
Working with the ShortRead Package

James Bullard Kasper D. Hansen

Modified: April 18, 2010. Compiled: October 30, 2017

In this document we show how to use the Genominator package with the ShortRead package and conduct
a simple differential expression analysis.

1 Importing data

> require(Genominator)

> require(ShortRead)

> require(yeastRNASeq)

The data we will use are described in the vignette of the yeastRNASeq and was originally published
in [1]. But to summarize, we have data from two different yeasts, a wild-type strain (“wt”) and a mutant
strain (“mut”). Part of the RNA degradation pathway is knocked out in the mutant. For each strain we
have two lanes worth of data – it is the exact same sample and library preparation sequenced in both lanes.
Only 500,000 raw reads from each lane is part of the yeastRNASeq package and they have been aligned with
Bowtie, keeping only unique hits with up to two mismatches. Since not all reads align, we will be working
with a up to 500,000 reads per lane.

The data is available as a list of AlignedRead class objects:

> data(yeastAligned)

> yeastAligned[[1]]

class: AlignedRead

length: 423318 reads; width: 26 cycles

chromosome: Scchr05 Scchr15 ... Scchr08 Scchr13

position: 541317 885627 ... 488228 667296

strand: - + ... - +

alignQuality: NumericQuality

alignData varLabels: similar mismatch

> sapply(yeastAligned, length)

mut_1_f mut_2_f wt_1_f wt_2_f

423318 420848 410349 430264

In the package we also have the Bowtie output files, which we will use for illustration:

> list.files(file.path(system.file(package = "yeastRNASeq"), "reads"),

+ pattern = "bowtie")

[1] "mut_1_f.bowtie.gz" "mut_2_f.bowtie.gz" "wt_1_f.bowtie.gz"

[4] "wt_2_f.bowtie.gz"

The Bowtie output files are compressed using gzip, ShortRead can handle this.
Before importing a set of aligned reads using Genominator one usually has to make some decisions

regarding chromosome names as well as names of the columns in the resulting database.

1

Note the chromosome names are a bit special: Scchr01. In our experience it is quite common for different
annotation sources to use different shorthands for the chromosomes (for yeast we have at least seen chr1,
chr01, Scchr01, chrI). This is a bit of a pain and is very hard to automate. In Genominator we expect the
user to explicitly convert the chromosome names to a common representation and we furthermore require
chromosome names to be integers. For the sake of importing alignment files this is accomplished by using the
chrMap argument that is a simple character vector which the chromosome names are matched up against.
The first element in the vector gets assigned the integer 1 and so on. If there are chromosomes in the
alignment file that does not appear in the chrMap vector, the corresponding reads are not imported. This is
often useful, but can also lead to loss of data.

We construct the chrMap object by

> chrMap <- paste("Scchr", sprintf("%02d", 1:16), sep = "")

> unique(chromosome((yeastAligned[[1]])))

[1] Scchr05 Scchr15 Scchr13 Scchr16 Scchr01 Scchr14 Scchr12 Scchr03 Scchr07

[10] Scchr11 Scmito Scchr10 Scchr08 Scchr04 Scchr09 Scchr06 Scchr02

17 Levels: Scchr01 Scchr02 Scchr03 Scchr04 Scchr05 Scchr06 Scchr07 ... Scmito

We see that by using this version of chrMap we will drop reads aligning to the mitochondrial chromosome.
The other decision we need to make is how to map filenames to names of the columns of the resulting

database. Note that whatever choice we make is more or less permanent. Usually we prefer short, descriptive
names. It makes a lot of sense to construct these names programmatic from the filenames:

> files <- list.files(file.path(system.file(package = "yeastRNASeq"), "reads"),

+ pattern = "bowtie", full.names = TRUE)

> names(files) <- sub("_f\\.bowtie\\.gz", "", basename(files))

> names(files)

[1] "mut_1" "mut_2" "wt_1" "wt_2"

The way this is all specific is through a named vector of filenames, the names of the vector corresponds to
column names in the resulting database. If two (or more) file entries have the same name, they will be joined
into one column.

