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Abstract

The QuartPAC package is designed to identify mutated amino acid hotspots
while accounting for protein quaternary structure. It is meant to work in con-
junction with the iPAC [Ryslik and Zhao, 2012b], GraphPAC [Ryslik and
Zhao, 2012a] and SpacePAC [Ryslik and Zhao, 2013] packages already available
through Bioconductor. Spercifically, the package takes as input the quaternary
protein structure as well as the mutational data for each subunit of the assembly.
It then maps the mutational data onto the protein and performs the algorithms
described in iPAC, GraphPACand SpacePAC to report the statistically sig-
nificanct clusters. By integrating the quartneray structure, QuartPAC may
identify additional clusters that only become apparent when the different pro-
tein subunits are considered together.

1 Introduction

Recent advances in oncogenic pharmacology [Croce, 2008] have led to the cre-
ation of a variety of methods that attempt to identify mutational hotspots as
these hotspots are often indicative of driver mutations [Wagner, 2007, Zhou
et al., 2008, Ye et al., 2010]. Three recent methods, iPAC, GraphPAC and
SpacePAC provide approaches to identify such hotspots while accounting for
protein tertiary structure. While it has been shown that these mutations provide
an improvement over linear clustering methods, [Ryslik et al., 2013, 2014b,a],
they nevertheless consider only tertiary structure. QuartPAC, preprocesses
the entire assembly structure in order to be able to accurately run these ap-
proaches on the quaternary protein unit. This allows for the identification of
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additional mutational clusters that may otherwise be missed if only one protein
subunit is considered at a time.

In order to run QuartPAC, four sources of data are required:

• The amino acid sequence of the protein which is obtained from the UniProt
database (uniprot.org in FASTA format).

• The protein tertiary subunit information which is obtained from the .pdb
file from PDB.org

• The quaternary structural information for the entire assembly which is
obtained from the .pdb1 file from PDB.org

• The somatic mutation data which is obtained from the Catalogue of So-
matic Mutations in Cancer (http://cancer.sanger.ac.uk/cancergenome/
projects/cosmic/).

In order to map the mutations onto the protein quaternary structure, an
alignment must be performed. For each uniprot within the assembly, mutational
data must be provided. The data is in the format of m × n matrices for every
subunit. A “1” in the (i, j) element indicates that residue j for individual i
has a mutation while a “0” indiciates no mutation. To be compatible with this
software, please ensure that your mutation matrices have R column headings
of V 1, V 2, · · · , V n. Only missense mutations are currently supported, indels in
the amino acid sequence are not. Sample mutational data are included in this
package as textfiles in the extdata folder.

It is worth nothing that there does not exist any one individual source to
obtain mutational data. One common resource is the COSMIC database http:

//cancer.sanger.ac.uk/cancergenome/projects/cosmic/. The easiest way
to obtain mutational data for many proteins is to load the the COSMIC database
on a local sql server and then query the database for the protein of interest.
It is important to restrict your query to whole gene screens or whole genome
studies to prevent specific mutations from being selectively chosen (and thus
violating the uniformity assumption that iPAC, GraphPAC, and SpacePAC
rely upon).

Should you find a bug, or wish to contribute to the code base, please contact
the author.

2 Identifying Clusters and Viewing the Remap-
ping

The general principle of QuartPAC is that we preprocess the data into a format
that can be recognized by iPAC, GraphPAC and SpacePAC. Most of this
is automated and all that is needed is to point the algorithm to the mutational
and structural data. QuartPAC will then reorganize the data, execute the
cluster finding algorithms and report the results. The clusters are reported by
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serial number. As each serial number is unique in the assembly, the user can
then map each serial number to the exact atom of interest in the structure.

Below we run the algorithm with no multiple comparison adjustment. We
do this to ensure that some clusters are found for each method. We also note
that for iPAC and GraphPAC, if a multiple comparison adjustment is used
and no clusters are found significant, the methods will show a null value. For
SpacePAC, as there is no multiple comparison adjustment needed, the most
significant clusters are always shown, regardless of the p-value. This behavior
follows the functionality of the previous three packages, so users familiar with
the tertiary algorithms will find the results directly comparable.

For more information on the output, please see the iPAC,GraphPAC, and
SpacePAC packages as the output is similar. The main difference is that the
amino acid numbers now refer to the serial numbers within the *.pdb1 file.

Code Example 1: Running QuartPAC.

