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1 Introduction

Characterization of biological processes can be performed in great detail with
the increased generation of omics data on different functional levels of the cell.
Especially interpretation of time-series omics data measured in parallel with
different platforms is a complex but promising task, needing consideration of
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time-independent combination of omics data and additionally time-dependent
signaling analysis. As each measurement technique shows a certain bias and
has natural limitations in identifying full signaling responses (Yeger-Lotem, E
et al., 2009), such cross-platform analysis is an up-to-date approach in order
to connect biological implications on different signaling levels. Using diverse
data types is expected to provide a deeper understanding of global biological
functions and the underlying complex processes (Kholodenko B et al., 2012).
This is why computational data analysis tools for interpretation of data from
proteomics and transcriptomics measurements in parallel are needed.
pwOmics is a tool for pathway-based level-specific data comparison and analysis
of single time point or time-series omics data measured in parallel. It provides
individual analysis workflows for the different omics data sets (see Figure 1) and
in addition enables consensus analysis of omics data.

Figure 1: pwOmics downstream and upstream analysis.

Up to this point analysis is restricted to human species. In future an expansion
of the package is possible dependent on available online open access database
information.

2 Databases

As pwOmics is a package for data integration based on prior pathway and tran-
scription knowledge data, it is necessary to define the databases to work with.
Three different kinds of databases are necessary to do all analyses steps:

1. Pathway databases:
The user can choose from Biocarta (Nishimura, D, 2001), Reactome (Mi-
lacic, M et al., 2012; Croft, David et al., 2014), PID (Schaefer, CF et al.,
2009) from the National Cancer Institute (NCI) and KEGG (Kanehisa,
M et al.,2014, Kanehisa, M and Goto, S, 2000).

2. Protein-protein interaction (PPI) database:
STRING (Franceschini, A et al., 2013).

3. Transcription factor (TF) - target gene databases:
The user can choose from ChEA (Lachmann, A et al., 2010), Pazar
(Portales-Casamar, E et al., 2009; Portales-Casamar, E et al., 2007) and/or
decide to specify an own file e.g. based on a commercial database.
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The pathway database information is used to identify the pathways of the dif-
ferentially abundant phosphoproteins in the downstream analysis as well as up-
stream protein regulators of TFs in the upstream analysis. The PPI database
STRING (Franceschini, A et al., 2013) was chosen to define the protein net for
the consensus analysis. TF - target gene database information is necessary for
the TF identification in pathways in the downstream analysis. Additionally the
upstream TFs of differentially expressed genes/transcripts are identified in the
upstream analysis based on this information.
In downstream analysis the pathway gene set information is used, whereas in
the upstream analysis also the pathway topology information is exploited.

The database information is downloaded internally via STRINGdb and Annota-
tionHub (Morgan M et al.) package. In case the author is interested also in the
metadata of the pathway database and TF - target database it can be received
by

> library(pwOmics)

> library(AnnotationHub)

> ah = AnnotationHub()

> #pathway databases

> pw = query(ah, "NIH Pathway Interaction Database")

> pw[1]

AnnotationHub with 1 record

# snapshotDate(): 2016-08-15

# names(): AH22329

# $dataprovider: NIH Pathway Interaction Database

# $species: Homo sapiens

# $rdataclass: biopax

# $title: BioCarta.owl.gz

# $description: BioCarta BioPax file from NCI Pathway Interaction Database

# $taxonomyid: 9606

# $genome: hg19

# $sourcetype: BioPax

# $sourceurl: ftp://ftp1.nci.nih.gov/pub/PID/BioPAX/BioCarta.owl.gz

# $sourcelastmodifieddate: 2009-09-09

# $sourcesize: 338343

# $tags: BioCarta, BioPax, Pathway Interaction Database

# retrieve record with 'object[["AH22329"]]'

> #TF-target databases

> chea = query(ah, "ChEA")

> chea[1]

AnnotationHub with 1 record

# snapshotDate(): 2016-08-15

# names(): AH22237

# $dataprovider: ChEA

# $species: NA

# $rdataclass: data.frame

# $title: chea-background.zip
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# $description: ChEA background file, containing transcription factor data t...