We now import the alignment files using importFromAlignedReads, which uses the readAligned function
from ShortRead to parse the files.

> eData <- importFromAlignedReads(files, chrMap = chrMap,

+ dbFilename = "my.db",

+ tablename = "raw", type = "Bowtie")

> eData

table: raw

database file:

C:\Users\biocbuild\bbs-3.6-bioc\tmpdir\RtmpE3N232\Rbuild1b8c291341a7\Genominator\vignettes\my.db

index columns: chr location strand

mode: w

schema:

chr location strand mut_1 mut_2 wt_1 wt_2

"INTEGER" "INTEGER" "INTEGER" "INTEGER" "INTEGER" "INTEGER" "INTEGER"

> head(eData)

2

chr location strand mut_1 mut_2 wt_1 wt_2

1 1 3888 1 1 NA NA NA

2 1 3970 1 NA NA 1 NA

3 1 3988 1 NA 1 NA NA

4 1 4126 -1 NA NA NA 1

5 1 4242 1 1 NA NA NA

6 1 4296 -1 1 NA NA NA

This will create a database my.db in the current directory. The reads are automatically associated to the
genomic location corresponding to the 5’ end of the read – this is slightly different from some other programs
that uses the lefternmost location of the read (the difference is in reads mapping to the reverse strand).

2 Annotation

There are at least two easy ways to retrieve annotation using Bioconductor: the biomaRt package which ac-
cesses Ensembl and the rtracklayer package which accesses the UCSC genome browser. There are oftentimes
species-specific databases (for yeast we have at least SGD) which is a third source of annotation.

Using biomaRt

We will use biomaRt to retrieve information from the Ensembl database. We will illustrate a few pitfalls by
comparing two different, but similar looking queries. More information on using biomaRt can be found it its
excellent vignette.

The following code was run in January 2010.

> require(biomaRt)

> mart <- useMart("ensembl", "scerevisiae_gene_ensembl")

> attributes.gene <- c("ensembl_gene_id", "chromosome_name", "start_position",

+ "end_position", "strand", "gene_biotype")

> attributes.tr <- c("ensembl_gene_id", "ensembl_transcript_id", "ensembl_exon_id", "chromosome_name", "start_position",

+ "end_position", "strand", "gene_biotype", "exon_chrom_start", "exon_chrom_end", "rank")

> ensembl.gene <- getBM(attributes = attributes.gene, mart = mart)

> ensembl.transcript <- getBM(attributes = attributes.tr, mart = mart)

The output is saved in the yeastAnno.sources object which is a list containing various annotation
objects from yeast.

> data(yeastAnno.sources)

> ensembl.gene <- yeastAnno.sources$ensembl.gene

> ensembl.transcript <- yeastAnno.sources$ensembl.transcript

> head(ensembl.gene, n = 2)

ensembl_gene_id chromosome_name start_position end_position strand

1 YHR055C VIII 214535 214720 -1

2 YPR161C XVI 864445 866418 -1

gene_biotype

1 protein_coding

2 protein_coding

> head(ensembl.transcript, n = 2)

ensembl_gene_id ensembl_transcript_id ensembl_exon_id chromosome_name

1 YHR055C YHR055C YHR055C.1 VIII

2 YPR161C YPR161C YPR161C.1 XVI

start_position end_position strand gene_biotype exon_chrom_start

3

1 214535 214720 -1 protein_coding 214535

2 864445 866418 -1 protein_coding 864445

exon_chrom_end rank

1 214720 1

2 866418 1

> dim(ensembl.gene)

[1] 7124 6

> dim(ensembl.transcript)

