
GenoGAM: Genome-wide generalized addi-
tive models

Georg Stricker1, Julien Gagneur1

[1em] 1 Technische Universität München, Department of Informatics, Garching, Germany

October 30, 2017

Abstract

Many genomic assays lead to noisy observations of a biological quantity of interest
varying along the genome. This is the case for ChIP-Seq, for which read counts reflect
local protein occupancy of the ChIP-ed protein. The GenoGAM package allows
statistical analysis of genome-wide data with smooth functions using generalized
additive models. It provides methods for the statistical analysis of ChIP-Seq data
including inference of protein occupancy, and pointwise and region-wise differential
analysis as well as peak calling with position-wise confidence bands. Estimation
of dispersion and smoothing parameters is performed by cross-validation. Scaling of
generalized additive model fitting to whole chromosomes is achieved by parallelization
over overlapping genomic intervals. This vignette explains the use of the package for
typical ChIP-Seq analysis tasks.

GenoGAM version: 1.6.0

If you use GenoGAM in published research, please cite:

Stricker, et al. Genome-wide generalized additive models
bioRxiv

GenoGAM: Genome-wide generalized additive models

Contents

1 Standard ChIP-Seq analysis . 3

1.1 Goal of the analysis. 3

1.2 Registering a parallel backend 3

1.3 Building a GenoGAM dataset 4

1.4 Modeling with smooth functions: the design parameters . . . 8

1.5 Size factor estimation . 8

1.6 Model fitting . 9

1.7 Plotting results . 11

1.8 Statistical testing . 13

1.9 Differential binding . 14

1.10 Peak calling . 15

2 Computation statistics . 15

3 Acknowledgments . 16

4 Session Info . 16

2

GenoGAM: Genome-wide generalized additive models

1 Standard ChIP-Seq analysis

Additional to the basic smoothing and point-wise significance computation this ver-
sion of GenoGAM now also supports differential analysis and peak calling with
position-wise confidence intervals on ChIP-Seq data.

1.1 Goal of the analysis

A small dataset is provided to illustrate the ChIP-Seq functionalities. This is a
subset of the data published by Thornton et al[1], who assayed histone H3 Lysine 4
trimethylation (H3K4me3) by ChIP-Seq comparing wild type yeast versus a mutant
with a truncated form of Set1, the yeast H3 Lysine 4 methylase. The goal of this
analysis is the identification of genomic positions that are significantly differentially
methylated in the mutant compared to the wild type strain.

To this end, we will build a GenoGAM model that models the logarithm of the
expected ChIP-seq fragment counts y as sums of smooth functions of the genomic
position x. Specifically, we write (with simplified notations) that:

log(E(y)) = f(x) + genotype× fmutant/wt(x) 1

where genotype is 1 for data from the mutant samples, and 0 for the wild type. Here
the function f(x) is the reference level, i.e. the log-rate in the wild type strain. The
function fmutant/wt(x) is the log-ratio of the mutant over wild-type. We will then
statistically test the null hypothesis fmutant/wt(x) = 0 at each position x. In the
following we show how to build the dataset, perform the fitting of the model and
perform the testing.

1.2 Registering a parallel backend

The parallel backend is registered using the BiocParallel package. See the docu-
mentation in BiocParallel for the correct use. Also note, that BiocParallel is just
an interface to multiple parallel packages. For example in order to use GenoGAMon
a cluster, the BatchJobs package might be required. The parallel backend can be
registered at anytime as GenoGAM will just call the current one.