# $taxonomyid: NA

# $genome: NA

# $sourcetype: Zip

# $sourceurl: http://amp.pharm.mssm.edu/result/kea/chea-background.zip

# $sourcelastmodifieddate: 2015-03-09

# $sourcesize: 3655103

# $tags: ChEA, Transcription Factors

# retrieve record with 'object[["AH22237"]]'

> pazar = query(ah, "Pazar")

> pazar[1]

AnnotationHub with 1 record

# snapshotDate(): 2016-08-15

# names(): AH22238

# $dataprovider: Pazar

# $species: NA

# $rdataclass: GRanges

# $title: pazar_ABS_20120522.csv

# $description: TF - Target Gene file from pazar_ABS_20120522

# $taxonomyid: NA

# $genome: NA

# $sourcetype: CSV

# $sourceurl: http://www.pazar.info/tftargets/pazar_ABS_20120522.csv

# $sourcelastmodifieddate: 2012-06-04

# $sourcesize: 120202

# $tags: Pazar, Transcription Factors

# retrieve record with 'object[["AH22238"]]'

In case you want to use TF - target gene information which is not part of the
mentioned databases but e.g. part of a commercial database, a user-specified
file can be used for the analysis. This file should be a ‘.txt’ file with first column
transcription factors and second column target gene symbols without a header,
e.g.:

GATA-4 HAMP
c-Jun IL18
NF-kappaB TLR2
MYB LTB
FOXO1A TGFBR1
... ...

The STRING PPI-information is downloaded automatically while processing
and analyzing the data: The STRINGdb package (Franceschini, A et al., 2013)
is used here.

3 Example dataset

The example dataset used here for demonstration purposes comprises whole
genome time course microarray data at time points 0, 1, 4, 8, 13, 18 and 24 hr
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after stimulation. The complementary phosphoproteomics data was measured
at time points 0.25, 1, 4, 8, 13, 18 and 24 hours after stimulation. Preprocessing
of data is presupposed with given lists of significant genes and phosphoproteins
for each time point as logarithmized expression ratios relative to the time 0 hr
controls.

4 Data pre-processing

pwOmics is a package for secondary data analysis, i.e. it needs already pre-
processed data as input for the analysis. The input required is

1. a list of all phosphoprotein IDs measured,

2. a list of all gene/transcript IDs measured,

3. a list of differentially abundant phosphoproteins + log fold changes,

4. a list of differentially expressed genes/transcripts + log fold changes.

The IDs need to be gene symbols, both for phosphoprotein and gene/transcript
data. In case time-series data is analyzed inputs 3. and 4. needs to be specified
for each time point. It is absolutely necessary, that all phosphoproteins and
genes/transcript in inputs 3. and 4. are part of the lists of all phosphoprotein
IDs and all gene/transcript IDs, respectively.

The OmicsData object is the format used for data analysis in pwOmics package.
It contains a list of four main elements:

1. OmicsD - here the omics data set, its description and the results are stored

2. PathwayD - here the chosen pathway databases and the generated Biopax
model is stored

3. TFtargetsD - here the chosen TF-target gene databases and the combined
TF-target gene information is stored

4. Status - The status variable equals ‘1’ in case not all information needed
for the analysis is read in yet and ‘2’ after identification of the first up-
stream/downstream signaling levels. As the enrichment step is not nec-
essarily part of the analysis and dependent on the pathway database and
the TF-target gene database the identification of signaling molecules in
further levels might not be successful, the status variable is not used in
the further analysis.

Thus pwOmics reads in the omics data set provided by the user to the first
element of the OmicsData object and further on stores all the results in this
part as well.

This is why the user has to provide the omics data set in a special format: A list
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needs to be generated with a phosphoprotein list named ‘P’ as first element and
a gene/transcript list named ‘G’ as second element. These lists contain as first
element a data frame with all (unique) phosphoprotein IDs and gene/transcript
IDs in the first column, respectively, and as second element a list with data
frames for each time point of measurement. The data frames have two columns
with the first one containing the differentially abundant/expressed phosphopro-
teins or genes/transcripts as gene symbols and the second column containing
the corresponding log fold changes, e.g.:

> data(OmicsExampleData)

> OmicsExampleData

Generated as in the following example:

OmicsExampleData = list(P = list(allPIDs,

list(PIDstp0.25, PIDstp1, PIDstp4, PIDstp8,

PIDstp13, PIDstp18, PIDstp24)),

G = list(allGIDs,

list(GIDstp1, GIDstp4, GIDstp8, GIDstp13,

GIDstp18, GIDstp24)))

> head(OmicsExampleData$P[[2]][[1]])

GeneSymbol X15min

1 MRPS17 0.6976049

2 RPS12 -1.0297977

3 SLC3A2 -1.2623327

4 RPL8 0.8304820

5 ACTB -2.4914461

6 ALDOA 0.8637013

In case the user only wants to analyze omics data from a single time point just
one data frame has to be specified.
The time points do not have to be the same for phosphoprotein and gene/transcript
data and need to be specified when reading in the omics data set separately via
the ‘tp prots’ and ‘tp genes’ parameters of the ‘readOmics’ function.

