
QuaternaryProd
Carl Tony Fakhry, Ping Chen and Kourosh Zarringhalam

2017-10-30

A signed causal graph for gene regulation is a directed graph where the edges are signed and the signs
indicate the direction of regulation of the target genes (the signs are either (+) or (-)). QuaternaryProd
is a package for computing the Quaternary Dot Product Scoring Statistic [2] (or simply the Quaternary
Statistic) of signed causal graphs for gene regulation. The Quaternary Dot Product Scoring Statistic is
a generalization of the Ternary Dot Product Scoring Statistic [1] which allows for ambiguities to arise in
the causal graph. Ambiguities arise when a regulator can affect a target gene in two different ways or if
the direction of regulation is unknown. We will first provide some background, and then we will apply the
statistic to STRINGdb [3] which is a publicly available biological network.

Introduction

The Quaternary Dot Product Scoring Statistic [2] is a goodness of fit test for evaluating the performance
of regulation predictions made by a signed and directed causal network on a given gene expression data
set. Given a regulator s in a causal graph, let qp, qm and qr denote the number of target genes which are
upregulated (+), downregulated (-) and regulated (r) by the regulator s respectively. Regulated relations
occur when a regulator regulates a target gene without knowing the direction of regulation or if an ambiguity
in direction of regulation occurs. An ambiguity can occur if a regulator, according to a given network, shares
both (+) and (-) relations with the same target gene. Moreover, let qz denote the set of target genes in
the causal network which do not share a relation with s i.e which are not affected by s. Next, suppose we
are presented with new gene expression data. Let np, nm and nz denote the number of genes which are
upregulated, downregulated and are unregulated in the gene expression data respectively. For the regulator s,
we can tabulate the predictions of the network vs. the gene expression data:

Observed + Observed − Observed 0 Total
Predicted + npp npm npz qp

Predicted − nmp nmm nmz qm

Predicted r nrp nrm nrz qr

Predicted 0 nzp nzm nzz qz

Total np nm nz T

Table 1: Tabulation of predictions from network edges vs. observations from experimental results.

npp denotes the number of target genes which s is predicted to upregulate by the network and were indeed
upregulated in the gene expression data. npm denotes the number of target genes which s is predicted to
upregulate and were downregulated in the gene expression data. npz denotes the number of target genes
which s is predicted to upregulate and were not expressed in the gene expression data. Similar interpretation
follows for all other entries of the table. The probability of a tabulation table follows the Quaternary Dot
Product distribution which is given by:

P (Table) =

(
qp

npp,npm,npz

)(
qm

nmp,nmm,nmz

)(
qz

nzp,nzm,nzz

)(
qr

nrp,nrm,nrz

)(
T

np,nm,nz

) . (1)

Note, since the predictions by the network and the experimental values are fixed, then the table has 6 degrees
of freedom npp, nmm, nrp, nrm, nmp and npm. The score S to measure the goodness of fit is given by:

1

S(Table) = npp + nmm + nrp + nrm − (nmp + npm) (2)

which is the sum of the good predictions (i.e npp, nmm, nrp and nrm) minus the bad predictions (i.e nmp and
npm). To compute the probability of a score, we sum the probabilites of all tables with score S as follows:

P (S) =
∑

P (Table)=S

P (Table). (3)

Functionality

QuaternaryProd provides different functions for computing the probability of a score, probability mass
function, p-value of a score and the domain of the Quaternary Dot Product Scoring Statistic. The probability
mass function can be computed if given the margins of the table.
library(QuaternaryProd)

Compute the probability mass function
pmf <- QP_Pmf(q_p = 20, q_m = 20, q_z = 20, q_r = 0, n_p = 20, n_m = 20, n_z = 20)

Plot the mass function
plot(names(pmf), pmf, col="blue", xlab = "scores", ylab = "probabilities")
lines(names(pmf), pmf, col = "blue")