IMPORTANT: According to this and this posts on the Bioconductor support page
and R-devel mailing list, the most important core feature of the multicore backend,
shared memory, is compromised by Rs own garbage collecto,r resulting in a replication
of the entire workspace across all cores. Given that the amount of data in memory is
big it might crash the entire system. We highly advice to register the SnowParam
backend to avoid this if working on a multicore machine. This way the overhead

3

http://bioconductor.org/packages/BiocParallel
https://CRAN.R-project.org/package=BatchJobs
https://support.bioconductor.org/p/70196/
https://stat.ethz.ch/pipermail/r-devel/2015-July/071554.html

GenoGAM: Genome-wide generalized additive models

is a little bigger, but only necessary data is copied to the workers keeping memory
consumption relatively low. We never experienced a higher load than 4GB per core,
usually it was around 2GB on human genome.

library(GenoGAM)

On multicore machines by default the number of available cores - 2 are registered

BiocParallel::registered()[1]

$SnowParam

class: SnowParam

bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

bptimeout: 2592000; bpprogressbar: FALSE

bpRNGseed:

bplogdir: NA

bpresultdir: NA

cluster type: SOCK

For this small example we would like to assign less workers.. Check BiocParallel for
other possible backends and more options for SnowParam

BiocParallel::register(BiocParallel::SnowParam(workers = 4, progressbar = TRUE))

If we check the current registered backend, we see that the number of workers has
changed.

BiocParallel::registered()[1]

$SnowParam

class: SnowParam

bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

bptimeout: 2592000; bpprogressbar: TRUE

bpRNGseed:

bplogdir: NA

bpresultdir: NA

cluster type: SOCK

1.3 Building a GenoGAM dataset

BAM files restricted to a region of chromosome XIV around the gene YNL176C are
provided in the inst/extdata folder of the GenoGAM package. This folder also
contains a flat file describing the experimental design.

We start by loading the experimental design from the tab-separated text file experi

mentDesign.txt into a data frame:

4

http://bioconductor.org/packages/BiocParallel

GenoGAM: Genome-wide generalized additive models

folder <- system.file("extdata/Set1", package='GenoGAM')

expDesign <- read.delim(

file.path(folder, "experimentDesign.txt")

)

expDesign

ID file paired genotype

1 wt_1 H3K4ME3_Full_length_Set1_Rep_1_YNL176C.bam FALSE 0

2 wt_2 H3K4ME3_Full_length_Set1_Rep_2_YNL176C.bam FALSE 0

3 mutant_1 H3K4ME3_aa762-1080_Set1_Rep_1_YNL176C.bam FALSE 1

4 mutant_2 H3K4ME3_aa762-1080_Set1_Rep_2_YNL176C.bam FALSE 1

Each row of the experiment design corresponds to the alignment files in BAM format
of one ChIP sample. In case of multiplexed sequencing, the BAM files must have been
demultiplexed. The experiment design have named columns. Three column names
have a fixed meaning for GenoGAM and must be provided: ID, file, and paired.
The field ID stores a unique identifier for each alignment file. It is recommended to
use short and easy to understand identifiers because they are subsequently used for
labelling data and plots. The field file stores the BAM file name. The field paired

values TRUE for paired-end sequencing data, and FALSE for single-end sequencing
data. Further named columns can be added at wish without naming and data type
constraints. Here the important one is the genotype column. Note that it is an
indicator variable (i.e. valuing 0 or 1). It will allow us modeling the differential
occupancy or call peaks later on.

We will now count sequencing fragment centers per genomic position and sample
and store these counts into a GenoGAMDataSet. GenoGAM reduces ChIP-Seq data
to fragment center counts rather than full base coverage so that each fragment is
counted only once. This reduces artificial correlation between adjacent nucleotides.
For single-end libraries, the fragment center is estimated by shifting the read end
position by a constant (Details in the help on the constructor function GenoGAM

DataSet()). Additionally we filter the data for enriched regions only. A threshold is
estimated from the data as the median + 6*MAD (Median Absolute Deviation) or
can be supplied through the threshold argument. Especially on large genomes such
as human this can boost the computation time significantly.

bpk <- 20

chunkSize <- 1000

overhangSize <- 15*bpk

build the GenoGAMDataSet

ggd <- GenoGAMDataSet(

expDesign, directory = folder,

chunkSize = chunkSize, overhangSize = overhangSize,

5

GenoGAM: Genome-wide generalized additive models

design = ~ s(x) + s(x, by = genotype)

)

INFO [2017-10-30 21:36:39] Reading in data.

INFO [2017-10-30 21:36:43] Check if tile settings match the data.

INFO [2017-10-30 21:36:43] All checks passed.

