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1 Introduction

Interactions between proteins occur in many, if not most, biological processes. Most proteins perform

their functions in networks associated with other proteins and other biomolecules. This fact has motivated

the development of a variety of experimental methods for the identification of protein interactions. This

variety has in turn ushered in the development of numerous different computational approaches for

modeling and predicting protein interactions. Sometimes an experiment is aimed at identifying proteins

closely related to some interesting proteins. A network-based statistical learning method is used to infer

the putative functions of proteins from the known functions of its neighboring proteins on a PPI network.

This package identifies such proteins often involved in the same or similar biological functions.

2 Graph

Graph data is ubiquitous and graph mining is the study that aims to discover novel and insightful

knowledge from data that is represented as a graph. Graph mining differs from traditional data mining

in a number of critical ways. For example, the topic of classification in data mining is often introduced

in relation to vector data; however, these techniques are often unsuitable when applied to graphs, which

require an entirely different approach such as the use of graph kernels (Samatova et al., 2013).

A support vector machine only applies to datasets in the real space. Often, however, we want to use a

SVM on a dataset that is not a subset of the real space. This occurs in the case of biology and chemistry

problems to describe our data. Fortunately, there is a ready solution to this problem, formalized in the

use of kernel functions (Werther & Seitz, 2008). We employ the kernel support vector machine (KSVM)

based on the regularized Laplacian matrix (Smola & Kondor, 2003) for a graph. The kernel matrix K

can now be used with a classification algorithm for predicting the class of vertices in the given dataset,

K = (I + γL)−1,

where K is N×N , I is an identity matrix, L is the normalized Laplacian matrix, and γ is an appropriate

decay constant. The decay constant is typically regarded as an arbitrary constant that is less than one.
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3 Support Vector Machine

We focus on the application of computational method using a support vector machine. Suppose we have

a dataset in the real space and that each point in our dataset has a corresponding class label. Our goal

is to separate the points in our dataset according to their class label. A SVM is a linear binary classifier.

The idea behind nonlinear SVM is to find an optimal separating hyperplane in high-dimensional feature

space just as we did for the linear SVM in original space. At the heart of kernel methods is the notion

of a kernel function. Broadly speaking, kernels can be thought of as functions that produce similarity

matrices (Kolaczyk & Csardi, 2014). One of the advantages of support vector machines is that we can

improve performance by properly selecting kernels. In most applications, RBF kernels are widely used

but kernels suited for specific applications are developed. Here, we select the graph kernel K for PPI.

Data in many biological problems are often compounded by imbalanced class distribution, known

as the imbalanced data problem, in which the size of one class is significantly larger than that of the

other class. Many classification algorithms such as a SVM are sensitive to data with imbalanced class

distribution, and result in a suboptimal classification. It is desirable to compensate the imbalance effect

in model training for more accurate classification. One possible solution to the imbalanced data problem

is to use one-class SVMs by learning from the target class only, instead of traditional binary SVMs.

In one-class classification, it is assumed that only information of one of the classes, the target class, is

available, and no information is available from the other class, known as the background. The task of

one-class classification is to define a boundary around the target class such that it accepts as much of

the targets as possible and excludes the outliers as much as possible (Ma, 2014).

However, one-class classifiers seldom outperform two-class classifiers when the data from two class

are available (Ma, 2014). So the OCSVM and classical SVM are sequentially used in this package. First,

we apply the OCSVM by training a one-class classifier using the data from the known class only. Let n

be the number of proteins in the target class. This model is used to identify distantly related proteins

among remaining N − n proteins in the background. Proteins with zero similarity with the target class

are extracted. Then they are potentially defined as the other class by pseudo-absence selection methods

(Senay et al., 2013) from spatial statistics. The target class can be seen as real presence data. For the

data to be balanced, assume that two classes contain the same number of proteins. Next, by the classical

SVM, these two classes are used to identify closely related proteins among remaining N − 2n proteins.