> library(QuartPAC)

> #read the mutational data

> mutation_files <- list(

+ system.file("extdata","HFE_Q30201_MutationOutput.txt", package = "QuartPAC"),

+ system.file("extdata","B2M_P61769_MutationOutput.txt", package = "QuartPAC")

+ )

> uniprots <- list("Q30201","P61769")

> mutation.data <- getMutations(mutation_files = mutation_files, uniprots = uniprots)

> #read the pdb file

> pdb.location <- "https://files.rcsb.org/view/1A6Z.pdb"

> assembly.location <- "https://files.rcsb.org/download/1A6Z.pdb1"

> structural.data <- makeAlignedSuperStructure(pdb.location, assembly.location)

> #Perform Analysis

> #We use a very high alpha level here with no multiple comparison adjustment

> #to make sure that each method provides shows a result.

> #Lower alpha cut offs are typically used.

> quart_results <- quartCluster(mutation.data, structural.data, perform.ipac = "Y",

+ perform.graphpac = "Y", perform.spacepac = "Y",

+ create.map = "Y",alpha = .3,MultComp = "None",

+ Graph.Title ="MDS Mapping to 1D Space",

+ radii.vector = c(1:3))

We observe that the MDS remapping plot provided by QuartPAC is done
automatically if the create.map parameter is set to “Y”. The plot is shown in
Figure 1 below.

For the GraphPAC approach, the linear “Jump Plot” (see the GraphPAC
package for more details and interpretation) has been implemented and is shown
in Figure 2 below. Feel free to contact the author if you want to assist in porting
other graphing functionality.

With regards to SpacePAC, as there is no remapping from 3D to 1D space,
a plotting option that shows the protein in its folded state is presented in Section
4.
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MDS Mapping to 1D Space
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Figure 1: Remapping performed by iPAC.

Code Example 2: Plotting the GraphPAC candidate path.

> Plot.Protein.Linear(quart_results$graphpac$candidate.path, colCount = 10,

+ title = "Protein Reordering to 1D Space via GraphPAC")
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Protein Reordering to 1D Space via GraphPAC

2 13 19 29 35 43 53 65 73 84

92 96 101 107 116 121 129 137 141 149

155 163 174 183 188 196 200 212 219 227

235 244 252 263 270 281 293 301 311 316

322 333 344 351 360 367 378 385 392 406

411 416 421 426 431 437 443 452 460 474

479 488 496 501 510 516 524 533 537 551

559 569 577 588 595 602 610 621 635 642

650 658 667 675 685 693 703 709 718 727

733 743 750 758 767 774 782 790 794 800

809 817 826 831 839 847 853 860 869 873

885 899 908 920 924 936 944 948 957 965

975 983 992 1003 1009 1016 1024 1031 1039 1047

1061 1072 1077 1082 1091 1098 1109 1114 1128 1135

1142 1151 1159 1168 1182 1191 1202 1212 1221 1229

1240 1245 1256 1265 1273 1284 1289 1301 1309 1318

1329 1337 1343 1350 1355 1364 1372 1381 1390 1398

1406 1415 1423 1427 1432 1436 1443 1451 1459 1468

1477 1484 1491 1498 1506 1513 1522 1529 1536 1546

1556 1563 1570 1576 1582 1589 1596 1603 1611 1622

1628 1639 1644 1652 1660 1672 1684 1691 1700 1708

1716 1723 1731 1740 1754 1762 1771 1779 1788 1797

1804 1812 1820 1825 1834 1843 1854 1863 1870 1879

1887 1894 1902 1909 1917 1921 1929 1933 1940 1952

1961 1965 1979 1987 1994 2002 2007 2014 2021 2028

2032 2041 2050 2059 2070 2082 2089 2095 2104 2111

2120 2130 2137 2141 2149 2157 2166 2173 2181 2189

2196 2204 2220 2228 2237 2248 2255 2262 2271 2279

2288 2295 2307 2313 2324 2334 2341 2346 2355 2363

2367 2376 2382 2390 2401 2409 2417 2423 2435 2442

2448 2452 2463 2473 2480 2486 2494 2502 2511 2518

2526 2534 2542 2551 2559 2563 2572 2583 2591 2600

2605 2612 2621 2631 2637 2645 2653 2659 2670 2676

2685 2693 2707 2713 2724 2736 2744 2752 2764 2776

2783 2792 2803 2810 2817 2824 2833 2838 2846 2855

2867 2872 2878 2889 2896 2904 2914 2921 2928 2936

2942 2951 2958 2967 2975 2982 2991 3005 3013 3024

3032

Figure 2: Remapping performed by GraphPAC.
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3 Using the Output

Now that we have the results, suppose that we wanted to visualize what the
clusters are. For example, we see that the first cluster under the SpacePAC
method for the optimal combination has two spheres. One sphere is centered at
the atom with serial number 1265 and one sphere is centered at the atom with
serial number 367.