INFO [2017-10-30 21:36:43] DONE

ggd

class: GenoGAMDataSet

dimension: 784333 4

assays(1):

position variables(0):

sample variables(1): genotype

samples(4): wt_1 wt_2 mutant_1 mutant_2

tiles size: 1.6kbp

number of tiles: 785

chromosomes: chrXIV

data filtered for regions with zero counts

filtered_ggd <- filterData(ggd)

INFO [2017-10-30 21:36:43] Filtering dataset for enriched regions

INFO [2017-10-30 21:36:44] Threshold estimated at 0.859781495869741

INFO [2017-10-30 21:36:45] DONE. A total of 781,030 positions were dropped, 3,303 are left.

filtered_ggd

class: GenoGAMDataSet

dimension: 3303 4

assays(1):

position variables(0):

sample variables(1): genotype

samples(4): wt_1 wt_2 mutant_1 mutant_2

tiles size: 1.6kbp

number of tiles: 4

chromosomes: chrXIV

alternatively we can restricts the GenoGAM dataset to the positions of

interest as we know them by design of this example

ggd <- subset(ggd, seqnames == "chrXIV" & pos >= 305000 & pos <= 308000)

They are almost the same as found by the filter

range(getIndex(filtered_ggd))

GRanges object with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

6

GenoGAM: Genome-wide generalized additive models

[1] chrXIV [304849, 308151] *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

A GenoGAMDataSet stores this count data into a structure that index genomic
positions over tiles, defined by chunkSize and overhangSize. A bit of background is
required to understand these parameters. The smoothing in GenoGAM is based on
splines (Figure 1), which are piecewise polynomials. The knots are the positions where
the polynomials connect. In our experience, one knot every 20 to 50 bp is required for
enough resolution of the smooth fits in typical applications. The fitting of generalized
additive models involves steps demanding a number of operations proportional to the
square of the number of knots, preventing fits along whole chromosomes. To make
the fitting of GAMs genome-wide, GenoGAM performs fitting on small overlapping
intervals (tiles), and join the fit at the midpoint of the overlap of consecutive tiles.
The parameters chunkSize and overhangSize defines the tiles, where the chunk is
the core part of a tile that does not overlap other tiles, and the overhangs are the two
overlapping parts. Overhangs of about 10 times the knot spacing gives reasonable
results.

Figure 1: Left: An example spline without coefficients
Displayed are seven cubic B-spline basis functions which together make up the complete spline
(pink). The knots are depicted as dark-grey dots at the bottom-center of each basis function.
Right: The same spline as on the left side, but with basis functions multiplied by their respective
coefficient.

The design parameter is explained in the next section.

Finally, the last line of code calls the function subset() to restrict the GenoGAM-
Dataset to the positions of interest. This line is necessary for running this small
example but would not be present in a standard genome-wide run of GenoGAM.

7

GenoGAM: Genome-wide generalized additive models

Note: genogam have a settings-class available but not open to the user, as it is not
yet fully developed. The GenoGAMDataSet function however can take an argument
settings that would take such an object as input. The argument is there to allow
for some specific workarounds if necessary. The most common one would be to
load only a subset of the data from a BAM file for example defined by chromosome
names or supplying a ScanBamParam object from the GenomicAlignments package.
The examples are not run.

specify specific chromosomes

settings <- GenoGAM:::GenoGAMSettings(chromosomeList = c('chrI', 'chrII'))

specify parameters through ScanBamParam

gr <- GRanges("chrI", IRanges(1,100000))

params <- ScanBamParam(which = gr)

settings <- GenoGAM:::GenoGAMSettings(bamParams = params)

1.4 Modeling with smooth functions: the design parameters

GenoGAM models the logarithm of the rate of the count data as sums of smooth
functions of the genomic position, denoted x. The design parameter is an R formula
which allows encoding how the smooth functions depend on the experimental design.
GenoGAMfollows formula convention of the R package mgcv. A smooth function
is denoted s(). For now, GenoGAM only supports smooth function that are cubic
splines of the genomic position x. The by variable allows selecting to which samples
the smooth contributes to (see also the documentation of gam.models in the mgcv).
For now, GenoGAM only allows by variables to be of value 0 or 1 (hence binary dummy
encoding). Here by setting ’s(x, by=genotype)’ we encode the term "genotype ×
fmutant/wt(x)" in Equation 1.