Those found by this procedure can be functionally linked to the known class or interesting proteins.

Semi-supervised learning can be applied to make use of large unlabeled data and small labeled data.

Some of these methods directly try to label the unlabeled data. Self-training is a commonly used semi-

supervised learning technique (Zhu, 2006). Self-training is an incremental algorithm that initially builds

a classifier using a small amount of labeled data. So it iteratively predicts the labels of the unlabeled

data and then predicted labels are added to the labeled data. Here, the function net.infer.ST is the

self-training method for SVM. Also, the function net.infer is the special case of net.infer.ST where

a single iteration is conducted.
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4 Example

Consider a simple example about a graph representing the curated set of literature predicted protein-

protein interactions, containing 2885 nodes, named using yeast standard names.

library(PPInfer)

data(litG)

litG <- igraph.from.graphNEL(litG)

summary(litG)

IGRAPH 114c6b1 UN-- 2885 315 --

+ attr: name (v/c)

sg <- decompose(litG, min.vertices = 50)

sg <- sg[[1]] # largest subgraph

summary(sg)

IGRAPH 114ecd6 UN-- 88 107 --

+ attr: name (v/c)

We use only the largest subnetwork in this example. There are 88 proteins and 107 interactions.

V(sg)$color <- "green"

V(sg)$label.font <- 3

V(sg)$label.cex <- 1

V(sg)$label.color <- "black"

V(sg)[1:10]$color <- "blue"
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plot(sg, layout = layout.kamada.kawai(sg), vertex.size = 10)
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Figure 1: Network among yeast proteins with target class in blue and remaining proteins in green.

First, calculate the kernel matrix and choose 10 proteins as a target class. Then we can find proteins

closely related to the target class by using the KSVM for a graph (Samatova et al., 2013; Kolaczyk &

Csardi, 2014). Network of interactions among proteins with target class in blue and backgrounds in

green. Red vertices represent the top 20 proteins which are most closely related to the target class.

K <- net.kernel(sg)

set.seed(123)

litG.infer <- net.infer(names(V(sg))[1:10], K, top = 20, cross = 10)

litG.infer$CVerror

[1] 0.45

index <- match(litG.infer$top,names(V(sg)))

V(sg)[index]$color <- "red"
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plot(sg, layout = layout.kamada.kawai(sg), vertex.size = 10)
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Figure 2: Red vertices denote the top 20 yeast proteins which are most closely related to 10 proteins of

the target class.

Note that the number of proteins is not greater than a half of total proteins in a kernel matrix due

to N − 2n > 0. Also, the number of top proteins to be inferred is less than or equal to N − 2n. If we

use 50 proteins as a target class, then there is an error since N − 2n = −12. If we use 40 proteins as a

target, and want to find top 20 proteins, then the number of available top proteins are only 8, which is

the minimum of N − 2n = 8 and 20.

litG.infer <- try(net.infer(names(V(sg))[1:50], K, top = 20))

cat(litG.infer)

Error in net.infer(names(V(sg))[1:50], K, top = 20) :

size of list is too large

litG.infer <- net.infer(names(V(sg))[1:40], K, top = 20)

litG.infer$top

[1] "YBR160W" "YDL179W" "YAL041W" "YDR323C" "YBR133C" "YPL174C" "YPL140C"

[8] "YDR356W"
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Next, consider the functional enrichment analysis. Here, we use the same kernel but different gene

names. For the ORA, we use top 10 proteins among 88 proteins.

data(examplePathways)

data(exampleRanks)

geneNames <- names(exampleRanks)

set.seed(1)

gene.names <- sample(geneNames, length(V(sg)))

rownames(K) <- gene.names

myInterestingGenes <- sample(gene.names, 10)

infer <- net.infer(myInterestingGenes, K)

gene.id <- infer$top

# ORA

result.ORA <- ORA(examplePathways, gene.id[1:10])

