function help page.

• A file: a file name or connection to a file in any of the formats accepted by rtracklayer ’s
import function (bed, gff, wigg, ...)

Two utility functions are provided in regioneR to manage the transformation to and from
GRanges: toGRanges and toDataframe.

• toGRanges accepts a RS in any of the supported formats and creates a GRanges
object from it

• toDataframe accepts a GRanges object and transforms it into a data.frame

For example, we can create a GRanges from a data.frame representing a RS with 3 regions
in chromosome 1 with 2 additional values (x and y) using toGRanges:

A <- data.frame(chr=1, start=c(1,15,24), end=c(10,20,30), x=c(1,2,3), y=c("a","b","c"))

B <- toGRanges(A)

B

## GRanges object with 3 ranges and 2 metadata columns:

## seqnames ranges strand | x y

## <Rle> <IRanges> <Rle> | <numeric> <factor>

## [1] 1 [ 1, 10] * | 1 a

## [2] 1 [15, 20] * | 2 b

## [3] 1 [24, 30] * | 3 c

## -------

## seqinfo: 1 sequence from an unspecified genome; no seqlengths

and we can get back to a data.frame structure using the toDataframe function.

toDataframe(B)

## chr start end x y
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## 1 1 1 10 1 a

## 2 1 15 20 2 b

## 3 1 24 30 3 c

6 Genomes and Masks

Most functions in regioneR are prepared to work with genomes and masks. The genome
represents the complete set of chromosomes available with their length and the mask the set
of genomic regions "not available" to work with, for example centromeres, highly repetitive
regions, etc... The perfect mask is application specific and might have an important impact
on the final results.

regioneR provides a function to get genomes and masks, getGenomeAndMask, but usually the
user won’t need to use it directly. In regioneR, all functions accepting a genome and a mask
as arguments use this function internally and so, accept any genome and mask specification
accepted by these function.

6.1 Genomes

In regioneR a genome is simply a list of chromosomes and their length. Therefore, it is
possible to specify a genome by giving a data.frame with 2 columns (chr and length) or 3
columns (chr, start and end) or a GRanges object with one region per chromosome. However,
when working with a standard chromosome available as a BSgenome, it is possible and much
more convenient to rely on the automatic loading of the genome (given that is installed in
the system). By specifying the BSgenome name of the genome -e.g. hg19, mm9, dm2 ...-
regioneR will fetch the correct genome information.

6.2 Masks

As with genomes, it is possible to specify a mask as a data.frame or GRanges object with the
"forbidden" regions. However, it is also possible and more convenient to use the automatic
retrieving of the default mask from BSgenome if it’s suitable for the application. Again, to
automatically retrieve the mask, the masked version of the BSgenome must be installed.
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6.3 How to retrieve a genome and mask

The getGenomeAndMask accepts two parameters, a genome and an optional mask. In
general, the genome will be a genome assembly name (’hg19’, ’mm10’, etc...) and the
function will check if there is a genome with that name installed and return it. If none is
available, it will prompt the user to install it. If the masked version of the genome is available,
that is the one that will be used. If a genome is already available in the form of a data.frame
or GRanges object (or any other valid RS format), the function will return it as a GRanges.

The second parameter, mask, can be used to specify a mask or to explicitly request no to
retrieve one. In particular, if mask is NULL (it’s default value), it will try to retrieve a mask
from the BSGenome package, if mask is NA it will return an empty mask and if mask is
anything accepted by toGRanges it will return it as the mask.

The function returns a list with a genome and a mask elements, both of them GRanges
objects.

6.4 Filtering Chromosomes

The latest versions of some genomes include a number of additional "chromosomes" repre-
senting different alternative assemblies and patches for specific complex regions. While these
additional chromosomes are useful in some cases, in others they interfere with the analysis,
and so it’s best to remove them from the genome. To do that and to generally filter any
subset of chromosomes, regioneR includes the filterChomosomes function. It take a RS and
returns a filtered version of it containing only the regions in the specified chromosomes. To
use it one need to specify the RS, the organism and the type of chromosome to keep (auto-
somal, canonical, ...). In addition it is possible to specify a custom list of chromosome names
to keep.

The available chromosome types are dependant on the organism, and the listChrTypes func-
tion can be used to see what organisms and chromosome subsets are available.

human.genome <- getGenomeAndMask("hg19", mask=NA)$genome

human.canonical <- filterChromosomes(human.genome, organism="hg")

listChrTypes()

## Homo sapiens (hg): autosomal, canonical

## Mus musculus (mm): autosomal, canonical

## Bos taurus (bosTau): autosomal, canonical

## Caenorhabditis elegans (ce): autosomal, canonical

## Danio rerio (danRer): canonical

## Macaca mulata (rheMac): autosomal, canonical

## Rattus norvegicus (rn): autosomal, canonical
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## Saccharomyces cerevisiae (sacCer): autosomal, canonical

## Drosophila melanogaster (dm): autosomal, canonical

## Pan troglodytes (panTro): autosomal, canonical

human.autosomal <- filterChromosomes(human.genome, organism="hg", chr.type="autosomal")

human.123 <- filterChromosomes(human.genome, keep.chr=c("chr1", "chr2", "chr3"))

7 Region Set Helper Functions

regioneR includes a set of helper functions based on the GenomicRanges infrastructure to
manage and manipulate RS: joinRegions, commonRegions, mergeRegions, overlapRegions,
etc... All these functions share a standard and simple signature, with one or two RS in any
of the accepted formats and almost all of them (except splitRegions and overlapRegions)
return a GRanges object.