[1] 7547 11

> subset(ensembl.gene, ensembl_gene_id == "YPR098C")

ensembl_gene_id chromosome_name start_position end_position strand

7 YPR098C XVI 728945 729526 -1

gene_biotype

7 protein_coding

> subset(ensembl.transcript, ensembl_gene_id == "YPR098C")

ensembl_gene_id ensembl_transcript_id ensembl_exon_id chromosome_name

7 YPR098C YPR098C YPR098C.1 XVI

8 YPR098C YPR098C YPR098C.2 XVI

start_position end_position strand gene_biotype exon_chrom_start

7 728945 729526 -1 protein_coding 729480

8 728945 729526 -1 protein_coding 728945

exon_chrom_end rank

7 729526 1

8 729383 2

> length(unique(ensembl.transcript$ensembl_transcript_id))

[1] 7124

Note that altering the query a bit leads to a quite different number of rows being retrieved. In this case
it is because each row in one query correspond to a gene, whereas each row in the other query correspon to
an exon of a transcript.

A key observation here is that the columns start_position and end_position contains the start and
end position of the gene which is different from the start and end position of the exon when we look at
a gene consiting of two exons. Furthermore, it is not even clear from the output of the first query that
genes with multiple exons exists. In this example, there is no difference between the transcript id and the
gene id, because (at least according to this annotation), there are no genes in yeast that produces multiple
transcripts.

In this case, we would argue that the right object to use is yeastAnno.transcripts. Below we will
post-process this object for use with Genominator .

Using rtracklayer

Here we will use the rtracklayer package to access the UCSC genome browser. UCSC sometimes have
different tables for a specific genome. We will take a closer look at the SGD table (based on the name we
presume that it is supposed to package information from SGD (= Saccharomyces Genome Database)) and
the ENS table (which we assume is an attempt to package information from Ensembl)

The following code was run in January 2010

4

> require(rtracklayer)

> session <- browserSession()

> genome(session) <- "sacCer2"

> ucsc.sgdGene <- getTable(ucscTableQuery(session, "sgdGene"))

> ucsc.ensGene <- getTable(ucscTableQuery(session, "ensGene"))

We will also examine the output from these two tables

> data(yeastAnno.sources)

> ucsc.sgdGene <- yeastAnno.sources$ucsc.sgdGene

> ucsc.ensGene <- yeastAnno.sources$ucsc.ensGene

> head(ucsc.sgdGene, n = 2)

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount exonStarts

1 73 YAL012W chrI + 130801 131986 130801 131986 1 130801,

2 585 YAL069W chrI + 334 649 334 649 1 334,

exonEnds proteinID

1 131986, P31373

2 649, n/a

> head(ucsc.ensGene, n = 2)

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount exonStarts

1 73 YAL012W chrI + 130801 131986 130801 131986 1 130801,

2 585 YAL069W chrI + 334 649 334 649 1 334,

exonEnds score name2 cdsStartStat cdsEndStat exonFrames

1 131986, 0 YAL012W cmpl cmpl 0,

2 649, 0 YAL069W cmpl cmpl 0,

> dim(ucsc.sgdGene)

[1] 6717 12

> dim(ucsc.ensGene)

[1] 7124 16

> subset(ucsc.sgdGene, name == "YPR098C")

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount

5756 590 YPR098C chrXVI - 728944 729526 728944 729526 2

exonStarts exonEnds proteinID

5756 728944,729479, 729383,729526, Q06089

> subset(ucsc.ensGene, name == "YPR098C")

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount

6104 590 YPR098C chrXVI - 728944 729526 728944 729526 2

exonStarts exonEnds score name2 cdsStartStat cdsEndStat

6104 728944,729479, 729383,729526, 0 YPR098C cmpl cmpl

exonFrames

6104 2,0,

> subset(ucsc.sgdGene, name == "YER102W")

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount

373 587 YER102W chrV + 362728 363698 363095 363698 2

exonStarts exonEnds proteinID

373 362728,363095, 363088,363698, P05754

5

> subset(ucsc.ensGene, name == "YER102W")

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount

424 587 YER102W chrV + 363095 363698 363095 363698 1

exonStarts exonEnds score name2 cdsStartStat cdsEndStat exonFrames

424 363095, 363698, 0 YER102W cmpl cmpl 0,

From this we see that the two tables have quite a different number of genes in them, that the two
tables look very similar on the two exon gene considered in the previous section (although one table has the
additional information of a protein ID), but that the two tables differ on at least one gene (actually, there
are 757 entries that have same value in the name column but different values in the exonStarts column).

