
Data input vignette
Reading genotype data in snpStats

David Clayton

October 30, 2017

Memory limitations

Before we start it is important to emphasise that the SnpMatrix objects that hold genotype
data in snpStats are resident in memory, and limitations of the computer and of the R
language impose limits on the maximum size of datasets that can be held at any one time.
Each genotype reading uses only a single byte of memory so that large datasets can be read
given the large memory capacity of modern computers. Originally, R imposed a limit of
231 − 1 ∼ 2 × 109 elements in a single array. This limit applied in both the 32-bit and
64-bit versions of R, these versions differing only in the total memory that could be used.
For example, this would correspond to one million loci for two thousand subjects and would
occupy two gigabytes of machine memory. However, version 3 of R removed the restriction on
single arrays in the 64-bit version, and this was implemented for SnpMatrix and XSnpMatrix

objects in version 1.19.2 of snpStats. However, experience of this code is limited and some
caution is advised.

Reading pedfiles

A commonly encountered format for storing genotype data is the “pedfile” format, which
originated some years ago in the LINKAGE package. Pedfiles are text files containing one line
per genotyped sample, with fields separated by “white space” (TAB characters or SPACEs).
The first six fields contain:

1. a pedigree or family identifier, unique to the family of which this subject is a member,

2. a further identifier, unique (within the family) to each family member,

3. the member identifier of the father of the subject if the father is also present in the
data, otherwise an arbitrary code (usually 0),

4. similarly, an identifier for the mother of the subject,

1

5. the sex of the subject (1 = Male, 2 = Female), and

6. a binary trait indicator (1 = Absent, 2 = Present).

Missing values in the last two fields are usually coded as zero.
The first few rows and columns of a sample file is shown below:

IBD054 430 0 0 1 0 1 3 3 1 4 1 4 2

IBD054 412 430 431 2 2 1 3 1 3 4 1 4 2

IBD054 431 0 0 2 0 3 3 3 3 1 1 2 2

IBD058 438 0 0 1 0 3 3 3 3 1 1 2 2

IBD058 470 438 444 2 2 3 3 3 3 1 1 2 2

Thus, the subject of line 2 has a father whose data appears on line 1 and a mother whose
data is on line 3. The grandparents do not appear on the file. This subject is affected by the
trait, but the trait status of her parents is not known. The genotypes of this subject at the
first four loci are 1/3, 1/3, 4/1 and 4/2. Note that snpStats will only deal with diallelic
data and, although alleles are coded 1 to 4 in this file, only two of these occur with in any
one locus. In fact these data are from the sample dataset distributed with the HAPLOVIEW
program (Barrett et al., 2005) which uses the numbers 1–4 to denote the four nucleotides:
1 = A, 2 = C, 3 = G, 4 = . The pedfile contains data for 20 loci on 120 subjects, and is
accompanied by a second file which describes the loci, the first four lines being:

IGR1118a_1 274044

IGR1119a_1 274541

IGR1143a_1 286593

IGR1144a_1 287261

(this file is rather simple, containing just the locus name and its position on a chromosome).
The (gzipped) pedfile and the locus information file are stored in the extdata sub-

directory of the snpStats package as, respectively, sample.ped.gz and sample.info. Since
the precise location of these files may vary between installations, we first obtain full paths
to these files using the system.file function

> pedfile <- system.file("extdata/sample.ped.gz", package="snpStats")

> pedfile

[1] "/private/tmp/Rtmpc1BpPa/Rinst1189b2721097e/snpStats/extdata/sample.ped.gz"

> infofile <- system.file("extdata/sample.info", package="snpStats")

The data can then be read in using the read.pedfile function

> sample <- read.pedfile(pedfile, snps=infofile)

The result, sample, is a list with three elements. The first is an object of class SnpMatrix

containing the genotype data. We shall show summaries for the first few loci

2

> sample$genotypes

A SnpMatrix with 120 rows and 20 columns

Row names: 430 ... 17702

Col names: IGR1118a_1 ... IGR2020a_1

> col.summary(sample$genotypes)$MAF

[1] 0.14957265 0.14224138 0.15833333 0.15000000 0.13392857 0.15929204

[7] 0.14678899 0.14035088 0.06578947 0.14166667 0.13839286 0.15566038

[13] 0.13750000 0.14166667 0.31250000 0.26470588 0.27155172 0.50000000

[19] 0.28947368 0.02232143

> head(col.summary(sample$genotypes))

