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Capabilities

The packages required for this vignette are

library(bsseq)

Introduction

This R package is the reference implementation of the BSmooth algorithm for analyzing whole-genome
bisulfite sequencing (WGBS) data. This package does not contain alignment software, which is available
from http://rafalab.jhsph.edu/bsmooth. This package is not intended for analysis of single-loci bisulfite
sequencing (typically Sanger bisulfite sequencing or pyro bisulfite sequencing).

The package has been used to analyze capture bisulfite sequencing data. For this type of data, the
most useful parts of the package is its data-handling functions. The BSmooth algorithm itself may not
be useful for a standard capture bisulfite sequencing experiment, since it relies heavily on smoothing,
which again requires that we have measured methylation in bigger regions of the genome.

The BSmooth algorithm is described in detail in [1]. It was applied to human cancer data in [2] and we
have also used it to analyze data from Rhesus Macaque [3]. Specifically, the algorithm uses smoothing
to get reliable semi-local methylation estimates from low-coverage bisulfite sequencing. After smoothing
it uses biological replicates to estimate biological variation and identify differentially methylated regions
(DMRs). The smoothing portion could be used even on a single sample, but we believe that variation
between individuals is an important aspect of DNA methylation and needs to be accounted for, see also
[4] for a relevant discussion.

The main focus for our development has been the analysis of CpG methylation in humans, and we have
successfully used it in other primates [3]. It is highly likely that the approach will work in non-human
organisms, but care must be taken: the smoothing parameters (which we have selected based on human
data) should be evaluated carefully. Furthermore, it may not be suitable at all for organisms with vastly
different (from humans) methylation structures.
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With respect to non-CpG methylation, the situation is mixed. We have never used the algorithm to
analyze non-CpG methylation, but it should be straightforward to do so. However, the data structures
used in the current code might not conveniently scale from the 28.2M CpGs in the human genome
to the roughly 2x585M Cs (it may well be possible to do an separate analysis for each chromosome).
This should be less of an issue for organisms with smaller genomes. We are considering changing these
underlying data structures to allow for easier analysis of non-CpG methylation in humans.

System Requirements

The package requires that all the data is loaded into system memory. By “data” we do not mean the
individual reads (which is big for a whole-genome experiment). Instead, what we need are summarized
data given us the number of reads supporting methylation as well as the total number of reads at each
loci. Focusing on human data, we need to work with objects with a maximum of 28.2 million entries,
per sample (since there are roughly 28.2 millions CpGs in the human genome). This provides us with
an upper limit on the data object.

Based on this, the 8 samples from [2] including the smoothed values, take up roughly 1.2GB of RAM,
meaning an analysis can easily be done with 8GB of RAM. In order to improve speed, the package
allows for easy parallel processing of samples/chromosomes. This will require multiple copies of the
data object for each core used, increasing the memory usage substantially to perhaps even 32GB. This
can be avoided by processing the samples sequentially at the cost of speed.

On a 64GB node, the 8 samples from [2] takes roughly one hour to process in parallel using 8 cores
(using much less than 64GB of RAM in total). This does not including parsing the data from the
alignment output files.

Some terminology

Because not all methylation happens at CpG sites, we have tried to use the term “methylation loci”
instead of CpG. We use this term to refer to a single-base methylation site.

Some standard terms from the DNA methylation field: differentially methylated region (DMR), hyper
methylation (methylation that is higher in one condition/sample than in another), hypo methylation
(methylation that is lower in one condition/sample than in another), and finally differentially methylated
position (DMP) referring to a single loci.

Citation

If you use this package, please cite our BSmooth paper [1].
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Overview

The package assumes that the following data has been extracted from alignments:

1. genomic positions, including chromosome and location, for methylation loci.
2. a (matrix) of M (Methylation) values, describing the number of read supporting methylation

covering a single loci. Each row in this matrix is a methylation loci and each column is a sample.
3. a (matrix) of Cov (Coverage) values, describing the total number of reads covering a single loci.

Each row in this matrix is a methylation loci and each column is a sample.