7.1 Functions operating on a single RS

• extendRegions: This function takes a RS and two integers and extends (enlarges)
the regions by the specified amount. If a genome is given, it takes into account the
chromosome lengths and does not extend the regions over the chromosome limits. It
can take negative extension values to shrink the regions instead of enlarging them.

• joinRegions: This function takes a RS and one integer, min.dist, and joins the regions
that are less than min.dist bases apart.

7.2 Functions operating on two RS

• commonRegions: Given two RS A and B this functions returns a GRanges object
with their intersection, the genomic regions common to both of them.

• mergeRegions: Given two RS A and B this functions returns a GRanges object with
the regions of the genome contained in either of them, it is equivalent to merging the
to RS into one and then fusing the overlapping regions.

• subtractRegions: Given two RS A and B this functions returns a GRanges object with
the regions in A not present in B, it is, the regions in A minus the parts overlapping
those in B.

• uniqueRegions: Given two RS A and B this functions return a GRanges object with
the regions of the genome covered by A or B but not both.
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7.3 Other Functions: functions not returning a GRanges object

• overlapRegions: overlapRegions is one of most powerful and useful RS management
functions in regioneR. It has a number of parameters and types of returned values. For
a thorough description, refer to the regioneR user guide.

Given two RS A and B, overlapRegions identifies the regions in A overlapping a region
in B, filters them and returns them. It is possible to filter by the relation between
the regions (e.g. "the region from A must be included in the one from B") or by the
amount of overlap (e.g. "at least 10 bases", "at least half the region in A"). The
returned value might be a complete table with information, for every overlap, of the
region in A, the region in B and their relation, a boolean vector indicating for every
region in A whether it overlaps any region in B following the filtering criteria or simply
the number of valid overlaps between the two RS. In addition, it is possible to specify
if the additional data columns associated with the RS have to be kept or might just be
ignored.

Example: Given the two same RS each with 10 regions in chromosome 1 we have been
using so far we can get the complete table with their overlaps:

overlaps.df <- overlapRegions(A, B)

overlaps.df

## chr startA endA startB endB type

## 1 1 1 10 1 10 equal

## 2 1 15 20 15 20 equal

## 3 1 24 30 24 30 equal

We can filter the overlaps and get only those where a region from A contains a region
from B. Additionally, get the number of bases of the region from A covered by the
region from B:

overlaps.df <- overlapRegions(A, B, type="BinA", get.pctA=TRUE)

overlaps.df

## chr startA endA startB endB type pct.basesA

## 1 1 1 10 1 10 equal 100

## 2 1 15 20 15 20 equal 100

## 3 1 24 30 24 30 equal 100

Or get only the overlaps of at least 5 bases

overlaps.df <- overlapRegions(A, B, min.bases=5)

overlaps.df
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## chr startA endA startB endB type

## 1 1 1 10 1 10 equal

## 2 1 15 20 15 20 equal

## 3 1 24 30 24 30 equal

or boolean vector indicating the regions in A overlapping a region in B with 5 or more
bases (this is very handy to subset a RS based on how the regions overlap another RS)

overlaps.bool <- overlapRegions(A, B, min.bases=5, only.boolean=TRUE)

overlaps.bool

## [1] TRUE TRUE TRUE

or the number of regions in A overlapping a region from B with at least 5 bases

overlaps.int <- overlapRegions(A, B, min.bases=5, only.count=TRUE)

overlaps.int

## [1] 3

8 Usage Examples

In this section we will present a series of examples of how to use regioneR to answer real
biological questions.

8.1 Example 1: CpG Islands and Gene Promoters. A basic ex-
ample.

Question: Are Cpg islands and promoters associated?
Brief Problem Description: Gene promoter regions are GC rich and there are many
CpG islands that lie inside promoters. However, is there a statistically significant association
between them? Do CpG islands overlap with promoters more than one would expect by
chance?

Datasets: We will use the CpG islands described in Wu et al. 2010 and the promoters from
UCSC defined as -2000 to +200 base pairs to the TSS according to the genome assembly
hg19. The promoters file can be dowloaded from http://gattaca.imppc.org/regioner/.
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#NOT RUN

set.seed(12345)

cpgHMM <- toGRanges("http://www.haowulab.org/software/makeCGI/model-based-cpg-islands-hg19.txt")

promoters <- toGRanges("http://gattaca.imppc.org/regioner/data/UCSC.promoters.hg19.bed")

Step-by-step analysis:

The idea of the test is to randomly move the CpG islands along the genome and count how
many of them overlap with a promoter. Since we want to test whether two sets of regions
have an overlap higher than expected and we don’t need a special randomization strategy, we
can use the convenience function overlapPermTest, that uses permTest under the hood, but
presets some parameters for us (in particular, it uses numOverlaps as the evaluation function
and randomizeRegions as the randomization strategy).