> data_omics = readOmics(tp_prots = c(0.25, 1, 4, 8, 13, 18, 24),

+ tp_genes = c(1, 4, 8, 13, 18, 24),

+ OmicsExampleData,

+ PWdatabase = c("biocarta", "kegg", "nci",

+ "reactome"),

+ TFtargetdatabase = c("userspec"))

If data from a single timepoint measurement should be analyzed the user simply
assigns the experiment number ‘1’ for these parameters:

#for single time point data set:

omics = list(P = list(allPIDs, list(PIDs_1)),

G = list(allGIDs, list(GIDs_1)))
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data_omics = readOmics(tp_prots = c(1),

tp_genes = c(1),

OmicsExampleData,

PWdatabase = c("biocarta", "kegg", "nci",

"reactome"),

TFtargetdatabase = c("userspec"))

Additionally the selected databases have to be specified.

The stored information can be easily accessed via the following functions:

> getOmicsTimepoints(data_omics)

> head(getOmicsallProteinIDs(data_omics))

> head(getOmicsallGeneIDs(data_omics))

> head(getOmicsDataset(data_omics, writeData = FALSE)[[1]])

5 Individual analysis

As shown in Figure 1 the analysis is based on an individual analysis of the phos-
phoproteomic and the genomic/transcriptomic data. The downstream analysis
and upstream analysis are described in the following subsections.
Prior to that the database information has to be read in. In a first step the
phosphoprotein information about downstream activating/inactivating effects
should be read in.

data_omics = readPhosphodata(data_omics, phosphoreg)

The parameter ‘phosphoreg’ should be a tab-separated .txt file with two columns,
but no header. The first column should include the HUGO gene symbols of the
phosphoproteins with known downstream effects, the second column should in-
clude either activating (1) or inactivating (-1) downstream effect coding upon
phosphorylation of the corresponding phosphoprotein. So far, there is no pos-
sibility to include multiple phosphorylation events individually. However, if no
information for a phosphoprotein is available in this file, any up/downregulation
match is allowed for the molecules identified in the intersection analyses.
In a second step the TF- target information can be made accessible to the
‘OmicsData’ object by:

data_omics = readTFdata(data_omics, TF_target_path)

Via the ‘TF target path’ parameter a path of a user-specified file specifying
transcription factors and corresponding target genes can be given. This should
be a tab-separated .txt file with two columns, but no header, giving HUGO
gene symbols of transcription factors in the first column and gene symbols of
corresponding target genes in a second column. This information can be used
additionally to the selected database content.
Thirdly, the ‘readPWdata’ function takes the ‘OmicsData’ object with the
provided information about the omics data set and the path of the prepared
‘.RData’ genelists from the pathway databases (see Section 2) or automatically
generates the corresponding genelists of the pathway data if ‘loadgenelists =
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FALSE’. In this step the automatic definition of internal IDs for different path-
way databases is necessary, which are stored in a new biopax model in the
‘OmicsData’ object.

data_omicsPW = readPWdata(data_omics,

loadgenelists = FALSE)

As the process of generating genelists with these IDs can take some time -
especially for rather big databases such as Reactome (Milacic, M et al., 2012;
Croft, D et al., 2014) - the genelists for the different databases are automatically
stored in the working directory and can be reused in another analysis when the
corresponding path containing these files is given to the ‘readPWdata’ function
as loadgenelists parameter.

data_omics = readPWdata(data_omics,

loadgenelists = "Genelist_reactome.RData")

5.1 Downstream analysis

The downstream analysis is starting with the provided phosphoproteomic data
(either single time point data or time-series data). The first step is the identifi-
cation of downstream regulation influence of phosphoproteins based on the file
read in by ‘readPhosphodata’ function.

data_omics = identifyPR(data_omics)

The second step is the identification of the pathways in which the differentially
abundant phosphoproteins play a role. pwOmics performs this searching step on
the basis of the provided phosphoproteomic data set and the selected pathway
database(s). As this function exploits pathway knowledge, it is necessary to
be in the working directory of the genelists that were generate by function
‘readPWdata’.

data_omics = identifyPWs(data_omics)

Following the workflow the next step is the identification of the transcription
factors in these pathways, which is done with the information provided by the
chosen TF-target gene database.

data_omics = identifyPWTFTGs(data_omics)

For use of this function the working directory should still contain the previously
generated genelists.