Note: As for other generalized additive models packages (mgcv, gam), GenoGAM
use the natural logarithm as link function. This is different than other packages of
the bioinformatics files such as DESeq2 which works in base 2 logarithm.

1.5 Size factor estimation

Sequencing libraries typically vary in sequencing depth. Such variations is controlled
for in GenoGAM by adding a sample-specific constant to the right term of Equation 1.
The estimation of these constants is performed by the function computeSizeFactor()
as follows:

ggd <- computeSizeFactors(ggd)

INFO [2017-10-30 21:36:46] Computing size factors

INFO [2017-10-30 21:36:46] DONE

8

GenoGAM: Genome-wide generalized additive models

sizeFactors(ggd)

wt_1 wt_2 mutant_1 mutant_2

0.0429 0.2595 -0.5295 0.2901

Note: The size factors in GenoGAMare in the natural logarithm scale. Also factor
groups are identified automatically from the design. Given more complex design, this
might fail. Or, maybe different factor groups are desired. In this case the groups can
be provided separatelly through the factorGroups argument.

The additional function qualityCheck will perform a simple quality check of the data
and plot the results into the folder qc, which is created in the working directory if not
present. So far it’s only applicable to the GenoGAMDataSet object and creates two
plots: One showing the distribution of counts over all tiles and the second showing
multiple scatterplots of the counts from different samples against each other before
and after size factor normalization

the function is not run as it creates new plots each time,

which are not very meaningful for such a small example

qualityCheck(ggd)

1.6 Model fitting

A GenoGAM model requires two further parameters to be fitted: the regularization
parameter, λ, and the dispersion parameter θ. The regularization parameters λ con-
trols the amount of smoothing. The larger λ is, the smoother the smooth functions
are. The dispersion parameter θ controls how much the observed counts deviate from
their expected value modeled by Equation 1. The dispersion captures biological and
technical variation which one typically sees across replicate samples, but also errors of
the model. In GenoGAM, the dispersion is modeled by assuming the counts to follow
a negative binomial distribution with mean µ = E(y) whose logarithm is modeled by
Equation 1 and with variance v = µ+ µ2/θ.

If not provided, the parameters λ and θ are obtained by cross-validation. This step
is a bit time-consuming. For sake of going through this example quickly, we provide
the values manually:

fit model without parameters estimation

fit <- genogam(ggd,

lambda = 40954.1,

family = mgcv::nb(theta = 6.927986),

bpknots = bpk

)

INFO [2017-10-30 21:36:47] Check if tile settings match the data.

INFO [2017-10-30 21:36:47] All checks passed.

9

GenoGAM: Genome-wide generalized additive models

INFO [2017-10-30 21:36:47] Process data

INFO [2017-10-30 21:36:47] Fitting model

##

|

| | 0%

|

|======================= | 33%

|

|=== | 67%

|

|==| 100%

##

INFO [2017-10-30 21:37:08] DONE

fit

##

Family: negative binomial

Link function: log

##

Formula:

value ~ offset(offset) + s(x, bs = "ps", k = 80, m = 2) + s(x,

by = genotype, bs = "ps", k = 80, m = 2)

<environment: 0x0000000025ba2780>

##

Experiment Design:

genotype

wt_1 0

wt_2 0

mutant_1 1

mutant_2 1

##

Global Estimates:

Lambda: 40954

Theta: 6.93

Coefficient of Variation: 0.38

##

Cross Validation: Not performed

K-folds: 10

Number of tiles: 3

Interval size: 20

##

Tile settings:

chunk size: 1000

tile size: 1600

overhang size: 300

10

GenoGAM: Genome-wide generalized additive models

number of tiles: 3

Remark on parameter estimation: To estimate the parameters λ and θ by cross-
validation, call genogam() without setting their values. This will perform 10 fold cross-
validation on each tile with initial parameter values and iterate until convergence,
often for about 50 iterations. We recommend to do it for 20 to 40 different regions
representative of your data (of 1.5kb each). This means that estimation of the
parameters will require the equivalent of a GenoGAM fit with fixed λ and θ on 30
Mb (1.5kb x10x40x50). For a genome like yeast (12Mb) the cross-validation thus
can take more time than a genome-wide fit.