−40 −20 0 20 40

0.
00

0.
02

0.
04

0.
06

scores

pr
ob

ab
ili

tie
s

2

The package contains optimized functions for computing the p-value of a score. To compute the p-value of
score we can use the following:
Get the p-value of score 5
pval <- QP_Pvalue(score = 5, q_p = 20, q_m = 20, q_z = 20, q_r = 0,

n_p = 20, n_m = 20, n_z = 20)
pval

[1] 0.1948157

Compue the p-value only if it is statistically significant otherwise
return -1
pval <- QP_SigPvalue(score = 5, q_p = 20, q_m = 20, q_z = 20, q_r = 0,

n_p = 20, n_m = 20, n_z = 20)
pval

[1] -1

If the user is only interested in obtaining statistically significant p-values, then QP_SigPvalue is optimized
for this purpose. In either case, the user is advised to compute the p-value of a score using the previous two
functions which will be faster than computing the entire probability mass function and then computing the
p-value. Finally, it is possible to also compute the probabilities of scores individually using QP_Probability
and the support of the distribution using QP_Support. Since this package is written for the benefit of
bioinformaticians, we will provide an example on how to apply this statistic to a publicly available network.
One bioinformatic application is to test how well protein-protein causal networks can predict the regulators in
gene expression data. In the last section of this Vignette, we present an example for computing this statistic
over the STRINGdb network.

Functionality for working with the Homo sapien causal network from STRINGdb

Here we provide functionality for using QuaternaryProd with the STRINGdb Homo Sapien causal
network (version 10) provided under the creative commons license.

Compute Pvalues Over the Network

Given new gene expression data, we can compute the scores and p-values for all regulators in the STRINGdb
Homo Sapien causal network using the specialized RunCRE_HSAStringDB function. We use the gene expression
data sets that were used in [1]. The data sets contain the c-Myc and E2F3 expression signatures. Note that
the results may differ from those reported in [2] since the network was parsed differently.

Load Gene Expression Data

First, we load all the data sets. The gene expression data sets must have the following columns: 1- entrez
column corresponding to the entrez id of the gene, 2- pvalue column corresponding to the pvalue of the gene,
3- fc column corresponding to the fold change of the gene. After we load the data sets, we make sure that
there are no duplicated entrez ids in the data sets.
library(QuaternaryProd)

Get gene expression data
e2f3 <- system.file("extdata", "e2f3_sig.txt",

package = "QuaternaryProd")
e2f3 <- read.table(e2f3, sep = "\t",

header = TRUE, stringsAsFactors = FALSE)
myc <- system.file("extdata", "myc_sig.txt",

3

https://creativecommons.org/licenses/by/3.0/

package = "QuaternaryProd")
myc <- read.table(myc, sep = "\t",

header = TRUE, stringsAsFactors = FALSE)

Rename column names appropriately
and remove duplicated entrez ids in the gene expression data
names(e2f3) <- c("entrez", "pvalue", "fc")
e2f3 <- e2f3[!duplicated(e2f3$entrez),]

names(myc) <- c("entrez", "pvalue", "fc")
myc <- myc[!duplicated(myc$entrez),]

Compute the Quaternary Dot Product Scoring Statistic over STRINGdb

We can now compute the Quaternary Dot Product Scoring Statistic over STRINGdb using the following:
Compute the Quaternary Dot Product Scoring Statistic for only statistically
significant regulators
quaternary_results <- RunCRE_HSAStringDB(e2f3, method = "Quaternary",

fc.thresh = log2(1.3), pval.thresh = 0.05,
only.significant.pvalues = TRUE,
significance.level = 0.05)

137 rows from gene_expression_data removed due
to entrez ids being unrepsented in StringDB entities!

quaternary_results[1:4, c("uid","symbol","regulation","pvalue")]

uid symbol regulation pvalue
1 9606.ENSP00000345571 E2F1 up 7.810196e-09
2 9606.ENSP00000244741 CDKN1A down 2.454842e-07
3 9606.ENSP00000362592 RBBP4 down 3.084143e-05
4 9606.ENSP00000379140 No-Symbol up 5.875947e-05