The results of the downstream analysis can be easily accessed by the following
functions:

getDS_PWs(data_omics)

getDS_TFs(data_omics)

getDS_TGs(data_omics)

#Access biopax model generated newly on basis of selected

#pathway databases:

getBiopaxModel(data_omics)
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5.2 Upstream analysis

The upstream analysis is starting with the provided gene/transcript data (either
single time point data or time-series data). It first of all identifies the upstream
TFs of the differentially expressed genes/transcripts. This step is done with the
provided/selected information of TF-target gene pairs.
Given this information, the identification of upstream TFs can be done:

data_omics = identifyTFs(data_omics)

Upstream of the TFs the potential regulator proteins can be identified with the
following function:

data_omics = identifyRsofTFs(data_omics,

noTFs_inPW = 1, order_neighbors = 10)

The identification of potential upstream regulators is done in the following way:

1. Identification of the pathways the previously identified TFs are part of.

2. Selection of pathways according to the user-specified parameter ‘noTFs inPW’:
Only those pathways are considered in further analysis with at least this
number of TFs present in the pathway.

3. Upstream regulators are identified for these TFs. This is done by find-
ing first for each TF the pathway neighborhood according to the user-
specified parameter ‘order neighbors’. This parameter specifies the order
of the identified pathway neighborhood. Then the intersection of all iden-
tified neighborhoods for all TFs in a pathway is determined. The resulting
pathway node set is defined here as the set of potential regulator proteins.

In case the pathways under consideration do not have pathway components
in the downloaded biopax model, this will be indicated with a warning. This
warning can be ignored by the user in regard to the following analysis steps.
The results of the upstream analysis can be accessed with the following func-
tions:

getUS_TFs(data_omics)

getUS_PWs(data_omics)

getUS_regulators(data_omics)

6 Consensus analysis

The consensus analysis combines the results from upstream and downstream
analysis by constituting in particular the comparative analysis of the results of
the two different data sets on each cellular level individually. The intersection
analysis thus simply compares the results of the separate upstream and down-
stream analyses. The static consensus analysis allows to determine static con-
sensus graphs for each time point measured in parallel. Finally, the consensus-
based dynamic analysis provides the user with one final dynamic network ob-
tained from the data changes over time based on dynamic bayesian network
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inference. The consensus-based dynamic analysis is only conductable with time-
series data sets measured for both phosphoproteome and genome/transcriptome
data in parallel.

6.1 Intersection analysis

The intersection analysis of pwOmics is a simple comparative analysis of the
results of upstream and downstream analysis. Thus, it enables a comparison of
single time point data and time-series data, the latter also for non-corresponding
time points in the different data sets. The comparison is possible on the three
different functional levels considered in this package: On the pathway level, the
transcription factor level and gene/transcript level. The parameters ‘updown’
and ‘phospho’ enable to define, whether the direction of regulation should be
considered in the comparison and whether the phosphosite information should
be considered. The consensus molecule sets (C) for each of the molecular levels
(protein level, transcription factor level and gene/transcript level) are defined
as:

1. if phosphoprotein downstream activity is induced:
C = (X ′ ↑ ∩ X ↑) ∪ (X ′ ↓ ∩ X ↓)

2. if phosphoprotein downstream activity is inhibited:
C = (X ′ ↑ ∩ X ↓) ∪ (X ′ ↓ ∩ X ↑)

3. if no information is available for a specific phosphoprotein:
C = (X ′ ↑ ∩ X ↑) ∪ (X ′ ↓ ∩ X ↓) ∪ (X ′ ↑ ∩ X ↓) ∪ (X ′ ↓ ∩ X ↑)

with ↑ = upregulated and ↓ = downregulated and X = molecules in downstream
analysis, X ′ = molecules in upstream analysis.

getProteinIntersection(data_omics, tp_prot = 4, tp_genes = 18,

updown = TRUE, phospho = TRUE)

getTFIntersection(data_omics, tp_prot = 13, tp_genes = 13,

updown = TRUE, phospho = TRUE)

getGenesIntersection(data_omics, tp_prot = 24, tp_genes = 24,

updown = TRUE, phospho = TRUE)