To start, we will remove the promoters and CpG islands in non-canonical chromosomes, so
we are restricted to the standard part of the genome and remove any redundance they might
include.

#NOT RUN

cpgHMM <- filterChromosomes(cpgHMM, organism="hg", chr.type="canonical")

promoters <- filterChromosomes(promoters, organism="hg", chr.type="canonical")

In addition, to speed-up the example, we will use a subset of 2000 out of the 65699 CpG
islands in the region set. While in general the whole region set should be used, in many cases
a large enough subset should give an idea about association. Using the whole set is perfectly
possible and will simply be slower.

To ensure that we will count a CpG island only once even if it overlaps 2 or more promoters, we
use the parameter count.once=TRUE, that will be automatically passed to the numOverlaps
function. In general, any parameter needed by the randomization or evaluation function can
be given here and will be used by the relevant function.

#NOT RUN

cpgHMM_2K <- sample(cpgHMM, 2000)

pt <- overlapPermTest(cpgHMM_2K, promoters, ntimes=1000, genome="hg19", count.once=TRUE)

pt

P-value: 0.000999000999000999

Z-score: 60.5237

Number of iterations: 1000

Alternative: greater

Evaluation of the original region set: 614

Evaluation function: numOverlaps

Randomization function: randomizeRegions
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mean(pt$permuted)

79.087

The p-value obtained (>0.001) shows us a strong association. 614 out of 2000 CpG islands
overlap at least one promoter while a mean of only 79.087 islands overlapped a promoter in
the randomized region sets. These results can be summarised in a single plot by plotting the
perTestResults.

#NOT RUN

plot(pt)

CpG_2K vs promoters
 p−value:  0.001 

 Z−score:  60.524 
 n perm:  1000 

 randomization:  randomizeRegions

numOverlaps
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Figure 3: Association between CpG islands and gene promoters

In the plot we can see in grey the distribution of the evaluation of the randomized regions, in
green the evaluation of the original region set (in this case, the 614 CpG islands that overlap
at least one promoter), and in red the significance limit. The the high z-score and the plot
make evident the extreme significance of the association tested.

References:

Wu H, Caffo B, Jaffe HA, Feinberg AP, Irizarry RA (2010) Redefining CpG Islands Using a
Hierarchical Hidden Markov Model. Biostatistics 11(3): 499-514.
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8.2 Example 2: Analysis of ChIP-seq peaks. Advanced usage
and local Z-score.

Question: In the cell line Hepg2 (Human hepatocellular
carcinoma ), is Rad21 (Cohesin) associated with CTCF?
And with gene promoters? Are these associations differ-
ent?
Brief Problem Description: The structural role of the CTCF protein in eukaryotic
genomes and its association with the cohesin complex is well reviewed in Ong & Corces,
2014. The cohesin complex consists in four subunits, Scc1 (Rad21), Scc3, Smc1 and Smc3,
forming a ring structure. Cohesin is also associated to promoters with or without CTCF
(Ong & Corces 2011). We want to test if the peaks determined in a ChIP-seq experiment
with Rad21 overlap more than expected with the peaks generated with a CTCF ChIP-seq
experiment. We also want to test if the Rad21 peaks overlap with promoters more tahn
expected. In addition, we want to see if these two associations are somewhat different.

Datasets:

The Rad21 and CTCF ChIP-seq peaks are taken from the ENCODE project (http://www.genome.gov/encode/).
The peak files can be downloaded from the UCSC and read using the toGRanges function.
The promoters will be the same as in Example 1, that is, -2000/+200 around the UCSC TSS.

#NOT RUN

set.seed(12345)

download.file("http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHepg2Rad21IggrabUniPk.narrowPeak.gz", "Rad21.gz")

download.file("http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsUwHepg2CtcfUniPk.narrowPeak.gz", "Ctcf.gz")

HepG2_Rad21 <- toGRanges(gzfile("Rad21.gz"), header=FALSE)

HepG2_Ctcf <- toGRanges(gzfile("Ctcf.gz"), header=FALSE)

promoters <- toGRanges("http://gattaca.imppc.org/regioner/data/UCSC.promoters.hg19.bed")

Step-by-step analysis:

We will start the analysis by removing any feature in non-canonical chromosomes using fil

terChromosomes. In this case only promoters has regions in other chromosomes. In addition,
to speed up the analysis we will use only a subset of 5000 out of the 37233 Rad21 peaks. At
the end of the example there is some more information about the subset size.