To see where this matches we can query the structural.data list.

Code Example 3: Finding the residue of interest using the SpacePAC method.

> #look at the results for the optimal sphere combinations under the SpacePAC approach

> #For clarity we only look at columns 3 - 8 which show the sphere centers.

> quart_results$spacepac$optimal.sphere[,3:8]

Center1 Center2 Start1 End1 Start2 End2

1 1265 367 1265 1265 367 367

2 2166 367 2166 2166 367 367

3 2295 367 2295 2295 367 367

4 2166 1265 2166 2166 1265 1265

5 2401 367 2401 2401 367 367

6 2295 1265 2295 2295 1265 1265

7 2583 367 2583 2583 367 367

8 2401 1265 2401 2401 1265 1265

9 2295 2166 2295 2295 2166 2166

10 2659 367 2659 2659 367 367

11 2583 1265 2583 2583 1265 1265

12 2401 2166 2401 2401 2166 2166

13 2846 367 2846 2846 367 367

14 2659 1265 2659 2659 1265 1265

15 2583 2166 2583 2583 2166 2166

16 2401 2295 2401 2401 2295 2295

17 2846 1265 2846 2846 1265 1265

18 2659 2166 2659 2659 2166 2166

19 2583 2295 2583 2583 2295 2295

20 2846 2166 2846 2846 2166 2166

21 2659 2295 2659 2659 2295 2295

22 2583 2401 2583 2583 2401 2401

23 2846 2295 2846 2846 2295 2295

24 2659 2401 2659 2659 2401 2401

25 2846 2401 2846 2846 2401 2401

26 2659 2583 2659 2659 2583 2583

27 2846 2583 2846 2846 2583 2583

28 2846 2659 2846 2846 2659 2659

> #Find the atom with serial number 1265

> required.row <- which(structural.data$aligned_structure$serial == 1265)

> #show the information for that atom

> structural.data$aligned_structure[required.row,]

recordName serial atom altLoc resName chainID resSeq iCode xCoord yCoord

1: ATOM 1265 CA ASN A 157 5.743 52.485
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zCoord occupancy tempFactor element charge UNP dbref protomer absPos

1: 13.919 1 42.28 C Q30201 1 1 154

canonical_pos

1: 179

>

Similarly, suppose you wanted to look at the iPAC results. The first cluster
goes from serial 2583 and ends at 2846. To get all the residue information for
that block, we can do the following:

Code Example 4: Finding the residue of interest using the iPAC method.

> #look at the results for the first cluster shown by the ipac method

> quart_results$ipac

AA_in_Cluster serial_start serial_end number p_value

V254 32 2583 2846 3 0.03093808

V172 22 2659 2846 2 0.04285346

V274 55 2401 2846 4 0.05244236

V254 52 2166 2583 4 0.07721776

V274 14 2295 2401 2 0.08306777

V254 37 2295 2583 3 0.09028823

V172 62 2166 2659 5 0.10970551

V274 29 2166 2401 3 0.12480796

V180 304 367 2846 8 0.12630378

V172 283 367 2659 7 0.16003397

V172 47 2295 2659 4 0.16898693

V278 68 2295 2846 5 0.19414336

V303 83 2166 2846 6 0.24825087

V180 222 367 2166 3 0.25497859

> #Find the atoms with serial numbers within the range of 2583 to 2846

> required.rows <- which(structural.data$aligned_structure$serial %in% (2583:2846))

> #show the information for those atoms

> structural.data$aligned_structure[required.rows,]

recordName serial atom altLoc resName chainID resSeq iCode xCoord yCoord

1: ATOM 2583 CA ILE B 46 12.885 19.924

2: ATOM 2591 CA GLU B 47 12.538 18.636

3: ATOM 2600 CA LYS B 48 9.370 18.878

4: ATOM 2605 CA VAL B 49 9.120 22.638

5: ATOM 2612 CA GLU B 50 7.189 24.889

6: ATOM 2621 CA HIS B 51 7.867 28.493

7: ATOM 2631 CA SER B 52 5.976 31.273

8: ATOM 2637 CA ASP B 53 7.479 32.937

9: ATOM 2645 CA LEU B 54 10.283 35.432

10: ATOM 2653 CA SER B 55 8.837 38.923

11: ATOM 2659 CA PHE B 56 9.783 42.469

12: ATOM 2670 CA SER B 57 8.257 45.640

13: ATOM 2676 CA LYS B 58 8.243 49.331

14: ATOM 2685 CA ASP B 59 11.745 49.858
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15: ATOM 2693 CA TRP B 60 13.026 47.034