These functions not only enable a comparison of the same timepoints on the
distinct levels, but for time-series data sets also for non-matching time points:
With the time resolution of measuring omics data in most cases being pre-
defined by expected signaling changes and financial limitations the potential
in the interpretation of the results is strongly confined to the experimental
design decisions. Thus, measured signaling changes, which naturally consist of a
superposition of diverse time-scales of transcriptional and translational processes
and comprehend diverse frequency patterns (Yosef, N and Regev A(2011)), are
dependent on the sampling. This means for some of the signaling axes it might
be the case, that

� changes are not detected at all as their rate is too high,

� some are represented in the data and
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� some might be so slow that their change is not considered significant and
thus are excluded from analysis.

As the corresponding signaling changes are not expected to be seen at the same
time point in phosphoproteome data and gene/transcript data it is necessary to
enable also the comparison of non-corresponding time points.
The option to compare non-corresponding time points cannot account for the
changes not captured during measurement, however, it gives the possibility to
consider also the time needed for regulatory control mechanisms in the inter-
pretation of the measurement results.
In case the user wants to compare the corresponding time points on the three
levels simultaneously he can do so by using the following function:

gettpIntersection(data_omics, updown = TRUE, phospho = TRUE)

The parameters ‘updown’ and ‘phospho’ allow to select whether different regu-
lation directions in the data sets (phosphoproteome vs. transcriptome) should
be filtered out in the comparison, and whether the downstream regulation in-
fluence of phosphoproteins read in with the ‘readPhosphodata’ function should
be considered in the comparison.

6.2 Static consensus analysis

The static consensus analysis goes one step ahead and integrates the results
gained from the comparative analysis of the corresponding time points to a con-
sensus net for each time point. The change of this consensus net over time gives
a first insight into the changes seen statically at the different time points. How-
ever, the static consensus nets do not yet include information gathered over time
- as it is the case for the consensus-based dynamic analysis (see Section 6.3).
This is why the static consensus analysis is also applicable for single time point
measurements.

The static consensus analysis is conducted by generation of a Steiner tree (Klein-
berg, J and Tardos E, 2006) on basis of consensus proteins and TFs identified
in downstream and upstream analysis for each corresponding time point. The
underlying graph used is the protein-protein-interaction (PPI) graph from the
STRING database reduced to the connected nodes. The consensus proteins
and TFs are considered as terminal nodes and are connected via a shortest
path-based approximation of the Steiner tree algorithm (Takahashi, H and A
Matsuyama, 1980; Sadeghi, A and Fröhlich, H, 2013) across the reduced PPI-
STRING-graph. Subsequently knowledge of TF-target gene pairs from the cho-
sen database is used to expand the graph with matching genes/transcripts from
both upstream and downstream analysis. In case the consensus graph contains
corresponding proteins and genes/transcripts, feedback loops are added auto-
matically.

consensusGraphs = staticConsensusNet(data_omics, updown = TRUE,

phospho = TRUE)

The parameters ‘updown’ and ‘phospho’ give the same filtering options as in
the intersection analysis.
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6.3 Consensus-based dynamic analysis

Unlike the static consensus analysis, the consensus-based dynamic analysis takes
into consideration also the signaling changes over time by applying dynamic
bayesian network inference. The packages used for the consensus-based dynamic
analysis are longitudinal (Opgen-Rhein, R and Strimmer, K, 2006; Opgen-Rhein
R and Strimmer K, 2006) to adjust the format of the data and the actual net-
work inference part is done via the ebdbNet (Rau, A et al., 2010) package. This
package includes an iterative empirical Bayesian procedure with a Kalman filter
estimating the posterior distributions of the network parameters. The defined
prior structure of the network is used for a straightforward estimation of hy-
perparameters via an expectation maximization (EM)-like algorithm and the
dimension of the hidden states are determined via the singular value decompo-
sition (SVD) of a block-Hankel matrix.

The nodes included into the network inference step are nodes which are part of
the static consensus graphs from corresponding time points of the two different
measurement types, i.e.

1. proteins identified in upstream and downstream analysis at the same time
points,

2. Steiner nodes identified via static consensus analysis,

3. TFs identified in upstream and downstream analysis at the same time
points and

4. genes/transcripts identified in upstream and downstream analysis at the
same time points.