RunCRE_HSAStringDB returns a data frame containing all the regulators of the String causal network. Comput-
ing the p-value of the Quaternary Dot Product Scoring Statistic has computational time complexityO(kn3) (see
[2]). To improve performance, RunCRE_HSAStringDB has an optional argument only.significant.pvalues
which can be set to TRUE so that only the p-values of the statistically significant regulators are computed.
P-values which are not statistically significant (i.e p-values greater than signficance.level) are not reported,
in which case the p-value is set to a value of -1. If the user wishes to compute p-values for regulators which
are not statistically significant then the user should set the parameter only.significant.pvalues = FALSE.
The regulators are ordered in increasing order of the p-values (Note: details on the columns of the data
frame returned can be found in the help page for RunCRE_HSAStringDB). Finally, we see that this approach
retrieves the signal regulator E2F1.

Compute the Ternary Dot Product Scoring Statistic and the Enrichment test over STRINGdb

To compute the Ternary Dot Product Statistic over STRINGdb we can use the following:
ternary_results <- RunCRE_HSAStringDB(myc, method = "Ternary",

fc.thresh = log2(1.3), pval.thresh = 0.05,
only.significant.pvalues = TRUE,
significance.level = 0.05)

108 rows from gene_expression_data removed due

4

to entrez ids being unrepsented in StringDB entities!

ternary_results[1:4, c("uid","symbol","regulation","pvalue")]

uid symbol regulation pvalue
1 9606.ENSP00000367207 MYC up 3.511516e-06
2 9606.ENSP00000351490 MAX up 3.097577e-05
3 9606.ENSP00000313199 No-Symbol up 4.226215e-05
4 9606.ENSP00000258962 SRSF1 up 2.867982e-04

We see that this method retrieves MYC as a significant regulator. To compute the Enrichment test over
STRINGdb we can use the following:
enrichment_results <- RunCRE_HSAStringDB(myc, method = "Enrichment",

fc.thresh = log2(1.3), pval.thresh = 0.05,
only.significant.pvalues = TRUE,
significance.level = 0.05)

108 rows from gene_expression_data removed due
to entrez ids being unrepsented in StringDB entities!

enrichment_results[1:10, c("uid","symbol","regulation","pvalue")]

uid symbol regulation pvalue
1 9606.ENSP00000351490 MAX up 2.916784e-06
2 9606.ENSP00000351490 MAX down 2.916784e-06
3 9606.ENSP00000355249 E2F2 up 2.216447e-05
4 9606.ENSP00000355249 E2F2 down 2.216447e-05
5 9606.ENSP00000256996 DDB2 up 8.026163e-05
6 9606.ENSP00000256996 DDB2 down 8.026163e-05
7 9606.ENSP00000425561 EIF4E up 2.868088e-04
8 9606.ENSP00000425561 EIF4E down 2.868088e-04
9 9606.ENSP00000367207 MYC up 3.108668e-04
10 9606.ENSP00000367207 MYC down 3.108668e-04

We see that the Enrichment method also retrieves MYC as a significant regulator although not as significant
as in the case of the Ternary Dot Product Scoring Statistic.

References

[1] Chindelevitch et al. (2012). Assessing statistical significance in causal graphs. BMC Bioinformatics,
Volume 3, Issue 1, 2012, Page 35.

[2] Carl Tony Fakhry, Parul Choudhary, Alex Gutteridge, Ben Sidders, Ping Chen, Daniel Ziemek, and
Kourosh Zarringhalam. Interpreting transcriptional changes using causal graphs: new methods and their
practical utility on public networks. BMC Bioinformatics, 17:318, 2016. ISSN 1471-2105. doi: 10.1186/s12859-
016-1181-8.

[3] Franceschini, A (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and
integration. In:‘Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15. doi: 10.1093/nar/gks1094. Epub
2012 Nov 29’.

5

	Introduction
	Functionality
	Functionality for working with the Homo sapien causal network from STRINGdb
	Compute Pvalues Over the Network

	References