fit_CV <- genogam(ggd,bpknots = bpk)

Remark on parallel computing: GenoGAM run parallel computations on multi-
core architecture (using the BiocParallel package). Computing time reduces almost
linearly with the number of cores of the machine.

1.7 Plotting results

Count data and fits for a region of interest can be extracted using the function view().
Following the mgcv and gam convention the names of the fit for the smooth function
defined by the by variable follow the pattern s(x):{by-variable}. Here, the smooth
function of interest fmutant/wt(x) is thus named s(x):genotype.

extract count data into a data frame

df_data <- view(ggd)

head(df_data)

seqnames pos strand wt_1 wt_2 mutant_1 mutant_2

1 chrXIV 305000 * 0 0 0 0

2 chrXIV 305001 * 0 0 0 0

3 chrXIV 305002 * 0 1 0 0

4 chrXIV 305003 * 0 0 0 0

5 chrXIV 305004 * 0 0 0 0

6 chrXIV 305005 * 0 1 0 0

extract fit into a data frame

df_fit <- view(fit)

head(df_fit)

seqnames pos strand s(x) s(x):genotype se.s(x) se.s(x):genotype

1 chrXIV 305000 * -3.10 0.163 0.309 0.402

2 chrXIV 305001 * -3.10 0.165 0.307 0.400

3 chrXIV 305002 * -3.10 0.168 0.305 0.398

4 chrXIV 305003 * -3.09 0.170 0.304 0.396

5 chrXIV 305004 * -3.09 0.173 0.302 0.394

11

GenoGAM: Genome-wide generalized additive models

6 chrXIV 305005 * -3.09 0.175 0.300 0.392

If only a subset of the data supposed to be viewed it is best to use a GRanges object
and supply it to the emphranges argument.

gr <- GRanges("chrXIV", IRanges(306000, 308000))

head(view(ggd, ranges = gr))

seqnames pos strand wt_1 wt_2 mutant_1 mutant_2 assay

1 chrXIV 306000 * 0 0 0 0 V1

2 chrXIV 306001 * 0 0 0 0 V1

3 chrXIV 306002 * 1 0 0 0 V1

4 chrXIV 306003 * 0 0 0 0 V1

5 chrXIV 306004 * 0 0 0 0 V1

6 chrXIV 306005 * 0 1 0 0 V1

The GenoGAM specific plot function will make use of the ggplot2 framework if avail-
able or fall back to base R otherwise. Note, that without any restrictions on positions
or chromosomes it will attempt to plot all the data and throw an error if it is too big.

In the count data, the peak of methylation in the two replicates of the wild type (first
two panels) in the region 306,500-307,000 seems attenuated in the two replicates of
the mutant (3rd and 4th panel). There are relatively more counts for the mutant in
the region 305,500-306,500. The GenoGAM fit of the log-ratio (last panel, confidence
band dotted) indicates that that these differences are significant. This redistribution
of the methylation mark from the promoter (wild type) into the gene body (mutant)
was reported by the authors of the study [1]. Additionally a smooth for the input is
shown (second to last). Both smooths added together give the log-fit of the mutant
data (not shown).

plot(fit, ggd, scale = FALSE)

12

GenoGAM: Genome-wide generalized additive models

chrXIV:305000−308000

0

2

4

6

305000 306000 307000 308000

w
t_

1

0

2

4

6

305000 306000 307000 308000

w
t_

2

0

2

4

6

305000 306000 307000 308000

m
ut

an
t_

1

0

2

4

6

305000 306000 307000 308000

m
ut

an
t_

2

−3
−2
−1

0

305000 306000 307000 308000

s(
x)

−0.5
0.0
0.5
1.0
1.5

305000 306000 307000 308000

genomic position

s(
x)