However, all measured time points of these nodes are taken into consideration.
To apply dynamic network inference a reasonable number of measurements
needs to be available. As in most cases of parallel phosphoprotein and gene/transcript
measurements only very few corresponding time steps are available it is neces-
sary to artificially introduce additional time steps. This is done by generating
smoothing splines applied on the log fold changes provided by the user under
the simplifying assumption of a gradual change of signaling between the differ-
ent time points.

This assumption, however, has to be applied consciously and carefully, as there
might be higher frequency signaling components superimposed (see for a com-
prehensive analysis of temporal dynamics of gene expression (Yosef N and Regev
A, 2011). In theory a signal has to be sampled two times its maximal fre-
quency in order to be able to reconstruct it exactly from time discrete measure-
ments (Nyquist-Shannon sampling theorem (Shannon, CA and Weaver W, 1949;
Nyquist, H, 1928). This means only exact interpretation of those signaling axes
are possible that have a frequency which is smaller than half of the sampling
frequency. However, under certain preconditions on signal structure and the
sampling operator reconstruction of the original signal can be done with a lower
sampling rate (Blumensath, T and Michael ED, 2009). This is an interesting
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starting point for a more comprehensive dynamic analysis of the expected sig-
nals and the sampling needed for an extensive data mining of omics data sets
measured in parallel, but exceeds the scope of this package.

The number of time points generated additionally via smoothing splines is based
on simulation results of ebdbNet analysis for median area under the curve (AUC)
values of receiver operating characteristic (ROC) curves: In their results it was
shown that a plateau at around 50 to 75 time points was reached. Thus in
pwOmics 50 time points are predicted with smoothing splines in order to ap-
ply dynamic bayesian network inference on omics data sets measured in parallel.

After generation of these time points a block-Hankel matrix of autocovariances
is constructed based on the time series abundance/expression data. For this the
user needs to provide the laghankel parameter, specifying the maximum relevant
time lag to be used in constructing the block-Hankel matrix. With a singular
value decomposition (see function ‘hankel’ of ebdbNet package) the number of
hidden states can be determined. Here, the user can specify the cutoffhankel
parameter to choose the cutoff to determine the desired percent of total variance
explained by the singular values. Additional parameters on convergence criteria
and iterations performed can be specified. For further details the user is referred
to (Rau, A et al., 2010).

library(ebdbNet)

library(longitudinal)

dynInferredNet = consDynamicNet(data_omics, consensusGraphs,

laghankel = 3, cutoffhankel = 0.9)

7 Time profile clustering

An additional analysis option is clustering of co-regulation patterns over time.
It provides information about the signaling molecules with common dynamic
behaviour and thus allows to draw conclusions in terms of signaling chronol-
ogy. Time profile clustering is performed as soft clustering based on the Mfuzz
package (Futschik, M, 2012). The advantage of this clustering method is that a
protein, TF or gene/transcript can be assigned to several clusters, thus reducing
the sensitivity to noise and the information loss hard clustering exhibits. It is
implemented as fuzzy c-means algorithm (Hathaway, R and Bezdek, J, 1986)
and iteratively optimizes the objective function to minimize the variation of
objects within the clusters. The user needs to provide a ‘min.std’ threshold pa-
rameter if proteins or genes/transcripts with a low standard deviation should be
excluded. In addition the maximum number of cluster centers which should be
tested in the ‘minimum distance between cluster centroid test’ has to by given.
This number is used as initial number to determine the data-specific maximal
cluster number based on the number of distinct data points. For more details
see (Futschik, M, 2012) and (Schwämmle, V and Jensen ON, 2010).

library(Mfuzz)

fuzzyClusters = clusterTimeProfiles(dynInferredNet,

min.std = 0,

ncenters = 12)
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fuzzyClusters$size

fuzzyClusters$cluster

8 Identification of signaling axes

Based on the provided data it is also possible to follow the signal through the
different cellular levels individually, such that individual signaling axes can be
identified.
The user can seach for individual axes downstream of a certain phosphoprotein
by using the ‘findSignalingAxes’ function and indicating the time point of inter-
est. The time point needs to comply with the ones read in in the ‘readOmics’
function.