#NOT RUN

promoters <- filterChromosomes(promoters, organism="hg19")

HepG2_Rad21_5K <- sample(HepG2_Rad21, 5000)
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To test the associations between Rad21 and CTCF or promoters we will use the permTest

function. We want to test if the region sets overlap more than expected, so we will use
numOverlaps as the evaluation function, passing it the count.once parameter so each region
in A is counted at most once. As the randomization function we will use circularRandom

izeRegions, since it is faster than randomizeRegions, will keep the internal structure of
the region set (won’t change the distance between adjacent regions) and we are not testing
against such distances. With that function it might not be possible to ensure a perfect
exclusion of the masked regions, but in this case we can tolerate that too. In general, in
many situations, circularRandomizeRegions is a suitable replacement to randomizeRegions

with the benefit of being much faster. We will also set mc.cores=4 so 4 processor cores
are used and mc.set.seed=FALSE to ensure a reproducible result. These two parameters not
generally needed.

IMPORTANT NOTE: It is very important to pass the name the parameters passed to
permTest, since it makes use of the ellipsis operator ... and might produce unexpected
errors if arguments are passed without a name.

#NOT RUN

pt_Rad21_5k_vs_Ctcf <- permTest(A=HepG2_Rad21_5K, B=HepG2_Ctcf, ntimes=1000,

randomize.function=circularRandomizeRegions,

evaluate.function=numOverlaps, count.once=TRUE,

genome="hg19", mc.set.seed=FALSE, mc.cores=4)

pt_Rad21_5k_vs_Prom <- permTest(A=HepG2_Rad21_5K, B=promoters, ntimes=1000,

randomize.function=circularRandomizeRegions,

evaluate.function=numOverlaps, count.once=TRUE,

genome="hg19", mc.set.seed=FALSE, mc.cores=4)

pt_Rad21_5k_vs_Ctcf

pt_Rad21_5k_vs_Prom

plot(pt_Rad21_5k_vs_Ctcf, main="Rad21_5K vs CTCF")

plot(pt_Rad21_5k_vs_Prom, main="Rad21_5K vs Promoters")

We can see that both tests are significant with a very low p-value. In fact, they both share
the lowest possible p-value with this number of randomizations, since no single randomized
region set produced an evaluation value higher than the original set. However, the association
with CTCF is far more extreme and actually the z-score is about 25 times higher for CTCF
than for the promoters. It makes sense, since about 85% of the Rad21 peaks overlap with
CTCF but only 11% overlap with gene promoters.
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Figure 4: Association of Rad21 peaks with CTCF and gene promoters

To further investigate the nature of the associations, we will use the localZscore function,
that will move the original regions around and see the effect in the z-score. In this case, we
will start with a window of 1000bp and a step of 50bp. To run the local z-score analysis,
we need to give it the original region set A, the results of the permutation test and the
additional parameters needed by the evaluation function, in this case, B=HepG2_Ctcf and
count.once=TRUE.

#NOT RUN

lz_Rad21_vs_Ctcf_1 <- localZScore(A=HepG2_Rad21_5K, B=HepG2_Ctcf,

pt=pt_Rad21_5k_vs_Ctcf,

window=1000, step=50, count.once=TRUE)

lz_Rad21_vs_Prom_1 <- localZScore(A=HepG2_Rad21_5K, B=promoters,

pt=pt_Rad21_5k_vs_Prom,

window=1000, step=50, count.once=TRUE)

plot(lz_Rad21_vs_Ctcf_1, main="Rad21_5k vs CTCF (1Kbp)")

plot(lz_Rad21_vs_Prom_1, main="Rad21_5k vs promoters (1Kbp)")
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Figure 5: Local Z-score analysis of the association of Rad21 peaks with CTCF and gene promoters
with a 1Kbp window
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Analysing how the z-score changes when the Rad21 regions are moved around their original
position, we can see a very different profile. In the case of the association with CTCF,
a narrow peak is evident. This means that if the original regions, the Rad21 peaks were
displaced 300bp to either side, the z-score of the association would drop to almost zero. A
clear narrow peak like this one indicates that the association is highly dependant on the exact
position of the peaks, what makes sense in this case given the already described colocalization
of CTCF and Rad21. In the case of the promoters, however, we can see that there is no drop
in the z-score when the regions are moved. This suggests that the association we are seeing
is more regional and it does not depend so strictly on the exact position of the regions.

Increasing the window value to 10000bp and the step to 200bp, we can see a broader view
of the z-score change and we can see how there’s a drop of z-score, but at a much higher
distance, which indicates either wider regions or some kind of regional association.

#NOT RUN

lz_Rad21_vs_Ctcf_2 <- localZScore(A=HepG2_Rad21_5K, B=HepG2_Ctcf,

pt=pt_Rad21_5k_vs_Ctcf,

window=10000, step=500, count.once=TRUE)

lz_Rad21_vs_Prom_2 <- localZScore(A=HepG2_Rad21_5K, B=promoters,

pt=pt_Rad21_5k_vs_Prom,

window=10000, step=500, count.once=TRUE)

plot(lz_Rad21_vs_Ctcf_2, main="Rad21_5k vs CTCF (10Kbp)")

plot(lz_Rad21_vs_Prom_2, main="Rad21_5k vs promoters (10Kbp)")
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Figure 6: Local Z-score analysis of the association of Rad21 peaks with CTCF and gene promoters
with a 10Kbp window

Note: In many cases, it is possible to use a subset of the regions to get a first glimpse of
the association before testing with the whole set of regions. However, the size of the subset
is important. In the figure there are the results of testing the association of Rad21 with
CTCF and the gene promoters with three different subset sizes: 200, 5000 and all the Rad21
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reagions. It is clear that the 5000 subset is capable of detecting the association with both
sets of regions but the 200 subset detects the very strong association with CTCF but fails to
clearly detect the association with the promoters.