ORA.barplot(result.ORA, category = "Category", size = "Size",

count = "Count", pvalue = "pvalue", sort = "pvalue") +

scale_colour_gradient(low = 'red', high = 'gray', limits=c(0, 0.1))
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Figure 3: Result from the over-representation analysis with Gene Ontology
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# GSEA

index <- !is.na(infer$score)

gene.id <- infer$top[index]

scores <- infer$score[index]

scaled.scores <- as.numeric(scale(scores))

names(scaled.scores) <- gene.id

set.seed(1)

result.GSEA <- fgsea(examplePathways, scaled.scores, nperm=1000)
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GSEA.barplot(result.GSEA, category = 'pathway', score = 'NES', pvalue = 'pval',

numChar = 50, sort = 'NES', decreasing = TRUE)

pathway NES pval

35 5991299_Axon_guidance 1.218567 0.2310406

22 5991150_Signaling_by_EGFR 1.203725 0.2224299

75 5991618_Retrograde_neurotrophin_signalling 1.203725 0.2224299

76 5991626_EGFR_downregulation 1.203725 0.2224299

77 5991653_Membrane_Trafficking 1.203725 0.2224299

78 5991654_Vesicle-mediated_transport 1.203725 0.2224299

88 5991815_Clathrin_derived_vesicle_budding 1.203725 0.2224299

89 5991816_trans-Golgi_Network_Vesicle_Budding 1.203725 0.2224299

91 5991842_Recycling_pathway_of_L1 1.203725 0.2224299

104 5991965_Golgi_Associated_Vesicle_Biogenesis 1.203725 0.2224299
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Figure 4: Result from the gene set enrichment analysis
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enrich.net(result.GSEA, examplePathways, node.id = 'pathway',

pvalue = 'pval', pvalue.cutoff = 0.25, degree.cutoff = 0,

n = 100, vertex.label.cex = 0.75, show.legend = FALSE,

edge.width = function(x) {5*sqrt(x)},

layout=igraph::layout.kamada.kawai)

IGRAPH 24e3b81 UN-- 30 62 --

+ attr: name (v/c), size (v/n), shape (v/c), color (v/c), width (e/n)

+ edges from 24e3b81 (vertex names):

[1] 5991554_Nucleotide-binding_domain,_leucine_rich_repeat_containing_receptor_NLR_signaling_pathways--5992063_Inflammasomes

[2] 5991554_Nucleotide-binding_domain,_leucine_rich_repeat_containing_receptor_NLR_signaling_pathways--5992064_The_NLRP3_inflammasome

[3] 5992063_Inflammasomes --5992064_The_NLRP3_inflammasome

[4] 5991134_Visual_phototransduction --5992109_Retinoid_metabolism_and_transport

+ ... omitted several edges

●

●
●

●
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Figure 5: Network from the gene set enrichment analysis

In the network, the connection between nodes depends on the proportion of overlapping genes between

two categories. The size of nodes is proportional to the size of gene sets. The more significant categories

are, the less transparent their nodes are.
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5 Protein-protein interaction

5.1 Download the kernel matrix

We need a list of proteins and the kernel matrix to infer functionally related proteins. For the database

for kernel matrix, we use the STRING data for protein-protein interactions for human and mouse. You

do not have to calculate these kernel matrices. To save significant time, you can download kernel matrices

at https://zenodo.org/record/1066236 for human and mouse.

5.2 PPI for human

Consider two examples for human. First, we can find proteins related to apoptosis. Then, load the kernel

matrix for human.

library(GOstats)

# load kernel matrix

K.9606 <- readRDS("K9606.rds")

# remove prefix

rownames(K.9606) <- sub(".*\\.", "", rownames(K.9606))

# load target class from KEGG apoptosis pathway

data(apopGraph)

list.proteins <- nodes(apopGraph)

head(list.proteins)

There are many types of protein ID or gene ID. By using getBM in biomaRt, we can change the

format. For this reason, input and output formats must be available for getBM. Note that the number

of proteins used as a target may be different from the number of proteins in the input since mapping

between formats is not always one-to-one in getBM.