We can have a look at some data from [5], specifically chromosome 22 from the IMR90 cell line.

data(BS.chr22)

BS.chr22

## An object of type 'BSseq' with

## 494728 methylation loci

## 2 samples

## has not been smoothed

## All assays are in-memory

The genomic positions are stored as a GRanges object GRanges are general genomic regions; we
represent a single base methylation loci as an interval of width 1 (which may seem a bit strange, but
there are good reasons for this). For example, the first 4 loci in the Lister data are

head(granges(BS.chr22), n = 4)

## GRanges object with 4 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr22 [14430632, 14430632] *

## [2] chr22 [14430677, 14430677] *

## [3] chr22 [14430687, 14430687] *

## [4] chr22 [14430702, 14430702] *

## -------

## seqinfo: 1 sequence from an unspecified genome; no seqlengths

We also have the M and Cov matrices

head(getCoverage(BS.chr22, type = "M"), n = 4)

## DelayedMatrix object of 4 x 2 doubles:

## r1 r2

## [1,] 17 20

## [2,] 4 20

## [3,] 6 19

## [4,] 2 4

head(getCoverage(BS.chr22), n = 4)
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## DelayedMatrix object of 4 x 2 doubles:

## r1 r2

## [1,] 18 23

## [2,] 11 28

## [3,] 10 25

## [4,] 8 21

Since CpG methylation is symmetric on the two strands of a chromosome, we aggregated reads on the
forward and reverse strand to form a single value, and we assume the genomic position points to the C
of the CpG. It is not crucial in any way to do this, one may easily analyze each strand separately, but
CpG methylation is symmetric and this halves the number of loci.

How to input your methylation data into this data structure (called a BSseq object) is described in a
section below. We also have a section on how to operate on these types of objects.

An analysis typically consists of the following steps.

1. Smoothing, using the function BSmooth.
2. Compute t-statistics, using the function BSmooth.tstat. This converts the BSseq object into a

BSseqTstat object.
3. Threshold these t-statistics to identify DMRs, using the function dmrFinder, returning a simple

data.frame.

It is usually a good idea to look at the smoothed data either before or after identifying DMRs. This
can be done using the functions plotRegion and plotManyRegions.

We also have functions for assessing goodness of fit for binomial and poison models; this is like to be
of marginal interest to most users. See the man page for binomialGoodnessOfFit.

We also allow for easy computation of Fisher’s exact test for each loci, using the function fisherTests.

Using objects of class BSseq

Basic operations

Objects of class BSseq contains a GRanges object with the genomic locations. This GRanges object
can be obtained by granges. A number of standard GRanges methods works directly on the BSseq

object, such as start, end, seqnames (chromosome names) etc.

These objects also contains a phenoData object for sample pheno data. Useful methods are sampleNames,
pData.

Finally, we have methods such as dim, ncol (number of columns; number of samples), nrow (number
of rows; number of methylation loci).

Objects can be subsetted using two indicies BSseq[i,j] with the first index being methylation loci
and the second index being samples. Another very useful way of subsetting the object is by using the
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method subsetByOverlaps. This selects all methylation loci inside a set of genomic intervals (there
is a difference between first and second argument and either can be BSseq or GRanges).

Examples:

head(start(BS.chr22), n = 4)

## [1] 14430632 14430677 14430687 14430702

head(seqnames(BS.chr22), n = 4)

## factor-Rle of length 4 with 1 run

## Lengths: 4

## Values : chr22

## Levels(1): chr22

sampleNames(BS.chr22)

## [1] "r1" "r2"

pData(BS.chr22)

## DataFrame with 2 rows and 1 column

## Rep

## <character>

## r1 replicate1

## r2 replicate2

dim(BS.chr22)

## [1] 494728 2

BS.chr22[1:6,1]

## An object of type 'BSseq' with

## 6 methylation loci

## 1 samples

## has not been smoothed

## All assays are in-memory

subsetByOverlaps(BS.chr22,

GRanges(seqnames = "chr22",

ranges = IRanges(start = 1, end = 2*10^7)))

## An object of type 'BSseq' with

## 67082 methylation loci

## 2 samples

## has not been smoothed

## All assays are in-memory
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Data handling

We have a number of functions for manipulating one or more BSseq objects.

BSseq instantiates an object of class BSseq. Genomic locations are passed in, either as a GRanges

object (argument gr) or as chromosome and location vectors (arguments chr and pos). The arguments
M and Cov accepts matrices, and it is possible to directly give it a phenoData object.