Rad21_200bp.vs.Ctcf
 p−value:  0.001 

 Z−score:  140.786 
 n perm:  1000 

 randomization:  circularRandomizeRegions

numOverlaps

0 50 100 150

0.0

0.5

1.0

1.5 α = 0.05Evperm Evobs

Rad21_5K.vs.Ctcf
 p−value:  0.001 

 Z−score:  683.197 
 n perm:  1000 

 randomization:  circularRandomizeRegions

numOverlaps

0 1000 2000 3000 4000

0.00

0.02

0.04

0.06

α = 0.05Evperm Evobs

Rad21.vs.Ctcf
 p−value:  0.001 

 Z−score:  1185.292 
 n perm:  1000 

 randomization:  circularRandomizeRegions

numOverlaps

0 5000 10000 15000 20000 25000 30000

0.000

0.005

0.010

0.015

0.020

α = 0.05Evperm Evobs

Rad21_200bp.vs.promoters
 p−value:  0.001 
 Z−score:  8.133 
 n perm:  1000 

 randomization:  circularRandomizeRegions

numOverlaps

0 5 10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

0.30
α = 0.05Evperm Evobs

Rad21_5K.vs.promoters
 p−value:  0.001 

 Z−score:  26.896 
 n perm:  1000 

 randomization:  circularRandomizeRegions

numOverlaps

200 300 400 500

0.000

0.005

0.010

0.015

0.020

0.025

0.030

α = 0.05Evperm Evobs

Rad21.vs.promoters
 p−value:  0.001 

 Z−score:  60.956 
 n perm:  1000 

 randomization:  circularRandomizeRegions

numOverlaps

1500 2000 2500 3000 3500 4000

0.000

0.002

0.004

0.006

0.008 α = 0.05Evperm Evobs

0

20

40

60

80

100

120

140

Rad21_200bp.vs.Ctcf

Shifts

S
hi

fte
d 

z−
sc

or
es

−
10

K
b

−
9.

8K
b

−
9.

6K
b

−
9.

4K
b

−
9.

2K
b

−
9K

b
−

8.
8K

b
−

8.
6K

b
−

8.
4K

b
−

8.
2K

b
−

8K
b

−
7.

8K
b

−
7.

6K
b

−
7.

4K
b

−
7.

2K
b

−
7K

b
−

6.
8K

b
−

6.
6K

b
−

6.
4K

b
−

6.
2K

b
−

6K
b

−
5.

8K
b

−
5.

6K
b

−
5.

4K
b

−
5.

2K
b

−
5K

b
−

4.
8K

b
−

4.
6K

b
−

4.
4K

b
−

4.
2K

b
−

4K
b

−
3.

8K
b

−
3.

6K
b

−
3.

4K
b

−
3.

2K
b

−
3K

b
−

2.
8K

b
−

2.
6K

b
−

2.
4K

b
−

2.
2K

b
−

2K
b

−
1.

8K
b

−
1.

6K
b

−
1.

4K
b

−
1.

2K
b

−
1K

b
−

80
0

−
60

0
−

40
0

−
20

0 0
20

0
40

0
60

0
80

0
1K

b
1.

2K
b

1.
4K

b
1.

6K
b

1.
8K

b
2K

b
2.

2K
b

2.
4K

b
2.

6K
b

2.
8K

b
3K

b
3.

2K
b

3.
4K

b
3.

6K
b

3.
8K

b
4K

b
4.

2K
b

4.
4K

b
4.

6K
b

4.
8K

b
5K

b
5.

2K
b

5.
4K

b
5.

6K
b

5.
8K

b
6K

b
6.

2K
b

6.
4K

b
6.

6K
b

6.
8K

b
7K

b
7.

2K
b

7.
4K

b
7.

6K
b

7.
8K

b
8K

b
8.

2K
b

8.
4K

b
8.

6K
b

8.
8K

b
9K

b
9.

2K
b

9.
4K

b
9.

6K
b

9.
8K

b
10

K
b

0

100

200

300

400

500

600

700

Rad21_5K.vs.Ctcf

Shifts

S
hi

fte
d 

z−
sc

or
es

−
10

K
b

−
9.

8K
b

−
9.

6K
b

−
9.

4K
b

−
9.

2K
b

−
9K

b
−

8.
8K

b
−

8.
6K

b
−

8.
4K

b
−

8.
2K

b
−

8K
b

−
7.

8K
b

−
7.

6K
b

−
7.

4K
b

−
7.

2K
b

−
7K

b
−

6.
8K

b
−

6.
6K

b
−

6.
4K

b
−

6.
2K

b
−

6K
b

−
5.

8K
b

−
5.

6K
b

−
5.

4K
b

−
5.