16: ATOM 2707 CA SER B 61 13.661 44.800

17: ATOM 2713 CA PHE B 62 12.750 41.139

18: ATOM 2724 CA TYR B 63 10.369 38.996

19: ATOM 2736 CA LEU B 64 9.841 35.241

20: ATOM 2744 CA LEU B 65 7.561 33.020

21: ATOM 2752 CA TYR B 66 8.522 29.543

22: ATOM 2764 CA TYR B 67 5.960 27.185

23: ATOM 2776 CA THR B 68 5.265 23.560

24: ATOM 2783 CA GLU B 69 2.275 21.616

25: ATOM 2792 CA PHE B 70 3.018 20.246

26: ATOM 2803 CA THR B 71 1.565 19.125

27: ATOM 2810 CA PRO B 72 3.166 20.559

28: ATOM 2817 CA THR B 73 3.655 18.871

29: ATOM 2824 CA GLU B 74 5.166 19.946

30: ATOM 2833 CA LYS B 75 8.589 18.374

31: ATOM 2838 CA ASP B 76 8.895 19.872

32: ATOM 2846 CA GLU B 77 10.881 23.063

recordName serial atom altLoc resName chainID resSeq iCode xCoord yCoord

zCoord occupancy tempFactor element charge UNP dbref protomer absPos

1: 45.964 1 59.61 C P61769 2 1 318

2: 42.427 1 75.66 C P61769 2 1 319

3: 40.348 1 82.60 C P61769 2 1 320

4: 40.986 1 72.00 C P61769 2 1 321

5: 38.587 1 65.40 C P61769 2 1 322

6: 37.552 1 59.43 C P61769 2 1 323

7: 35.791 1 54.96 C P61769 2 1 324

8: 32.724 1 54.99 C P61769 2 1 325

9: 33.143 1 43.17 C P61769 2 1 326

10: 32.873 1 43.06 C P61769 2 1 327

11: 33.932 1 36.56 C P61769 2 1 328

12: 35.371 1 40.60 C P61769 2 1 329

13: 34.385 1 42.56 C P61769 2 1 330

14: 35.795 1 41.40 C P61769 2 1 331

15: 33.576 1 34.49 C P61769 2 1 332

16: 36.581 1 35.68 C P61769 2 1 333

17: 36.218 1 33.38 C P61769 2 1 334

18: 38.234 1 42.58 C P61769 2 1 335

19: 38.323 1 36.62 C P61769 2 1 336

20: 40.370 1 38.86 C P61769 2 1 337

21: 41.587 1 49.21 C P61769 2 1 338

22: 43.115 1 54.28 C P61769 2 1 339

23: 44.155 1 59.26 C P61769 2 1 340

24: 45.397 1 66.25 C P61769 2 1 341

25: 48.852 1 59.77 C P61769 2 1 342

26: 52.163 1 67.36 C P61769 2 1 343

27: 55.294 1 68.86 C P61769 2 1 344

28: 58.669 1 73.63 C P61769 2 1 345

29: 61.984 1 84.25 C P61769 2 1 346

30: 61.405 1 87.62 C P61769 2 1 347
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31: 57.911 1 77.81 C P61769 2 1 348

32: 57.189 1 68.89 C P61769 2 1 349

zCoord occupancy tempFactor element charge UNP dbref protomer absPos

canonical_pos

1: 66

2: 67

3: 68

4: 69

5: 70

6: 71

7: 72

8: 73

9: 74

10: 75

11: 76

12: 77

13: 78

14: 79

15: 80

16: 81

17: 82

18: 83

19: 84

20: 85

21: 86

22: 87

23: 88

24: 89

25: 90

26: 91

27: 92

28: 93

29: 94

30: 95

31: 96

32: 97

canonical_pos

As the GraphPAC results are in the same format as the iPAC results, the
approach for identifying clusters in those atoms is identical as in the example
above.

4 Visualizing the Results

Once you have the serial numbers of interest, you can then view the results
in any pdb visualization application of your choice. One common option is to
use the PyMOL software package [Schrödinger, LLC, 2010]. While it is not
the purpose of this vignette to teach the reader PyMOL syntax, we present the
following simplistic example and the resulting figure for reference. It will color
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the first cluster outputted by the iPAC method, residues with serial numbers
2583-2846 in blue. The chain and resSeq information provided in Example 4 is
used as below.

Code Example 5: PyMOL sample code

-----------------------------------

hide all

show cartoon,

show spheres, ///b/46/ca

show spheres, ///b/77/ca

color blue, ///b/46-77

label c. B and n. CA and i. 46, "(%s, %s)" % (resn, resi)

label c. B and n. CA and i. 77, "(%s, %s)" % (resn, resi)

set label_position, (3,2,10)
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