Some comments on annotation

As we see here, there are different sources of annotation that differ, even for a relatively simple and well-
studied species as S. cerevisiae. We cannot give any recommendation as to what annotation source to use,
that depends on the biological question and possibly other factors.

However, some effort ought to be spend on making sure that the used annotation matches up with
the genome used. Even for yeast there are several different genomes. And while they differ in only a few
substitutions and insertion/deletions, the insertion/deletions can easily lead to “off-by-a-little” errors.

Finally we note that for this specific example, none of the queries above display the SGD classification
of genes into “verified”, “dubious”, and “uncharacterized”, a classification that is often important when ana-
lyzing ones results. This information is obtainable directly from SGD and perhaps from a better use of the
annotation tools above.

Post-processing the annotation

In the following we will work with the ensembl.transcript object, which we now post-process for use with
Genominator .

In Genominator an annotation object is a data.frame with columns chr, start, end, strand where
chr is an integer (and should match up with whatever was used in the import step earlier) and strand has
values in {−1, 1, 0} with 0 indicating that there is no strand information (and hence 0 matches both 1 and
−1).

> yAnno <- yeastAnno.sources$ensembl.transcript

> yAnno$chr <- match(yAnno$chr, c(as.character(as.roman(1:16)), "MT", "2-micron"))

> yAnno$start <- yAnno$start_position

> yAnno$end <- yAnno$end_position

> rownames(yAnno) <- yAnno$ensembl_exon_id

> yAnno.simple <- yAnno[yAnno$chr %in% 1:16, c("chr", "start", "end", "strand")]

> head(yAnno.simple, n = 2)

chr start end strand

YHR055C.1 8 214535 214720 -1

YPR161C.1 16 864445 866418 -1

> head(yAnno, n = 2)

ensembl_gene_id ensembl_transcript_id ensembl_exon_id chromosome_name

YHR055C.1 YHR055C YHR055C YHR055C.1 VIII

YPR161C.1 YPR161C YPR161C YPR161C.1 XVI

start_position end_position strand gene_biotype exon_chrom_start

YHR055C.1 214535 214720 -1 protein_coding 214535

YPR161C.1 864445 866418 -1 protein_coding 864445

exon_chrom_end rank chr start end

YHR055C.1 214720 1 8 214535 214720

YPR161C.1 866418 1 16 864445 866418

6

(note that we remove all annotation on the mitochondria and the plasmid).
A useful function is validAnnotation that checks whether the produced data.frame satisfy the anno-

tation assumptions

> validAnnotation(yAnno)

[1] TRUE

3 Gene level counts

It is easy to obtain region level counts for a given annotation object:

> geneCounts.1 <- summarizeByAnnotation(eData, yAnno, ignoreStrand = TRUE)

> head(geneCounts.1)

mut_1 mut_2 wt_1 wt_2

YHR055C.1 0 0 0 0

YPR161C.1 38 39 35 34

YOL138C.1 31 34 40 27

YDR395W.1 54 54 47 46

YGR129W.1 28 26 4 5

YPR165W.1 184 177 150 181

This produces a matrix containing the read counts per gene. Such a matrix is ready for analysis by various
packages as well as the functionality in Genominator .

We use ignoreStrand = TRUE because the experimental assay does not keep strand of origin, so we count
reads on either strand, inside each atomic region.