2K
b

−
5K

b
−

4.
8K

b
−

4.
6K

b
−

4.
4K

b
−

4.
2K

b
−

4K
b

−
3.

8K
b

−
3.

6K
b

−
3.

4K
b

−
3.

2K
b

−
3K

b
−

2.
8K

b
−

2.
6K

b
−

2.
4K

b
−

2.
2K

b
−

2K
b

−
1.

8K
b

−
1.

6K
b

−
1.

4K
b

−
1.

2K
b

−
1K

b
−

80
0

−
60

0
−

40
0

−
20

0 0
20

0
40

0
60

0
80

0
1K

b
1.

2K
b

1.
4K

b
1.

6K
b

1.
8K

b
2K

b
2.

2K
b

2.
4K

b
2.

6K
b

2.
8K

b
3K

b
3.

2K
b

3.
4K

b
3.

6K
b

3.
8K

b
4K

b
4.

2K
b

4.
4K

b
4.

6K
b

4.
8K

b
5K

b
5.

2K
b

5.
4K

b
5.

6K
b

5.
8K

b
6K

b
6.

2K
b

6.
4K

b
6.

6K
b

6.
8K

b
7K

b
7.

2K
b

7.
4K

b
7.

6K
b

7.
8K

b
8K

b
8.

2K
b

8.
4K

b
8.

6K
b

8.
8K

b
9K

b
9.

2K
b

9.
4K

b
9.

6K
b

9.
8K

b
10

K
b

0

200

400

600

800

1000

1200

Rad21.vs.Ctcf

Shifts

S
hi

fte
d 

z−
sc

or
es

−
10

K
b

−
9.

8K
b

−
9.

6K
b

−
9.

4K
b

−
9.

2K
b

−
9K

b
−

8.
8K

b
−

8.
6K

b
−

8.
4K

b
−

8.
2K

b
−

8K
b

−
7.

8K
b

−
7.

6K
b

−
7.

4K
b

−
7.

2K
b

−
7K

b
−

6.
8K

b
−

6.
6K

b
−

6.
4K

b
−

6.
2K

b
−

6K
b

−
5.

8K
b

−
5.

6K
b

−
5.

4K
b

−
5.

2K
b

−
5K

b
−

4.
8K

b
−

4.
6K

b
−

4.
4K

b
−

4.
2K

b
−

4K
b

−
3.

8K
b

−
3.

6K
b

−
3.

4K
b

−
3.

2K
b

−
3K

b
−

2.
8K

b
−

2.
6K

b
−

2.
4K

b
−

2.
2K

b
−

2K
b

−
1.

8K
b

−
1.

6K
b

−
1.

4K
b

−
1.

2K
b

−
1K

b
−

80
0

−
60

0
−

40
0

−
20

0 0
20

0
40

0
60

0
80

0
1K

b
1.

2K
b

1.
4K

b
1.

6K
b

1.
8K

b
2K

b
2.

2K
b

2.
4K

b
2.

6K
b

2.
8K

b
3K

b
3.

2K
b

3.
4K

b
3.

6K
b

3.
8K

b
4K

b
4.

2K
b

4.
4K

b
4.

6K
b

4.
8K

b
5K

b
5.

2K
b

5.
4K

b
5.

6K
b

5.
8K

b
6K

b
6.

2K
b

6.
4K

b
6.

6K
b

6.
8K

b
7K

b
7.

2K
b

7.
4K

b
7.

6K
b

7.
8K

b
8K

b
8.

2K
b

8.
4K

b
8.

6K
b

8.
8K

b
9K

b
9.

2K
b

9.
4K

b
9.

6K
b

9.
8K

b
10

K
b

−2

0

2

4

6

8

10

12

Rad21_200bp.vs.promoters

Shifts

S
hi

fte
d 

z−
sc

or
es

−
10

K
b

−
9.

8K
b

−
9.

6K
b

−
9.

4K
b

−
9.

2K
b

−
9K

b
−

8.
8K

b
−

8.
6K

b
−

8.
4K

b
−

8.
2K

b
−

8K
b

−
7.

8K
b

−
7.

6K
b

−
7.

4K
b

−
7.

2K
b

−
7K

b
−

6.
8K

b
−

6.
6K

b
−

6.
4K

b
−

6.
2K

b
−

6K
b

−
5.

8K
b

−
5.

6K
b

−
5.

4K
b

−
5.

2K
b

−
5K

b
−

4.
8K

b
−

4.
6K

b
−

4.
4K

b
−

4.
2K

b
−

4K
b

−
3.

8K
b

−
3.

6K
b

−
3.

4K
b

−
3.

2K
b

−
3K

b
−

2.
8K

b
−

2.
6K

b
−

2.
4K

b
−

2.
2K

b
−

2K
b

−
1.

8K
b

−
1.

6K
b

−
1.

4K
b

−
1.

2K
b

−
1K

b
−

80
0

−
60

0
−

40
0

−
20

0 0
20

0
40

0
60

0
80

0
1K

b
1.

2K
b

1.
4K

b
1.

6K
b

1.
8K

b
2K

b
2.

2K
b

2.
4K

b
2.