MAPK1_axis1 = findSignalingAxes(data_omics,

phosphoprot = "MAPK1", tpDS = 1)

MAPK1_axis18 = findSignalingAxes(data_omics,

phosphoprot = "MAPK1", tpDS = 18)

BLNK_axis13 = findSignalingAxes(data_omics,

phosphoprot = "BLNK", tpDS = 13)

The output is a list of pathways that are identified for this time point down-
stream of the phosphoprotein of interest. Sublists give information on the tran-
scription factors in these pathways, the direction of regulation (up/down), the
target genes and their matching transcripts from the transcriptome data set.
Based on these results the user can produce a summarized results table con-
taining those target genes of the axis, which are matching the transcriptome
data, the direction of their regulation coming from the phosphoproteome data
set (up/down), the direction of regulation coming from the transcriptome data
set (up/down) and the summarized complying information:

MAPK1_transcripts = get_matching_transcripts(data_omics,

MAPK1_axis1)

If the user is interested in an overall analysis of all signaling axes in the data
sets, he can apply:

generate_DSSignalingBase(data_omics,

timepoints = c(0.25, 1, 4, 8, 13, 18, 24))

with chosen time points. This function creates a folder structure for each con-
sensus protein in the working directory, which is filled with .RData objects and
.csv tables that carry the information for the individual time points of interest.

9 Visualization

To complement the results from the different comparisons and analyses (ac-
cessible via the ‘get...’ functions) the pwOmics package provides visualization
functions for the different analyses. The consensus graphs of the static analysis
for one or more corresponding time points can be plotted with the following
function (see Figure 2 and Figure 3):
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Figure 2: pwOmics static consensus graph: Time point 1 hr.
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Figure 3: pwOmics static consensus graph: Time point 24 hrs.
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plotConsensusGraph(consensusGraphs, data_omics)

The consensus-based dynamic analysis result can be visualized as follows (see
Figure 4):

plotConsDynNet(dynInferredNet, sig.level = 0.7)

Here, the parameter ‘sig.level’ is the significance level used as cutoff for plotting
edges in the network and has to be specified in the range between 0 and 1.
Furthermore the user can indicate if unconnected nodes should be removed and
provide additional igraph (Csardi, G and Nepusz T, 2006) layout parameters.

Dynamic consensus net

MAPK1

BLNK

MAPK14

PRKAR2B

CD22

STAT3

CCL4

NR4A3

PIM1

DUSP1EGR1

MCL1

EGR3

consensus proteins
consensus genes

Figure 4: pwOmics dynamic network graph.

However, as the user can access the networks easily the tkplot function from the
igraph R package is a nice interactive graph drawing alternative. In addition
plot parameters can be easily changed as the result networks are of class ‘igraph’.
In order to plot the results from time profile clustering (see Figure 5) the fol-
lowing function can be used:

plotTimeProfileClusters(fuzzyClusters)

The different colours represent the different clusters. The legend is only shown if
the number of genes and proteins is not too large. Otherwise the user can easily
access this information by having a look to the output of the ‘clusterTimePro-
files’ function which provides information about cluster centers, the number of
data points in each cluster of the closest hard clustering, cluster indices, and
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additional parameters explained in detail in the ‘mfuzz’ documentation. In the
legend the attachments ‘ g’ and ‘ p’, respectively, indicate, if the node originally
derives from phosphoprotein or gene/transcript measurements.
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Figure 5: pwOmics time profile clusters.

It is furthermore possible to investigate temporal correlations of phosphoprotein
and transcriptome measurements.

temp_correlations(consensusGraphs[[1]],

timepointsprot = c(1,4,8,13,18,24),

timepointstrans = c(1,4,8,13,18,24),

foldername = "~/TempCorr_",

trans_sign = "~/transcriptome_signif.txt",

trans_sign_names = c("FC_1", "FC_4", "FC_8", "FC_13",

"FC_18", "FC_24"),

phospho_sign = "~/phospho_anno.txt",

phospho_sign_names = c("rat_1", "rat_4","rat_8","rat_13",

"rat_18", "rat_24"))

This function needs as input the static consensus graph with the consensus pro-
teins of interest, the protein and transcriptome measurement time points for
which correlation should be investigated, the name of the folder that should be
generated as results folder, the phosphoproteome and transcriptome measure-
ment files and the corresponding column names for the selected time points. It
is necessary that the gene symbols read in in the ‘readOmics’ function are reused
here. In the tab-delimited phosphoproteome measurement file (.txt) additional
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phosphoprotein information can be stored in columns ‘Amino.acid’, ‘Position’
and ‘Multiplicity’. This allows to compare correlations for individual phospho-
rylations.
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Figure 6: Temporal correlation of MAPK14 with transcripts identified to be
resulted downstream.