# find top 100 proteins

apoptosis.infer <- ppi.infer.human(list.proteins, K.9606, output="entrezgene", 100)

gene.id <- apoptosis.infer$top

head(gene.id)

# GO terms

params <- new("GOHyperGParams", geneIds = gene.id,annotation = "org.Hs.eg.db",

ontology = "BP", pvalueCutoff = 0.001, conditional = FALSE,

testDirection = "over")

(hgOver <- hyperGTest(params))

# Top 10 biological functions related to apoptosis by using GO terms

ORA.barplot(summary(hgOver), category = "Term", size = "Size",

count = "Count", pvalue = "Pvalue", p.adjust.methods = 'fdr')

# KEGG pathway

params <- new("KEGGHyperGParams", geneIds = gene.id, annotation = "org.Hs.eg.db",
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pvalueCutoff = 0.05, testDirection = "over")

(hgOver <- hyperGTest(params))

# Top 10 biological functions related to apoptosis by using KEGG pathways

ORA.barplot(summary(hgOver), category = "Term", size = "Size",

count = "Count", pvalue = "Pvalue", p.adjust.methods = 'fdr')

We found functionally related top 100 proteins in terms of Entrez-ID by ppi.infer.human. However,

we are often interested in biological functions about such inferred proteins. This is the top 10 categories

from gene ontology. As we expected, inferred proteins have similar biological functions with the target,

apoptosis. Thus this example supports that this model is reliable. Also, we get the similar result from

KEGG pathway. Next, take another example. The protein p53 is known for inhibition of cancer. From

KEGG pathway, we can find proteins for p53 signaling pathway. The procedure is the same to the

previous example, but for the target class.

library(KEGG.db)

library(limma)

# load target class for p53

mget('p53 signaling pathway', KEGGPATHNAME2ID)

kegg.hsa <- getGeneKEGGLinks(species.KEGG='hsa')

index <- which(kegg.hsa[,2] == 'path:hsa04115')

path.04115 <- kegg.hsa[index,1]

head(path.04115)

# find top 100 proteins

hsa04115.infer <- ppi.infer.human(path.04115, K.9606, input = "entrezgene",

output = "entrezgene", nrow(K.9606))

gene.id <- data.frame(hsa04115.infer$top)[,1]

head(gene.id)

rm(K.9606)

index <- !is.na(hsa04115.infer$score)

gene.id <- hsa04115.infer$top[index]

scores <- hsa04115.infer$score[index]

scaled.scores <- as.numeric(scale(scores))

names(scaled.scores) <- gene.id

# GO terms

library(org.Hs.eg.db)

xx <- as.list(org.Hs.egGO2EG)

set.seed(1)

fgseaRes <- fgsea(xx, scaled.scores, nperm = 1000)

# Top 10 biological functions related to p53 signaling pathway by using GO terms

GSEA.barplot(data.frame(fgseaRes, select(GO.db, fgseaRes$pathway, "TERM")),

category = 'TERM', score = 'NES', pvalue = 'padj',
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sort = 'NES', decreasing = TRUE)

# KEGG pathways

pathway.id <- unique(kegg.hsa[,2])

yy <- list()

for(i in 1:length(pathway.id))

{

index <- which(kegg.hsa[,2] == pathway.id[i])

yy[[i]] <- kegg.hsa[index,1]

}

library(Category)

names(yy) <- getPathNames(sub("[[:alpha:]]+....", "", pathway.id))

yy[which(names(yy) == 'NA')] <- NULL

set.seed(1)

fgseaRes <- fgsea(yy, scaled.scores, nperm=1000)

# Top 10 biological functions related to p53 signaling pathway by using KEGG pathways

GSEA.barplot(fgseaRes, category = 'pathway', score = 'NES', pvalue = 'padj',

sort = 'NES', decreasing = TRUE)

5.3 PPI for mouse

For mouse, we can infer functionally related proteins by ppi.infer.mouse with the kernel matrix for

mouse. The first example is Acute myeloid leukemia.