Calls Call.rate Certain.calls RAF MAF P.AA

IGR1118a_1 117 0.9750000 1 0.8504274 0.1495726 0.008547009

IGR1119a_1 116 0.9666667 1 0.1422414 0.1422414 0.724137931

IGR1143a_1 120 1.0000000 1 0.8416667 0.1583333 0.008333333

IGR1144a_1 120 1.0000000 1 0.8500000 0.1500000 0.008333333

IGR1169a_2 112 0.9333333 1 0.8660714 0.1339286 0.000000000

IGR1218a_2 113 0.9416667 1 0.8407080 0.1592920 0.008849558

P.AB P.BB z.HWE

IGR1118a_1 0.2820513 0.70940171 1.175622

IGR1119a_1 0.2672414 0.00862069 1.025043

IGR1143a_1 0.3000000 0.69166667 1.375728

IGR1144a_1 0.2833333 0.70833333 1.217161

IGR1169a_2 0.2678571 0.73214286 1.636547

IGR1218a_2 0.3008850 0.69026549 1.311673

The second list element is a dataframe containing the first six fields of the pedfile. We’ll just
display the start of this:

> head(sample$fam)

pedigree member father mother sex affected

430 IBD054 430 <NA> <NA> 1 NA

412 IBD054 412 430 431 2 2

431 IBD054 431 <NA> <NA> 2 NA

438 IBD058 438 <NA> <NA> 1 NA

470 IBD058 470 438 444 2 2

444 IBD058 444 <NA> <NA> 2 NA

3

Note that the zero values in the pedfile have been read as NA; this is optional, but default,
behaviour of the function. Here the pedigree-member identifiers have been used as subject
identifiers, since these are not duplicated while pedigree identifiers (the first choice) were
duplicated (if both sets of identifiers are duplicated, they are combined). Finally, the third
list element is a dataframe containing the information read from the sample.info file, to
which have been added the two alleles found at each locus:

> head(sample$map)

snp.names V2 allele.1 allele.2

1 IGR1118a_1 274044 1 3

2 IGR1119a_1 274541 3 1

3 IGR1143a_1 286593 4 1

4 IGR1144a_1 287261 4 2

5 IGR1169a_2 299755 2 1

6 IGR1218a_2 324341 3 1

Here we have used the default settings of read.pedfile. In particular, it is not mandatory
to supply a locus description file and there are further arguments which allow additional
flexibility. These options are described in the on-line help page.

PLINK files

Binary PED (BED) files written by the PLINK toolset (Purcell et al., 2007) may also be read
as SnpMatrix objects. Files of type .bed are written by the plink -make-bed command
and are accompanied by two text files: a .fam file containing the first six fields of a standard
pedfile as described above, and a .bim file which describes the loci. The package data
directory also contains .bed, .fam and .bim files for the sample dataset of the last section;
the following commands recover the full file paths for these files and read the files:

> fam <- system.file("extdata/sample.fam", package="snpStats")

> bim <- system.file("extdata/sample.bim", package="snpStats")

> bed <- system.file("extdata/sample.bed", package="snpStats")

> sample <- read.plink(bed, bim, fam)

The output object is similar to that produced by read.pedfile, a list with three elements:

> sample$genotypes

A SnpMatrix with 120 rows and 20 columns

Row names: 430 ... 17702

Col names: IGR1118a_1 ... IGR2020a_1

> col.summary(sample$genotypes)$MAF

4

[1] 0.14957265 0.14224138 0.15833333 0.15000000 0.13392857 0.15929204

[7] 0.14678899 0.14035088 0.06578947 0.14166667 0.13839286 0.15566038

[13] 0.13750000 0.14166667 0.31250000 0.26470588 0.27155172 0.50000000

[19] 0.28947368 0.02232143

> head(sample$fam)

pedigree member father mother sex affected

430 IBD054 430 NA NA 1 NA

412 IBD054 412 430 431 2 2

431 IBD054 431 NA NA 2 NA

438 IBD058 438 NA NA 1 NA

470 IBD058 470 438 444 2 2

444 IBD058 444 NA NA 2 NA

> head(sample$map)

chromosome snp.name cM position allele.1 allele.2

IGR1118a_1 NA IGR1118a_1 NA 274044 1 3

IGR1119a_1 NA IGR1119a_1 NA 274541 1 3

IGR1143a_1 NA IGR1143a_1 NA 286593 4 1

IGR1144a_1 NA IGR1144a_1 NA 287261 4 2

IGR1169a_2 NA IGR1169a_2 NA 299755 2 1

IGR1218a_2 NA IGR1218a_2 NA 324341 3 1

Usually the three input files have the same filename stub with .bed, .fam and .bim extensions
added. In this case it is sufficient to just supply the filename stub to read.plink.