Note that the resulting matrix has one row for each row in the annotation object. Inthis annotation
object, rows correspond to exons. We can get gene level counts either by using a tapply or directly from
Genominator by

> geneCounts.2 <- summarizeByAnnotation(eData, yAnno, ignoreStrand = TRUE,

+ groupBy = "ensembl_gene_id")

> head(geneCounts.2)

mut_1 mut_2 wt_1 wt_2

15S_rRNA 0 0 0 0

21S_rRNA 0 0 0 0

HRA1 7 14 4 12

LSR1 389 402 50 60

NME1 182 170 7 6

Q0010 0 0 0 0

Note that – because of the way reads are represented in the database when we use importFromAligne-

dReads – that a read is counting as part of a gene if the first sequenced base maps within the region defined
by the gene. This may create some concern at gene boundaries.

There are further complications. In yeast, it is very common for two genes to overlap each other on
opposite strands. In other organisms, a gene may have several transcripts. For this purpose, Genominator
supports the computation of various gene models.

Union-intersection (UI) genes were introduced by []. The UI representation of a gene is the set of bases
that are annotated as being part of every transcript of the gene and that are not part of any transcript of
any other gene.

We may transform our annotation object into a UI representation by

> yAnno.UI <- makeGeneRepresentation(yAnno, type = "UIgene", gene.id = "ensembl_gene_id",

+ transcript.id = "ensembl_transcript_id")

> head(yAnno.UI)

7

chr start end strand ensembl_gene_id

1 1 99699 99869 1 HRA1

2 1 147596 151168 -1 YAL001C

3 1 143709 147533 1 YAL002W

4 1 142176 142368 1 YAL003W

5 1 142471 143162 1 YAL003W

6 1 139505 140761 -1 YAL005C

In this step we loose all of the additional columns of the yAnno object.

4 Statistical Analysis

We can see how “good” the replicates are by assessing whether it fits the Poisson model of constant gene
expression across lanes with variable sequencing effort.

> groups <- gsub("_[0-9]_f", "", colnames(geneCounts))

> groups

> plot(regionGoodnessOfFit(geneCounts, groups), chisq = TRUE)

5 Working with Priming Weights

In a recent publication [3] we describe how the use of random priming for Illumina RNA-Seq impacts the
nucleotide content of the reads and we describe a method for alleviating this bias.

The method associates a weight with each read and instead of counting the number of reads in a given
genomic interval, the weights in the interval are summed. Because of this, the use of weights happen at the
data import step.

Since our example data was generated using random priming, we illustrate the methodology. The first
step is to compute the weights using the function computePrimingWeights and an AlignedRead object.
Next, the weights are associated with each read using addPrimingWeights. Once reads have an associated
weight, the importFromAlignedReads function uses these. Because of the need to compute the weights, for
now, it is not possible to have importFromAlignedReads work directly on filenames.

We start with the yeastAligned object which was simply a list of AlignedRead , generated using an
lapply on a vector of filenames.

In this case, we have around 410.000-430.000 reads per sample, with each read having a length of only 26
bases. In order to compute the priming weights we need to assess the k-mer distribution at the end of the
reads. In [3], the end is based on reads having at least 35 bases, so we need to modify this. We also makes
the weights a bit shorter (as described in Hansen et al., this does not change the effect much)

> weightsList <- lapply(yeastAligned, computePrimingWeights,

+ unbiasedIndex = 20:21, weightsLength = 6L)

> sapply(weightsList, summary)

mut_1_f mut_2_f wt_1_f wt_2_f

Min. 0.1377953 0.1415270 0.1725490 0.2047833

1st Qu. 0.7466197 0.7424146 0.7592072 0.7579590

Median 1.1705765 1.1588258 1.1764706 1.1666667

Mean 1.6157932 1.6157863 1.6163375 1.6028931

3rd Qu. 1.9054418 1.9224849 1.9350613 1.9221417

Max. 26.6666667 24.4000000 18.4285714 22.6666667

We will continue with a separate set of weights for each lane.