# load kernel matrix

K.10090 <- readRDS("K10090.rds")

# remove prefix

rownames(K.10090) <- sub(".*\\.", "", rownames(K.10090))

# load target class

mget('Acute myeloid leukemia', KEGGPATHNAME2ID)

kegg.mmu <- getGeneKEGGLinks(species.KEGG='mmu')

index <- which(kegg.mmu[,2] == 'path:mmu05221')

path.05221 <- kegg.mmu[index,1]

head(path.05221)

# find top 100 proteins

path.05221.infer <- ppi.infer.mouse(path.05221, K.10090, input="entrezgene",

output="entrezgene", nrow(K.10090))

gene.id <- path.05221.infer$top

head(gene.id)

# ORA

params <- new("GOHyperGParams", geneIds = gene.id[1:100],

annotation = "org.Mm.eg.db",
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ontology = "BP", pvalueCutoff = 0.001,

conditional = FALSE, testDirection = "over")

(hgOver <- hyperGTest(params))

# Top 10 biological functions related to Acute myeloid leukemia

ORA.barplot(summary(hgOver), category = "Term", size = "Size",

count = "Count", pvalue = "Pvalue", p.adjust.methods = 'fdr')

# GSEA

library(org.Mm.eg.db)

xx <- as.list(org.Mm.egGO2EG)

index <- !is.na(path.05221.infer$score)

gene.id <- path.05221.infer$top[index]

scores <- path.05221.infer$score[index]

scaled.scores <- as.numeric(scale(scores))

names(scaled.scores) <- gene.id

set.seed(1)

fgseaRes <- fgsea(xx, scaled.scores, nperm=1000)

# Top 10 biological functions related to Acute myeloid leukemia

GSEA.barplot(na.omit(data.frame(fgseaRes, select(GO.db, fgseaRes$pathway, 'TERM'))),

category = 'TERM', score = 'NES', pvalue = 'padj',

sort = 'NES', decreasing = TRUE)

The second example is Ras signaling pathway. The Ras proteins are GTPases that function as

molecular switches for signaling pathways regulating cell proliferation, survival, growth, migration, dif-

ferentiation or cytoskeletal dynamism.

# load target class

mget('Ras signaling pathway', KEGGPATHNAME2ID)

kegg.mmu <- getGeneKEGGLinks(species.KEGG='mmu')

index <- which(kegg.mmu[,2] == 'path:mmu04014')

path.04014 <- kegg.mmu[index,1]

head(path.04014)

# find top 100 proteins

path.04014.infer <- ppi.infer.mouse(path.04014, K.10090,

input="entrezgene",output="entrezgene", nrow(K.10090))

gene.id <- data.frame(path.04014.infer$top)[,1]

head(gene.id)

rm(K.10090)

# ORA

params <- new("KEGGHyperGParams", geneIds = gene.id[1:100],

annotation = "org.Mm.eg.db", pvalueCutoff = 0.05, testDirection = "over")

(hgOver <- hyperGTest(params))
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# Top 10 biological functions related to Ras signaling pathway

ORA.barplot(summary(hgOver), category = "Term", size = "Size",

count = "Count", pvalue = "Pvalue", p.adjust.methods = 'fdr')

# GSEA

kegg.mmu <- getGeneKEGGLinks(species.KEGG='mmu')

head(kegg.mmu)

pathway.id <- unique(kegg.mmu[,2])

yy <- list()

for(i in 1:length(pathway.id))

{

index <- which(kegg.mmu[,2] == pathway.id[i])

yy[[i]] <- kegg.mmu[index,1]