A useful feature of read.plink is the ability to select a subset of data from a large PLINK
dataset. This is demonstrated in our small example below

> subset <- read.plink(bed, bim, fam, select.snps=6:10)

> subset$genotypes

A SnpMatrix with 120 rows and 5 columns

Row names: 430 ... 17702

Col names: IGR1218a_2 ... IGR1373a_1

> col.summary(subset$genotypes)$MAF

[1] 0.15929204 0.14678899 0.14035088 0.06578947 0.14166667

> subset$map

5

chromosome snp.name cM position allele.1 allele.2

IGR1218a_2 NA IGR1218a_2 NA 324341 3 1

IGR1219a_2 NA IGR1219a_2 NA 324379 4 2

IGR1286a_1 NA IGR1286a_1 NA 358048 3 2

TSC0101718 NA TSC0101718 NA 366811 4 3

IGR1373a_1 NA IGR1373a_1 NA 395079 2 4

Note that, in order to select certain SNPs, the input PLINK file must be in SNP-major order
i.e. all individuals for the first SNP, all individuals for the second SNP, and so on. This
is the default mode in PLINK. However, to select certain individuals, the input PLINK file
must be in individual-major order.

Long format data

The least compact, but perhaps most flexible, input format is the“long” format in which each
genotype call takes up a single line. Such data can be read using the function read.snps.long.
A simple example is provided by the small gzipped data file sample-long.gz provided with
the package:

> longfile <- system.file("extdata/sample-long.gz", package="snpStats")

> longfile

[1] "/private/tmp/Rtmpc1BpPa/Rinst1189b2721097e/snpStats/extdata/sample-long.gz"

The first 5 lines of the file are listed as follows:

> cat(readLines(longfile, 5), sep="\n")

snp1 subject1 1 1.000

snp1 subject2 2 1.000

snp1 subject3 1 1.000

snp1 subject4 1 1.000

snp1 subject5 2 1.000

The first field gives the SNP identifier (snp1 to snp18), the second gives the sample, or
subject, identifier (subject1 to subject100), the third field gives the genotype call (1=A/A,
2=A/B, 3=B/B), and the last field gives a confidence measure for the call (here always 1.000).
To read in this file and inspect the data:

> gdata <- read.long(longfile,

+ fields=c(snp=1, sample=2, genotype=3, confidence=4),

+ gcodes=c("1", "2", "3"),

+ threshold=0.95)

> gdata

6

A SnpMatrix with 100 rows and 18 columns

Row names: subject1 ... subject100

Col names: snp1 ... snp18

> summary(gdata)

$rows

Call.rate Certain.calls Heterozygosity

Min. :1 Min. :1 Min. :0.1111

1st Qu.:1 1st Qu.:1 1st Qu.:0.2778

Median :1 Median :1 Median :0.3333

Mean :1 Mean :1 Mean :0.3478

3rd Qu.:1 3rd Qu.:1 3rd Qu.:0.3889

Max. :1 Max. :1 Max. :0.6667

$cols

Calls Call.rate Certain.calls RAF MAF

Min. :100 Min. :1 Min. :1 Min. :0.0450 Min. :0.0450

1st Qu.:100 1st Qu.:1 1st Qu.:1 1st Qu.:0.2700 1st Qu.:0.1087

Median :100 Median :1 Median :1 Median :0.4475 Median :0.2850

Mean :100 Mean :1 Mean :1 Mean :0.4383 Mean :0.2739

3rd Qu.:100 3rd Qu.:1 3rd Qu.:1 3rd Qu.:0.5913 3rd Qu.:0.4300

Max. :100 Max. :1 Max. :1 Max. :0.9100 Max. :0.4900

P.AA P.AB P.BB z.HWE

Min. :0.0000 Min. :0.0700 Min. :0.0000 Min. :-1.85573

1st Qu.:0.1525 1st Qu.:0.2025 1st Qu.:0.0875 1st Qu.:-0.62145

Median :0.2850 Median :0.4000 Median :0.1750 Median : 0.25448

Mean :0.3878 Mean :0.3478 Mean :0.2644 Mean : 0.09661

3rd Qu.:0.5475 3rd Qu.:0.4600 3rd Qu.:0.3350 3rd Qu.: 0.86390

Max. :0.9200 Max. :0.5500 Max. :0.8200 Max. : 1.19206

A few remarks:

1. In our example, the entire file has been read. However, subsets of data may be extracted
by specifying the required SNP or sample identifiers.