:g
en

ot
yp

e

1.8 Statistical testing

We test for each smooth and at each position x the null hypothesis that it values 0
by a call to computeSignificance(). This gives us pointwise p-values.

fit <- computeSignificance(fit)

df_fit <- view(fit)

head(df_fit)

seqnames pos strand s(x) s(x):genotype se.s(x) se.s(x):genotype

1 chrXIV 305000 * -3.10 0.163 0.309 0.402

2 chrXIV 305001 * -3.10 0.165 0.307 0.400

3 chrXIV 305002 * -3.10 0.168 0.305 0.398

13

GenoGAM: Genome-wide generalized additive models

4 chrXIV 305003 * -3.09 0.170 0.304 0.396

5 chrXIV 305004 * -3.09 0.173 0.302 0.394

6 chrXIV 305005 * -3.09 0.175 0.300 0.392

pvalue.s(x) pvalue.s(x):genotype

1 0.0617 0.686

2 0.0608 0.680

3 0.0599 0.674

4 0.0590 0.668

5 0.0582 0.662

6 0.0573 0.655

1.9 Differential binding

If region-wise significance is needed, as in the case of differential binding, then we
call computeRegionSignificance(). This returns the provided GRanges regions object
updated by a p-value and FRD column.
gr

GRanges object with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chrXIV [306000, 308000] *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

gr <- computeRegionSignificance(fit, regions = gr, what = 'genotype')

INFO [2017-10-30 21:37:14] Estimating region p-values and FDR

INFO [2017-10-30 21:37:14] Done

gr

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | pvalue

<Rle> <IRanges> <Rle> | <numeric>

[1] chrXIV [306000, 308000] * | 3.32546824449574e-10

FDR

<numeric>

[1] 3.32546824449574e-10

seqinfo: 1 sequence from an unspecified genome; no seqlengths

14

GenoGAM: Genome-wide generalized additive models

1.10 Peak calling

The computed fit allows for easy peak calling of narrow and broad peaks via the
callPeaks(). The resulting data.table provides a similar structure as the ENCODE
narrowPeak and broadPeak format. Note, the score is given as the negative natural
logarithm of the p-values. Also peak borders are different from the usually computed
peak borders of other methods. The borders are in fact a 95-% confidence interval
around the peak position. As this is not peak calling data, we use a high threshold
do demonstrate the functionality.

peaks <- callPeaks(fit, smooth = "genotype", threshold = 1)

INFO [2017-10-30 21:37:14] Calling narrow peaks

INFO [2017-10-30 21:37:15] DONE

peaks

seqnames position summit zscore score fdr start end

1: chrXIV 305364 2.02 -0.2449 0.516 0.667 305080 305648

2: chrXIV 306077 3.03 0.3716 1.035 1.000 305835 306319

3: chrXIV 307622 2.54 0.0999 0.776 1.000 307492 307752

peaks <- callPeaks(fit, smooth = "genotype", threshold = 1,

peakType = "broad", cutoff = 0.75)

INFO [2017-10-30 21:37:15] Calling broad peaks

INFO [2017-10-30 21:37:15] DONE

peaks

seqnames start end width strand score meanSignal fdr

1: chrXIV 305102 306523 1422 * 0.288 2.30 0.75

2: chrXIV 307388 307863 476 * 0.289 2.15 0.75

The function writeToBEDFile provides an easy way to write the peaks data.table to
a narrowPeaks or broadPeaks file. The suffix will be determined automatically

writeToBEDFile(peaks, file = 'myPeaks')

2 Computation statistics

At the moment the computation time for genome-wide analysis ranges from a cou-
ple of hours on yeast to a 2-3 days on human. The memory usage never exceeded
4GByte per core. Usually it was around 2-3 GByte per core. We are also currently
implementing an optimized model fitting procedure, that reduces computation time
significantly. Unfortunately we were not able to include it into the package for this
Bioconductor release, but are confident to be able to do it into the next release. In-
terested users should therefore check the developer version of GenoGAM for updates.