}

names(yy) <- getPathNames(sub("[[:alpha:]]+....", "", pathway.id))

yy[which(names(yy) == 'NA')] <- NULL

index <- !is.na(path.04014.infer$score)

gene.id <- path.04014.infer$top[index]

scores <- path.04014.infer$score[index]

scaled.scores <- as.numeric(scale(scores))

names(scaled.scores) <- gene.id

set.seed(1)

fgseaRes <- fgsea(yy, scaled.scores, nperm = 1000)

# Top 10 biological functions related to Ras signaling pathway

GSEA.barplot(fgseaRes, category = 'pathway', score = 'NES', pvalue = 'padj')

We discussed about how to infer functionally related proteins for human and mouse. Two functions

ppi.infer.human and ppi.infer.mouse are specially designed because popular organisms are human

and mouse. However, other kinds of species are also available in net.infer if kernel matrices are given.

5.4 PPI for other organisms

############################## E. coli

string.db.511145 <- STRINGdb$new(version='10', species = 511145)

string.db.511145.graph <- string.db.511145$get_graph()

K.511145 <- net.kernel(string.db.511145.graph)

rownames(K.511145) <- sub("[[:digit:]]+.", "", rownames(K.511145))

# load target class (DNA replication)

kegg.eco <- getGeneKEGGLinks(species.KEGG='eco')

index <- which(kegg.eco[,2] == 'path:eco03030')

path.03030 <- kegg.eco[index,1]

head(path.03030)
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sce03030.infer <- net.infer(path.03030, K.511145, top = 100)

gene.id <- data.frame(sce03030.infer$top)[,1]

head(gene.id)

rm(K.511145)

############################## yeast

# string.db.4932 <- STRINGdb$new(version='10', species = 4932)

# string.db.4932.graph <- string.db.4932$get_graph()

# K.4932 <- net.kernel(string.db.4932.graph)

# saveRDS(K.4932, 'K4932.rds')

K.4932 <- readRDS("K4932.rds")

dim(K.4932)

rownames(K.4932) <- sub("[[:digit:]]+.", "", rownames(K.4932))

# load target class (Cell cycle)

kegg.sce <- getGeneKEGGLinks(species.KEGG='sce')

index <- which(kegg.sce[,2] == 'path:sce04111')

path.04111 <- kegg.sce[index,1]

head(path.04111)

sce04111.infer <- net.infer(path.04111, K.4932, top = 100)

gene.id <- data.frame(sce04111.infer$top)[,1]

head(gene.id)

rm(K.4932)

# functional enrichment

params <- new("GOHyperGParams", geneIds = gene.id, annotation = "org.Sc.sgd.db",

ontology = "BP",pvalueCutoff = 0.001, conditional = FALSE,

testDirection = "over")

(hgOver <- hyperGTest(params))

# Top 10 biological functions related to Cell cycle

ORA.barplot(summary(hgOver), category = "Term", size = "Size",

count = "Count", pvalue = "Pvalue", p.adjust.methods = 'fdr')

############################## C. elegans

# string.db.6239 <- STRINGdb$new(version='10', species = 6239)

# string.db.6239.graph <- string.db.6239$get_graph()

# K.6239 <- net.kernel(string.db.6239.graph)

# saveRDS(K.6239, 'K6239.rds')

K.6239 <- readRDS("K6239.rds")

dim(K.6239)

rownames(K.6239) <- sub("[[:digit:]]+.", "", rownames(K.6239))

# load target class (DNA replication)

kegg.cel <- getGeneKEGGLinks(species.KEGG='cel')
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index <- which(kegg.cel[,2] == 'path:cel03030')

path.03030 <- kegg.cel[index,1]

path.03030 <- sub('.*\\_', '', path.03030)

head(path.03030)

cel03030.infer <- net.infer(path.03030, K.6239, top=100)

gene.id <- data.frame(cel03030.infer$top)[,1]

head(gene.id)

rm(K.6239)

library(org.Ce.eg.db)

gene.id2 <- as.vector(na.omit(select(org.Ce.eg.db,

keys=as.character(gene.id), "ENTREZID",

keytype = 'SYMBOL')[,2]))