> yeastAligned2 <- mapply(addPrimingWeights, yeastAligned, weightsList)

> alignData(yeastAligned2[[1]])

8

An object of class 'AlignedDataFrame'

readName: 1 2 ... 423318 (423318 total)

varLabels: similar mismatch weights

varMetadata: labelDescription

> head(alignData(yeastAligned2[[1]])$weights)

[1] 0.3824834 0.3925501 0.7834928 0.8106667 1.0075188 1.1889401

Now the weights have been added the AlignedRead objects. Once this has happened, importFromA-

lignedReads will use them.

> eData2 <- importFromAlignedReads(yeastAligned2, chrMap = chrMap,

+ dbFilename = "my.db", tablename = "weights")

We can now easily get the re-weighted gene level counts as usual.

> reweightedCounts <- summarizeByAnnotation(eData2, yAnno, ignoreStrand = TRUE,

+ groupBy = "ensembl_gene_id")

> head(reweightedCounts)

mut_1_f mut_2_f wt_1_f wt_2_f

15S_rRNA 0.00000 0.000000 0.000000 0.000000

21S_rRNA 0.00000 0.000000 0.000000 0.000000

HRA1 5.04497 9.707854 2.012202 12.249379

LSR1 333.17849 367.034724 47.275727 50.420965

NME1 184.64176 174.321823 5.525353 6.791041

Q0010 0.00000 0.000000 0.000000 0.000000

SessionInfo

� R version 3.4.2 Patched (2017-10-07 r73498), x86_64-w64-mingw32

� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

� Running under: Windows Server 2012 R2 x64 (build 9600)

� Matrix products: default

� Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, stats4, utils

� Other packages: Biobase 2.38.0, BiocGenerics 0.24.0, BiocParallel 1.12.0, Biostrings 2.46.0, DBI 0.7,
DelayedArray 0.4.0, GenomeGraphs 1.38.0, GenomeInfoDb 1.14.0, GenomicAlignments 1.14.0,
GenomicRanges 1.30.0, Genominator 1.32.0, IRanges 2.12.0, RSQLite 2.0, Rsamtools 1.30.0,
S4Vectors 0.16.0, ShortRead 1.36.0, SummarizedExperiment 1.8.0, XVector 0.18.0, biomaRt 2.34.0,
matrixStats 0.52.2, yeastRNASeq 0.15.0

� Loaded via a namespace (and not attached): AnnotationDbi 1.40.0, GenomeInfoDbData 0.99.1,
Matrix 1.2-11, R6 2.2.2, RColorBrewer 1.1-2, RCurl 1.95-4.8, Rcpp 0.12.13, XML 3.98-1.9,
assertthat 0.2.0, bit 1.1-12, bit64 0.9-7, bitops 1.0-6, blob 1.1.0, compiler 3.4.2, digest 0.6.12,
hwriter 1.3.2, lattice 0.20-35, latticeExtra 0.6-28, magrittr 1.5, memoise 1.1.0, pkgconfig 2.0.1,
prettyunits 1.0.2, progress 1.1.2, rlang 0.1.2, stringi 1.1.5, stringr 1.2.0, tibble 1.3.4, tools 3.4.2,
zlibbioc 1.24.0

9

REFERENCES

References

[1] Lee,A., Hansen,K.D., Bullard,J., Dudoit,S. and Sherlock,G. (2008) Novel Low Abundance and Tran-
sient RNAs in Yeast Revealed by Tiling Microarrays and Ultra High-Throughput Sequencing Are Not
Conserved Across Closely Related Yeast Species. PLoS Genet, 4e1000299.

[2] Bullard,J.H., Purdom,E.A., Hansen,K.D., and Dudoit,S. (2010) Evaluation of statistical methods for
normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 11, 94.

[3] Hansen,K.D., Brenner,S.E. and Dudoit,S. (2010) Biases in Illumina transcriptome sequencing caused by
random hexamer priming. Nucleic Acids Res, doi: 10.1093/nar/gkq224

10

	Importing data
	Annotation
	Gene level counts
	Statistical Analysis
	Working with Priming Weights