M <- matrix(0:8, 3, 3)

Cov <- matrix(1:9, 3, 3)

BStmp <- BSseq(chr = c("chr1", "chrX", "chr1"), pos = 1:3,

M = M, Cov = Cov, sampleNames = c("A1","A2", "B"))

A BSseq object may be ordered by orderBSseq. This ensures that data from a single chromosome
appears in an ordered, contiguous block. There is also the possibility for specifying the chromosome
order (this is less important). The smoothing functions assumes that the underlying BSseq has been
ordered.

granges(BStmp)

## GRanges object with 3 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr1 [1, 1] *

## [2] chr1 [3, 3] *

## [3] chrX [2, 2] *

## -------

## seqinfo: 2 sequences from an unspecified genome; no seqlengths

BStmp <- orderBSseq(BStmp, seqOrder = c("chr1", "chrX"))

granges(BStmp)

## GRanges object with 3 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr1 [1, 1] *

## [2] chr1 [3, 3] *

## [3] chrX [2, 2] *

## -------

## seqinfo: 2 sequences from an unspecified genome; no seqlengths

chrSelectBSseq performs the often useful task of selecting one or more chromosomes and can also
order the output. In case order = TRUE, the output is ordered according to the order of the seqnames

argument.

chrSelectBSseq(BStmp, seqnames = "chr1", order = TRUE)

## An object of type 'BSseq' with

## 2 methylation loci
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## 3 samples

## has not been smoothed

## All assays are in-memory

Of course, in this case the function does little, since BS.chr22 already only contains data from chro-
mosome 22.

combine combines two BSseq objects in the following way: the samples for the return objects is the
union of the samples from the two objects, and the methylation loci are the union of the two methylation
loci. The two objects do not need to have measured the same loci (in the example below, BStmp has
data on chromosome 1 and X)..

BStmp2 <- combine(BStmp, BS.chr22[1:3,])

## Warning in .Seqinfo.mergexy(x, y): The 2 combined objects have no sequence levels

in common. (Use

## suppressWarnings() to suppress this warning.)

granges(BStmp2)

## GRanges object with 6 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr1 [ 1, 1] *

## [2] chr1 [ 3, 3] *

## [3] chrX [ 2, 2] *

## [4] chr22 [14430632, 14430632] *

## [5] chr22 [14430677, 14430677] *

## [6] chr22 [14430687, 14430687] *

## -------

## seqinfo: 3 sequences from an unspecified genome; no seqlengths

getCoverage(BStmp2)

## DelayedMatrix object of 6 x 5 doubles:

## A1 A2 B r1 r2

## [1,] 1 4 7 0 0

## [2,] 3 6 9 0 0

## [3,] 2 5 8 0 0

## [4,] 0 0 0 18 23

## [5,] 0 0 0 11 28

## [6,] 0 0 0 10 25

collapseBSseq performs the often useful task of adding several columns of a BSseq object. This is
often used in the beginning of an analysis where each column may correspond to a lane and several
such columns represents the data for a single biological sample.

collapseBSseq(BStmp, columns = c("A", "A", "B"))
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## An object of type 'BSseq' with

## 3 methylation loci

## 2 samples

## has not been smoothed

## All assays are in-memory

Obtaining coverage (methylation)

Coverage, either Cov or M values, are obtained by getCoverage, using the type argument:

head(getCoverage(BS.chr22, type = "Cov"), n = 4)

## DelayedMatrix object of 4 x 2 doubles:

## r1 r2

## [1,] 18 23

## [2,] 11 28

## [3,] 10 25

## [4,] 8 21

head(getCoverage(BS.chr22, type = "M"), n = 4)

## DelayedMatrix object of 4 x 2 doubles:

## r1 r2

## [1,] 17 20

## [2,] 4 20

## [3,] 6 19

## [4,] 2 4

This will return a – possibly very large – matrix. It is also possible to get region based coverage by
using the regions argument to the function. This argument is either a data.frame (with columns
chr, start and end) or a GRanges object. Let us do an example

regions <- GRanges(seqnames = c("chr22", "chr22"),

ranges = IRanges(start = 1.5 * 10^7 + c(0,200000),

width = 1000))

getCoverage(BS.chr22, regions = regions, what = "perRegionTotal")

## DelayedMatrix object of 2 x 2 doubles:

## r1 r2

## [1,] 30 38

## [2,] NA NA

When what is perRegionTotal the return value is the total coverage of each region (and note that
regions without coverage return NA). Similarly, perRegionAverage yields the average coverage in the
region. However, it is often useful to get the actual values, like
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getCoverage(BS.chr22, regions = regions, what = "perBase")

## [[1]]

## [,1] [,2]

## [1,] 21 30

## [2,] 2 8

## [3,] 7 0

##

## [[2]]

## NULL

This is the default behaviour, and it returns a list where each element corresponds to a region. Note
that regions with no coverage gets a NULL.