15

http://bioconductor.org/packages/GenoGAM

GenoGAM: Genome-wide generalized additive models

3 Acknowledgments

We thank Alexander Engelhardt, Hervé Pagès, and Martin Morgan for input in the
development of GenoGAM.

4 Session Info

• R version 3.4.2 Patched (2017-10-07 r73498), x86_64-w64-mingw32

• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

• Running under: Windows Server 2012 R2 x64 (build 9600)

• Matrix products: default

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats,
stats4, utils

• Other packages: Biobase 2.38.0, BiocGenerics 0.24.0, Biostrings 2.46.0,
DelayedArray 0.4.0, GenoGAM 1.6.0, GenomeInfoDb 1.14.0,
GenomicRanges 1.30.0, IRanges 2.12.0, Rsamtools 1.30.0, S4Vectors 0.16.0,
SummarizedExperiment 1.8.0, XVector 0.18.0, knitr 1.17, matrixStats 0.52.2

• Loaded via a namespace (and not attached): AnnotationDbi 1.40.0,
BiocParallel 1.12.0, BiocStyle 2.6.0, DBI 0.7, DESeq2 1.18.0, Formula 1.2-2,
GenomeInfoDbData 0.99.1, GenomicAlignments 1.14.0, Hmisc 4.0-3,
Matrix 1.2-11, RColorBrewer 1.1-2, RCurl 1.95-4.8, RSQLite 2.0,
Rcpp 0.12.13, ShortRead 1.36.0, XML 3.98-1.9, acepack 1.4.1,
annotate 1.56.0, backports 1.1.1, base64enc 0.1-3, bit 1.1-12, bit64 0.9-7,
bitops 1.0-6, blob 1.1.0, checkmate 1.8.5, chipseq 1.28.0, cluster 2.0.6,
codetools 0.2-15, colorspace 1.3-2, compiler 3.4.2, data.table 1.10.4-3,
digest 0.6.12, evaluate 0.10.1, foreign 0.8-69, futile.logger 1.4.3,
futile.options 1.0.0, genefilter 1.60.0, geneplotter 1.56.0, ggplot2 2.2.1,
grid 3.4.2, gridExtra 2.3, gtable 0.2.0, highr 0.6, htmlTable 1.9,
htmltools 0.3.6, htmlwidgets 0.9, hwriter 1.3.2, labeling 0.3, lambda.r 1.2,
lattice 0.20-35, latticeExtra 0.6-28, lazyeval 0.2.1, locfit 1.5-9.1, magrittr 1.5,
memoise 1.1.0, mgcv 1.8-22, munsell 0.4.3, nlme 3.1-131, nnet 7.3-12,
plyr 1.8.4, reshape2 1.4.2, rlang 0.1.2, rmarkdown 1.6, rpart 4.1-11,
rprojroot 1.2, scales 0.5.0, snow 0.4-2, splines 3.4.2, stringi 1.1.5,
stringr 1.2.0, survival 2.41-3, tibble 1.3.4, tools 3.4.2, xtable 1.8-2,
yaml 2.1.14, zlibbioc 1.24.0

16

GenoGAM: Genome-wide generalized additive models

References

[1] J. Thornton, G.H.. Westfield, Y. Takahashi, M. Cook, X. Gao, Woodfin A.R.,
Lee J., A.M. Morgan, J. Jackson, E.R. Smith, J. Couture, G. Skiniotis, and
A. Shilatifard. Context dependency of Set1/ COMPASS-mediated histone H3
Lys4 trimethylation. Genes & Development, 28(2):115–120, 2014.
doi:10.1101/gad.232215.113.

17

http://dx.doi.org/10.1101/gad.232215.113

	1 Standard ChIP-Seq analysis
	1.1 Goal of the analysis
	1.2 Registering a parallel backend
	1.3 Building a GenoGAM dataset
	1.4 Modeling with smooth functions: the design parameters
	1.5 Size factor estimation
	1.6 Model fitting
	1.7 Plotting results
	1.8 Statistical testing
	1.9 Differential binding
	1.10 Peak calling

	2 Computation statistics
	3 Acknowledgments
	4 Session Info