# functional enrichment

params <- new("GOHyperGParams", geneIds = gene.id2, annotation = "org.Ce.eg.db",

ontology = "BP", pvalueCutoff = 0.001, conditional = FALSE,

testDirection = "over")

(hgOver <- hyperGTest(params))

# Top 10 biological functions related to DNA replication

ORA.barplot(summary(hgOver), category = "Term", size = "Size",

count = "Count", pvalue = "Pvalue", p.adjust.methods = 'fdr')

############################## Drosophila melanogaster

# string.db.7227 <- STRINGdb$new(version='10', species = 7227)

# string.db.7227.graph <- string.db.7227$get_graph()

# K.7227 <- net.kernel(string.db.7227.graph)

# saveRDS(K.7227, 'K7227.rds')

K.7227 <- readRDS("K7227.rds")

dim(K.7227)

rownames(K.7227) <- sub("[[:digit:]]+.", "", rownames(K.7227))

# load target class (Proteasome)

kegg.dme <- getGeneKEGGLinks(species.KEGG='dme')

index <- which(kegg.dme[,2] == 'path:dme03050')

path.03050 <- kegg.dme[index,1]

path.03050 <- sub('.*\\_', '', path.03050)

head(path.03050)

library(org.Dm.eg.db)

path2.03050 <- select(org.Dm.eg.db, keys = path.03050,

"FLYBASEPROT", keytype = 'ALIAS')[,2]

dme03050.infer <- net.infer(path2.03050, K.7227, top = 100)

gene.id <- data.frame(dme03050.infer$top)[,1]
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head(gene.id)

rm(K.7227)

gene.id2 <- as.vector(na.omit(select(org.Dm.eg.db,

keys=as.character(gene.id), "ENTREZID",

keytype = 'FLYBASEPROT')[,2]))

# functional enrichment

params <- new("GOHyperGParams", geneIds = gene.id2, annotation = "org.Dm.eg.db",

ontology = "BP", pvalueCutoff = 0.001, conditional = FALSE,

testDirection="over")

(hgOver <- hyperGTest(params))

# Top 10 biological functions related to Proteasome

ORA.barplot(summary(hgOver), category = "Term", size = "Size",

count = "Count", pvalue = "Pvalue", p.adjust.methods = 'fdr')

############################## Arabidopsis thaliana

# string.db.3702 <- STRINGdb$new(version='10', species = 3702)

# string.db.3702.graph <- string.db.3702$get_graph()

# K.3702 <- net.kernel(string.db.3702.graph)

# saveRDS(K.3702, 'K3702.rds')

K.3702 <- readRDS("K3702.rds")

dim(K.3702)

rownames(K.3702) <- sub("[[:digit:]]+.", "", rownames(K.3702))

rownames(K.3702) <- gsub("\\..*", "", rownames(K.3702))

# load target class (Photosynthesis)

kegg.ath <- getGeneKEGGLinks(species.KEGG = 'ath')

index <- which(kegg.ath[,2] == 'path:ath00195')

path.00195 <- kegg.ath[index,1]

path.00195 <- sub('.*\\_', '', path.00195)

head(path.00195)

ath00195.infer <- net.infer(path.00195, K.3702, top = 100)

gene.id <- data.frame(ath00195.infer$top)[,1]

head(gene.id)

rm(K.3702)

# functional enrichment

params <- new("GOHyperGParams", geneIds = gene.id, annotation = "org.At.tair.db",

ontology = "BP",pvalueCutoff = 0.001,conditional = FALSE,

testDirection="over")

(hgOver <- hyperGTest(params))

# Top 10 biological functions related to Photosynthesis

ORA.barplot(summary(hgOver), category = "Term", size = "Size",
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count = "Count", pvalue = "Pvalue", p.adjust.methods = 'fdr')