Methylation estimates can be obtained in the same way, using the function getMeth. If type is set to
raw the function returns simple single-loci methylation estimates (which are M/Cov). To get smoothed
estimates, the BSseq object needs to have been smoothed using Bsmooth, and type set to smooth

(default). The getCoverage, getMeth has a regions and a what argument. For getMeth the
what argument can be perBase or perRegion (the later is really the per-region average methylation).
Additionally, confidence intervals can be computed using a method taking possibly low coverage loci
into account as well as loci where the methylation percentage might be close to 0 or 1 [6]. Currently,
confidence intervals cannot be computed for region-level summary estimates. Examples

getMeth(BS.chr22, regions, type = "raw")

## [[1]]

## [,1] [,2]

## [1,] 0.1904762 0.1666667

## [2,] 1.0000000 0.7500000

## [3,] 0.1428571 NaN

##

## [[2]]

## NULL

getMeth(BS.chr22, regions[2], type = "raw", what = "perBase")

## [[1]]

## NULL

Reading data

Alignment output from the BSmooth alignment suite

It is straightforward to read output files (summarized evidence) from the BSmooth alignment suite,
using read.bsmooth. This function takes as argument a number of directories, usually corresponding
to samples, with the alignment output. Sometimes, one might want to read only certain chromosomes,
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which can be accomplished by the seqnames argument. Also, the default values of qualityCutoff =

20 ensures that we do not use methylation evidence with a base quality strictly lower than 20 (since we
may not be confident whether the read really supports methylation or not). The function read.bsmooth

allows for both gzipped and non-gzipped input files. It is faster to read gzipped files, so we recommend
gzipping post-alignment.

During the development of BSmooth we experimented with a number of different output formats. These
legacy formats can be read with read.umtab and read.umtab2.

Alignment output from other aligners

We are interested in adding additional parsers to the package; if your favorite alignment software is not
supported, feel free to get in touch.

In general, we need summarized methylation evidence. In short, for each methylation loci, we need to
know how many reads cover the loci and how many of those reads support methylation.

As an example, consider the Lister data. The files posted online looks like

> head mc_imr90_r1_22

assembly position strand class mc h

22 14430632 + CG 9 10

22 14430633 - CG 8 8

22 14430677 + CG 1 1

22 14430678 - CG 3 10

22 14430688 - CG 6 10

22 14430703 - CG 2 8

22 14431244 + CG 5 10

22 14431245 - CG 5 11

For these files, the evidence is split by strand. It is often easiest to read in one sample at a time,
instantiate a BSseq object and the use combine and collapseBSseq to combine the samples, since
these functions deal objects that have different sets of CpGs. In the Lister data, note that the position
is the position of the “C”, so basically, if you want to combine the evidence from both strands, CpGs
on the “-” strand needs to have 1 subtracted from their position. A full script showing how these files
are used to create BS.chr22 can be found in inst/scripts/get BS.chr22.R in the bsseq package.
The path of this file may be found by

system.file("scripts", "get_BS.chr22.R", package = "bsseq")

Analysis

Computing smoothed methylation levels is simple. We subset BS.chr22 so we only smooth 1 sample,
for run-time purpose
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BS.chr22.1 <- BSmooth(BS.chr22[,"r1"], verbose = TRUE)

## [BSmooth] preprocessing ... done in 0.9 sec

## [BSmooth] smoothing by 'sample' (mc.cores = 1, mc.preschedule = FALSE)

## [BSmooth] smoothing done in 44.7 sec

BS.chr22.1

## An object of type 'BSseq' with

## 494728 methylation loci

## 1 samples

## has been smoothed with

## BSmooth (ns = 70, h = 1000, maxGap = 100000000)

## All assays are in-memory

A number of arguments pertains to using multiple cores. This is useful if you have multiple samples
or chromosomes. mc.cores tells BSmooth how many cores to use and parallelBy describes whether
the parallelization is over samples or chromosomes. If the parallelization is over samples, each core will
compute the smoothing of the entire genome. And if it is over samples, each cores will smooth all
samples for one or more chromosomes. The appropriate choice depends on the number of samples and
cpu cores available. If you have the exact same number of samples as cores, the fastest is parallelBy
= "sample". If you have less samples than cores, the fastest is parallelBy = "chromosome". The
argument mc.preshedule should not need to be changed (unless perhaps if a small value of maxGap

is uses); see the man page for parallel::mclapply. Note that setting mc.cores to a value greater
than 1 is not support on MS Windows due to a limitation of the operating system.

For a more detailed discussion of the analysis tools, read the companion vignette “Analyzing WGBS
with the bsseq package”, which also finding DMRs and plotting them.

Fisher’s exact tests may be efficiently computed using the function fisherTests.

Binomial and poisson goodness of fit tests statistics may be computed using binomialGoodnessOfFit

and poissonGoodnessOfFit.
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