6K
b

2.
8K

b
3K

b
3.

2K
b

3.
4K

b
3.

6K
b

3.
8K

b
4K

b
4.

2K
b

4.
4K

b
4.

6K
b

4.
8K

b
5K

b
5.

2K
b

5.
4K

b
5.

6K
b

5.
8K

b
6K

b
6.

2K
b

6.
4K

b
6.

6K
b

6.
8K

b
7K

b
7.

2K
b

7.
4K

b
7.

6K
b

7.
8K

b
8K

b
8.

2K
b

8.
4K

b
8.

6K
b

8.
8K

b
9K

b
9.

2K
b

9.
4K

b
9.

6K
b

9.
8K

b
10

K
b

0

10

20

30

40

Rad21_5K.vs.promoters

Shifts

S
hi

fte
d 

z−
sc

or
es

−
10

K
b

−
9.

8K
b

−
9.

6K
b

−
9.

4K
b

−
9.

2K
b

−
9K

b
−

8.
8K

b
−

8.
6K

b
−

8.
4K

b
−

8.
2K

b
−

8K
b

−
7.

8K
b

−
7.

6K
b

−
7.

4K
b

−
7.

2K
b

−
7K

b
−

6.
8K

b
−

6.
6K

b
−

6.
4K

b
−

6.
2K

b
−

6K
b

−
5.

8K
b

−
5.

6K
b

−
5.

4K
b

−
5.

2K
b

−
5K

b
−

4.
8K

b
−

4.
6K

b
−

4.
4K

b
−

4.
2K

b
−

4K
b

−
3.

8K
b

−
3.

6K
b

−
3.

4K
b

−
3.

2K
b

−
3K

b
−

2.
8K

b
−

2.
6K

b
−

2.
4K

b
−

2.
2K

b
−

2K
b

−
1.

8K
b

−
1.

6K
b

−
1.

4K
b

−
1.

2K
b

−
1K

b
−

80
0

−
60

0
−

40
0

−
20

0 0
20

0
40

0
60

0
80

0
1K

b
1.

2K
b

1.
4K

b
1.

6K
b

1.
8K

b
2K

b
2.

2K
b

2.
4K

b
2.

6K
b

2.
8K

b
3K

b
3.

2K
b

3.
4K

b
3.

6K
b

3.
8K

b
4K

b
4.

2K
b

4.
4K

b
4.

6K
b

4.
8K

b
5K

b
5.

2K
b

5.
4K

b
5.

6K
b

5.
8K

b
6K

b
6.

2K
b

6.
4K

b
6.

6K
b

6.
8K

b
7K

b
7.

2K
b

7.
4K

b
7.

6K
b

7.
8K

b
8K

b
8.

2K
b

8.
4K

b
8.

6K
b

8.
8K

b
9K

b
9.

2K
b

9.
4K

b
9.

6K
b

9.
8K

b
10

K
b

0

20

40

60

80

Rad21.vs.promoters

Shifts

S
hi

fte
d 

z−
sc

or
es

−
10

K
b

−
9.

8K
b

−
9.

6K
b

−
9.

4K
b

−
9.

2K
b

−
9K

b
−

8.
8K

b
−

8.
6K

b
−

8.
4K

b
−

8.
2K

b
−

8K
b

−
7.

8K
b

−
7.

6K
b

−
7.

4K
b

−
7.

2K
b

−
7K

b
−

6.
8K

b
−

6.
6K

b
−

6.
4K

b
−

6.
2K

b
−

6K
b

−
5.

8K
b

−
5.

6K
b

−
5.

4K
b

−
5.

2K
b

−
5K

b
−

4.
8K

b
−

4.
6K

b
−

4.
4K

b
−

4.
2K

b
−

4K
b

−
3.

8K
b

−
3.

6K
b

−
3.

4K
b

−
3.

2K
b

−
3K

b
−

2.
8K

b
−

2.
6K

b
−

2.
4K

b
−

2.
2K

b
−

2K
b

−
1.

8K
b

−
1.

6K
b

−
1.

4K
b

−
1.

2K
b

−
1K

b
−

80
0

−
60

0
−

40
0

−
20

0 0
20

0
40

0
60

0
80

0
1K

b
1.

2K
b

1.
4K

b
1.

6K
b

1.
8K

b
2K

b
2.

2K
b

2.
4K

b
2.

6K
b

2.
8K

b
3K

b
3.

2K
b

3.
4K

b
3.

6K
b

3.
8K

b
4K

b
4.

2K
b

4.
4K

b
4.

6K
b

4.
8K

b
5K

b
5.

2K
b

5.
4K

b
5.

6K
b

5.
8K

b
6K

b
6.

2K
b

6.
4K

b
6.

6K
b

6.
8K

b
7K

b
7.

2K
b

7.
4K

b
7.

6K
b

7.
8K

b
8K

b
8.

2K
b

8.
4K

b
8.

6K
b

8.
8K

b
9K

b
9.

2K
b

9.
4K

b
9.