############################## Zebra fish

# string.db.7955 <- STRINGdb$new(version='10', species = 7955)

# string.db.7955.graph <- string.db.7955$get_graph()

# K.7955 <- net.kernel(string.db.7955.graph)

# saveRDS(K.7955, 'K7955.rds')

K.7955 <- readRDS("K7955.rds")

dim(K.7955)

rownames(K.7955) <- sub("[[:digit:]]+.", "", rownames(K.7955))

# load target class (ErbB signaling pathway)

kegg.dre <- getGeneKEGGLinks(species.KEGG = 'dre')

index <- which(kegg.dre[,2] == 'path:dre04012')

path.04012 <- kegg.dre[index,1]

path.04012 <- sub('.*\\_', '', path.04012)

head(path.04012)

library(org.Dr.eg.db)

path2.04012 <- select(org.Dr.eg.db, path.04012, c("ENSEMBLPROT"))[,2]

dre04012.infer <- net.infer(path2.04012, K.7955, top = 100)

gene.id <- data.frame(dre04012.infer$top)[,1]

head(gene.id)

rm(K.7955)

gene.id2 <- as.vector(na.omit(select(org.Dr.eg.db,

keys = as.character(gene.id), "ENTREZID",

keytype = 'ENSEMBLPROT')[,2]))

# functional enrichment

params <- new("GOHyperGParams", geneIds = gene.id2, annotation = "org.Dr.eg.db",

ontology = "BP",pvalueCutoff = 0.001, conditional = FALSE,

testDirection = "over")

(hgOver <- hyperGTest(params))

# Top 10 biological functions related to ErbB signaling pathway

ORA.barplot(summary(hgOver), category = "Term", size = "Size",

count = "Count", pvalue = "Pvalue", p.adjust.methods = 'fdr')

6 Session Information

sessionInfo()

R version 3.4.3 (2017-11-30)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2012 R2 x64 (build 9600)
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Matrix products: default

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] PPInfer_1.5.1 yeastExpData_0.24.0 graph_1.56.0

[4] BiocGenerics_0.24.0 STRINGdb_1.18.0 igraph_1.1.2

[7] ggplot2_2.2.1 kernlab_0.9-25 fgsea_1.4.1

[10] Rcpp_0.12.15 biomaRt_2.34.2

loaded via a namespace (and not attached):

[1] progress_1.1.2 gtools_3.5.0 lattice_0.20-35

[4] colorspace_1.3-2 stats4_3.4.3 hash_2.2.6

[7] chron_2.3-52 blob_1.1.0 XML_3.98-1.9

[10] rlang_0.1.6 pillar_1.1.0 DBI_0.7

[13] BiocParallel_1.12.0 bit64_0.9-7 RColorBrewer_1.1-2

[16] gsubfn_0.6-6 plyr_1.8.4 stringr_1.2.0

[19] munsell_0.4.3 gtable_0.2.0 caTools_1.17.1

[22] memoise_1.1.0 labeling_0.3 Biobase_2.38.0

[25] IRanges_2.12.0 AnnotationDbi_1.40.0 proto_1.0.0

[28] KernSmooth_2.23-15 scales_0.5.0 plotrix_3.7

[31] gdata_2.18.0 S4Vectors_0.16.0 bit_1.1-12

[34] gplots_3.0.1 gridExtra_2.3 fastmatch_1.1-0

[37] png_0.1-7 digest_0.6.15 stringi_1.1.6

[40] grid_3.4.3 tools_3.4.3 bitops_1.0-6

[43] magrittr_1.5 sqldf_0.4-11 RCurl_1.95-4.10

[46] lazyeval_0.2.1 tibble_1.4.2 RSQLite_2.0

[49] pkgconfig_2.0.1 Matrix_1.2-12 data.table_1.10.4-3

[52] prettyunits_1.0.2 assertthat_0.2.0 httr_1.3.1
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[55] R6_2.2.2 compiler_3.4.3
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