10 References

� Yeger-Lotem, Esti et al. (2009). “Bridging high-throughput genetic and
transcriptional data reveals cellular responses to alpha-synuclein toxicity”.
In: Nature Genetics 41.3, pp. 316–323. issn: 1546-1718. doi: 10.1038/ng.
337.

� Boris Kholodenko et al. (2012). “Computational Approaches for Analyz-
ing Information Flow in Biological Networks”. In: Science Signaling 5,
re1.

� Nishimura, Darryl (2001). “BioCarta”. In: Biotech Software & Internet
Report 2.3, pp. 117–120. issn: 1527-9162. doi: 10.1089/152791601750294344.
url: http://online.liebertpub.com/doi/abs/10.1089/152791601750294344 (vis-
ited on 01/02/2015).

� Milacic, Marija et al. (2012). “Annotating cancer variants and anti-cancer
therapeutics in reactome”. In: Cancers 4.4, pp. 1180–1211. issn: 2072-
6694. doi: 10.3390/cancers4041180.

18



� Croft, David et al. (2014). “The Reactome pathway knowledgebase”. In:
Nucleic Acids Research 42.Database issue, pp. D472–477. issn: 1362-4962.
doi: 10.1093/nar/gkt1102.

� Schaefer, Carl F. et al. (2009). “PID: the Pathway Interaction Database”.
In: Nucleic Acids Research 37.Database issue, pp. D674–679. issn: 1362-
4962. doi: 10.1093/nar/gkn653.

� Kanehisa, Minoru et al. (2014). “Data, information, knowledge and
principle: back to metabolism in KEGG”. In: Nucleic Acids Research
42.Database issue, pp. D199–205. issn: 1362-4962. doi: 10.1093/nar/gkt1076.

� Kanehisa, M. and S. Goto (2000). “KEGG: kyoto encyclopedia of genes
and genomes”. In: Nucleic Acids Research 28.1, pp. 27–30. issn: 0305-
1048. 19

� Franceschini, Andrea et al. (2013). “STRING v9.1: protein-protein in-
teraction networks, with increased coverage and integration”. In: Nucleic
Acids Research 41. Database issue, pp. D808–D815. issn: 0305-1048. doi:
10.1093/ nar / gks1094. url: http : / / www . ncbi . nlm . nih . gov /
pmc / articles / PMC3531103/ (visited on 01/02/2015).

� Lachmann, Alexander et al. (2010). “ChEA: transcription factor regu-
lation inferred from integrating genome-wide ChIP-X experiments”. In:
Bioinformatics (Oxford, England) 26.19, pp. 2438–2444. issn: 1367-4811.
doi: 10.1093/bioinformatics/btq466.

� Portales-Casamar, Elodie et al. (2009). “The PAZAR database of gene
regu- latory information coupled to the ORCA toolkit for the study of reg-
ulatory sequences”. In: Nucleic Acids Research 37.suppl 1, pp. D54–D60.
issn: 0305-1048, 1362-4962. doi: 10.1093/nar/gkn783.

� Portales-Casamar, Elodie et al. (2007). “PAZAR: a framework for col-
lection and dissemination of cis-regulatory sequence annotation”. In:
Genome Biology 8.10, R207. issn: 1465-6906. doi: 10.1186/gb- 2007-
8- 10- r207.

� Morgan M Carlson M, Tenenbaum D and Arora S. AnnotationHub: Client
to access AnnotationHub resources. R package version 2.22.0.

� Yosef, Nir and Aviv Regev (2011). “Impulse control: Temporal dynamics
in gene transcription”. In: Cell 144.6, pp. 886–896. issn: 0092-8674.
doi: 10. 1016/j.cell.2011.02.015. url: http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3148525/ (visited on 01/03/2015).

� Kleinberg, J and E Tardos (2006). Algorithm Design. Pearson, Boston,
MA.

� Takahashi, H and A Matsuyama (1980). “An approximate solution for
the Steiner problem in graphs”. In: Math. Jap. 24, pp. 573–577.
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11 Session Information

> sessionInfo()

R version 3.4.0 (2017-04-21)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.2 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.5-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.5-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):

[1] compiler_3.4.0 tools_3.4.0

21


	Introduction
	Databases
	Example dataset
	Data pre-processing
	Individual analysis
	Downstream analysis
	Upstream analysis

	Consensus analysis
	Intersection analysis
	Static consensus analysis
	Consensus-based dynamic analysis

	Time profile clustering
	Identification of signaling axes
	Visualization
	References
	Session Information