2. Any calls for which the call confidence is less than threshold is set to NA (this did not
affect any calls in this simple example).

3. Here, calls were represented by a single genotype code. It is also possible to read
calls as pairs of alleles. The function then returns a list whose first argument is the
SnpMatrix object, and whose second object is a dataframe containing the allele codes.
This option is demonstrated below, using an alternative coding of the same data (all
SNPs are CT SNPs):

7

> allelesfile <- system.file("extdata/sample-long-alleles.gz", package="snpStats")

> cat(readLines(allelesfile, 5), sep="\n")

snp1 subject1 C C 1.000

snp1 subject2 C T 1.000

snp1 subject3 C C 1.000

snp1 subject4 C C 1.000

snp1 subject5 C T 1.000

> gdata <- read.long(allelesfile,

+ fields=c(snp=1, sample=2, allele.A=3, allele.B=4, confidence=5),

+ threshold=0.95)

> gdata

$genotypes

A SnpMatrix with 100 rows and 18 columns

Row names: subject1 ... subject100

Col names: snp1 ... snp18

$alleles

allele.A allele.B

snp1 C T

snp2 C T

snp3 C T

snp4 C T

snp5 C T

snp6 C T

snp7 T C

snp8 C T

snp9 T C

snp10 T C

snp11 C T

snp12 T C

snp13 C T

snp14 T C

snp15 C T

snp16 C T

snp17 C T

snp18 C T

> gdata$genotypes

A SnpMatrix with 100 rows and 18 columns

Row names: subject1 ... subject100

Col names: snp1 ... snp18

8

> gdata$alleles

allele.A allele.B

snp1 C T

snp2 C T

snp3 C T

snp4 C T

snp5 C T

snp6 C T

snp7 T C

snp8 C T

snp9 T C

snp10 T C

snp11 C T

snp12 T C

snp13 C T

snp14 T C

snp15 C T

snp16 C T

snp17 C T

snp18 C T

Note that the assignment of alleles depends on the order in which they were encountered.
This function has many options and the online help page needs to be read carefully.

Other formats

Imputation

A further source of input data is programs which can impute genotype data for a set of study
individuals, using genome-wide SNP-chip data for the study subjects plus HapMap or 1,000
genomes project datasets. snpStats provides the functions read.beagle, read.impute, and
read.mach to read in files produced by the leading imputation programs. For more details
of such data, see the imputation and meta-analysis vignette.

VCF format

The 1,000 genomes data are released in the VCF format. snpStats does not yet include
a function to read data files in this format, but the GGtools package does contain such a
function (vcf2sm).

9

X, Y and mitocondrial SNPs

The SnpMatrix class is designed for diploid SNP genotypes. SNPs which can be haploid
are stored in objects of the XSnpMatrix class, which has an addition slot, named diploid.
Since, for the X chromosome, ploidy depends on sex and may vary from row to row, this
(logical) vector has the same number of elements as the number of rows in the SNP data
matrix. Most input routines do not allow for reading an XSnpMatrix and simply read into
a SnpMatrix, coding haploid calls as (homozygous) diploid. Such objects may then be
coerced into the XSnpMatrix class using as(..., "XSnpMatrix") or new("XSnpMatrix,

..., diploid=...). If as is used, ploidy is inferred from homozygosity while, if new is
used, it must be supplied (if all rows have the same ploidy, this argument can be a scalar).
In either case, calls presumed to be haploid but coded as heterozygous will be set to NA.

Reference

Barrett JC, Fry B, Maller J, Daly MJ.(2005) Haploview: analysis and visualization of LD
and haplotype maps. Bioinformatics, 2005 Jan 15, [PubMed ID: 15297300]

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ and Sham PC (2007) PLINK: a toolset for whole-genome association
and population-based linkage analysis. American Journal of Human Genetics, 81

10