6K
b

9.
8K

b
10

K
b

Figure 7: The effect of the subset size in the association testing
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9 Benchmarks and Performance

The main focus of regioneR is not speed but flexibility. However, the most time consuming
parts of the test, mainly the randomization functions, have been optimized and perform quite
well (although still far from pure C implementations such as bedtools). In this section we
present a comparison of the performance of the different available functions.

9.1 Randomization Functions

The process of randomizing the position of the regions over the genome can be difficult and
time consuming. The different functions available in regioneR vary a lot in their complexity
and performance, ranging from the simplest and fastest resampleRegions, that randomly
selects a subset of regions from a finite universe of possible regions supplied by the user, to
the slowest and most complex randomizeRegions, that creates truly random region among
the genome, taking into account a mask of non selectable parts of the genome and even
ensuring that there is no overlap between the randomized regions.

Here is a brief description of the algorithmic comlexity of each randomization function:

• resampleRegions: This is the fastest of the built-in randomization functions. It uses
sample to select N regions from a user provided universe. It is basically a linear
algorithm with respect to the number of regions.

• circularRandomizeRegions: This is also a fast algorithm that maintains the distance
between the regions in the region set but randomizes their position in the chromosome.
There is a tradeoff between speed and the portion of regions overlapping the mask,
since it will randomly "spin" the chromosome until it finds a randomized region set that
has an overlap with the mask below the maximum allowed. Thus, it’s cost is linear
with the number of regions in the region set when the portion of the genome covered
by the mask plus the RS is low but will increase rapidly if the mask is dense.

• randomizeRegions: This function completely randomizes the regions along the genome.
Internally, it has three different algorithms, a fast linear one, that places the regions
in the genome very fast but it’s not guaranteed to succeed for all the regions, a linear
but slower one, that places the regions in the genome taking into account the mask
and is guaranteed to succeed for all regions if they fit in the available space, and a
quadratic algorithm that randomly places the regions in the available space without
overlaps between them. The final algorithm is a combination of the three, with a very
good behaviour with sparse masks and region sets that can become slower when the
percentage of the genome covered by the mask or the regions is hight and specially
slow if no overlaps between the random regions are allowed.
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In these two plots you can see the time required to randomize a region set of variable size in
different conditions with these algorithms.
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Figure 8: Randomization time against number of regions
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Figure 9: Randomization time against mask density

10 Technical Considerations

10.1 Memoisation

regioneR uses memoise to speed up the genome and mask retrieval functions, since they can
be quite slow. Thus, the first call to getGenomeAndMask (which is called from all functions
accepting a genome) will have an additional delay of almost 30s. After that call, the genome
and mask retrieval is almost intantaneous, since the result has been cached. In some special
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cases, one might want to remove the cache and retrieve the genome and mask from the
original source. To do so, we have included the function emptyCacheRegioneR that will
forget the cached versions of genomes and masks.

11 Session Info

sessionInfo()

## R version 3.4.2 Patched (2017-10-07 r73498)

## Platform: x86_64-w64-mingw32/x64 (64-bit)

## Running under: Windows Server 2012 R2 x64 (build 9600)

##

## Matrix products: default

##

## locale:

## [1] LC_COLLATE=C

## [2] LC_CTYPE=English_United States.1252

## [3] LC_MONETARY=English_United States.1252

## [4] LC_NUMERIC=C

## [5] LC_TIME=English_United States.1252

##

## attached base packages:

## [1] parallel stats4 stats graphics grDevices utils datasets

## [8] methods base

##

## other attached packages:

## [1] BSgenome.Hsapiens.UCSC.hg19.masked_1.3.99

## [2] BSgenome.Hsapiens.UCSC.hg19_1.4.0

## [3] regioneR_1.10.0

## [4] BSgenome_1.46.0

## [5] rtracklayer_1.38.0

## [6] Biostrings_2.46.0

## [7] XVector_0.18.0

## [8] GenomicRanges_1.30.0

## [9] GenomeInfoDb_1.14.0

## [10] IRanges_2.12.0

## [11] S4Vectors_0.16.0

## [12] BiocGenerics_0.24.0

## [13] memoise_1.1.0

## [14] knitr_1.17

##
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## loaded via a namespace (and not attached):

## [1] Rcpp_0.12.13 compiler_3.4.2

## [3] highr_0.6 bitops_1.0-6

## [5] tools_3.4.2 zlibbioc_1.24.0

## [7] digest_0.6.12 evaluate_0.10.1

## [9] lattice_0.20-35 Matrix_1.2-11

## [11] DelayedArray_0.4.0 yaml_2.1.14

## [13] GenomeInfoDbData_0.99.1 stringr_1.2.0

## [15] rprojroot_1.2 grid_3.4.2

## [17] Biobase_2.38.0 XML_3.98-1.9

## [19] BiocParallel_1.12.0 rmarkdown_1.6

## [21] magrittr_1.5 backports_1.1.1

## [23] Rsamtools_1.30.0 htmltools_0.3.6

## [25] matrixStats_0.52.2 GenomicAlignments_1.14.0

## [27] SummarizedExperiment_1.8.0 BiocStyle_2.6.0

## [29] stringi_1.1.5 RCurl_1.95-4.8
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