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Differential expression analysis

We assessed the sensitivity and specificity of various algorithms using simulation
to complement an analysis on real data. The following Negative Binomial simu-
lation samples (mean, dispersion) pairs from the joint distribution of estimated
means and dispersions from the Pickrell et al dataset. The true differences
between two groups are drawn from either z, 0 or -z, where the 0 component
represents 80% of the genes. The absolute value of the effect size z for the 20%
of genes with differential expression is varied, as is the total sample size m (such
that each group has m/2 samples). 10,000 genes were simulated, and each com-
bination of parameters was repeated 6 times. The code to generate these results
is in simulateDE.R and the code to run each algorithm is in runScripts.R.

Note: DSS denotes running DSS and then Benjamini-Hochberg adjustment on p-
values. DSS-FDR denotes the native FDR estimation of the DSS software. SAM-
seq denotes running SAMseq with p-value estimation and Benjamini-Hochberg
adjustment for FDR. SAMseq-FDR denotes the native FDR estimation and no
p-value estimation. EBSeq likewise only produces FDR.

load("results_simulateDE.RData")
res$m <- factor(res$m)
levels(res$m) <- paste0("m=",levels(res$m))
res$effSize <- factor(res$effSize)
levels(res$effSize) <- c("fold change 2","fold change 3","fold change 4")
res$algorithm <- factor(res$algorithm)
resClean <- res[!is.na(res$oneminusspecpvals),]

library("ggplot2")
p <- ggplot(resClean, aes(y=sensitivity, x=oneminusspecpvals,

color=algorithm, shape=algorithm))
p + geom_point() + theme_bw() + facet_grid(effSize ~ m) +
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scale_shape_manual(values=1:9) +
xlab("1 - specificity (false positive rate)") +
coord_cartesian(xlim=c(-.003,.035)) +
geom_vline(xintercept=.01) +
scale_x_continuous(breaks=c(0,.02))

m=6 m=8 m=10 m=20
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Figure 1: Sensitivity and specificity on simulated datasets.

Use of simulation to assess the sensitivity and specificity of algorithms across
combinations of sample size and effect size. The sensitivity was calculated as the
fraction of genes with adjusted p-value less than 0.1 among the genes with true
differences between group means. The specificity was calculated as the fraction
of genes with p-value greater than 0.01 among the genes with no true differences
between group means. The p-value was chosen instead of the adjusted p-value,
as this allows for comparison against the expected fraction of p-values less than
a critical value given the uniformity of p-values under the null hypothesis.

library("ggplot2")
p <- ggplot(res, aes(y=sensitivity, x=oneminusprec,

color=algorithm, shape=algorithm))
p + geom_point() + theme_bw() + facet_grid(effSize ~ m) +

scale_shape_manual(values=1:11) +
xlab("1 - precision (false discovery rate)") +
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coord_cartesian(xlim=c(-.03, .3)) +
geom_vline(xintercept=.1)

m=6 m=8 m=10 m=20
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Figure 2: Sensitivity and precision on simulated datasets.

Sensitivity and precision of algorithms across combinations of sample size and
effect size. The sensitivity was calculated as the fraction of genes with adjusted
p-value less than 0.1 among the genes with true differences between group means.
The precision was calculated as the fraction of genes with true differences between
group means among those with adjusted p-value less than 0.1.

library("reshape")

##
## Attaching package: 'reshape'

## The following objects are masked from 'package:S4Vectors':
##
## expand, rename

id.vars <- c("algorithm","effSize","m")
measure.vars <- c("sens0to20","sens20to100","sens100to300","sensmore300")
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melted <- melt(res[,c(id.vars,measure.vars)], id.vars=id.vars,
measure.vars=measure.vars)

names(melted) <- c(id.vars, "aveexp", "sensitivity")
levels(melted$aveexp) <- c("<20","20-100","100-300",">300")
p <- ggplot(melted, aes(y=sensitivity, x=aveexp, group=algorithm,

color=algorithm, shape=algorithm))
p + stat_summary(fun.y="mean", geom="line") +

stat_summary(fun.y="mean", geom="point") +
theme_bw() + facet_grid(effSize ~ m) +
scale_shape_manual(values=1:11) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
xlab("mean counts")
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Figure 3: Sensitivity dependence on mean count.

The sensitivity of algorithms across combinations of sample size and effect size,
and further stratified by the mean of counts of the differentially expressed genes
in the simulation data. Points indicate the average over 6 replicates. Algorithms
all show a similar dependence of sensitivity on the mean of counts. The height
of the sensitivity curve should be compared with the previous plot indicating
the total sensitivity and specificity of each algorithm.
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Performance in the presence of outliers

The following plots examine the affect of outliers on differential calls by the two
Negative-Binomial-based methods DESeq2 and edgeR. DESeq2 was run with
default settings, after turning off gene filtering, and after turning off outlier
replacement. edgeR was run with default settings, and after using the robust
option. The code to generate these results is in simulateOutliers.R.

load("results_simulateOutliers.RData")
# when < 7 replicates DESeq does not replace
res <- res[!(res$algorithm == "DESeq2-noRepl" & res$m < 14),]
# when >= 7 replicates DESeq does not filter
res <- res[!(res$algorithm == "DESeq2-noFilt" & res$m >= 14),]
res$m <- factor(res$m)
levels(res$m) <- paste0("m=",levels(res$m))
res$percentOutlier <- 100 * res$percentOutlier
res$percentOutlier <- factor(res$percentOutlier)
levels(res$percentOutlier) <- paste0(levels(res$percentOutlier),"% outlier")

Because the sensitivity-specificity curve is evaluated using the p value, we use
fhe following code to pick out the point on the sensitivity-specificity curve with
largest p value such that the nominal adjusted p-value is less than 0.1.

resSensPadj <- res[res$senspadj < .1,]
resSensPadj <- resSensPadj[nrow(resSensPadj):1,]
resSensPadj <- resSensPadj[!duplicated(with(resSensPadj,

paste(algorithm, m, percentOutlier))),]
summary(resSensPadj$senspadj)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.02727 0.05436 0.08245 0.07441 0.09297 0.09915

library("ggplot2")
p <- ggplot(res, aes(x=oneminusspec, y=sensitivity, color=algorithm))
p + scale_x_continuous(breaks=c(0,.1,.2)) +

scale_y_continuous(breaks=c(0,.2,.4,.6,.8)) +
geom_line() + theme_bw() +
facet_grid(m ~ percentOutlier) + xlab("1 - specificity") +
coord_cartesian(xlim=c(-.03, .25), ylim=c(-.05, .9)) +
geom_point(aes(x=oneminusspec, y=sensitivity, shape=algorithm),

data=res[res$precpadj == .1,])

Sensitivity-specificity curves for detecting true differences in the presence of
outliers. Negative Binomial counts were simulated for 4000 genes and total sample
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Figure 4: Sensitivity and specificity in presence of outliers.

sizes (m) of 10 and 20, for a two-group comparison. 80% of the simulated genes
had no true differential expression, while for 20% of the genes true logarithmic
(base 2) fold changes of -1 or 1. The number of genes with simulated outliers
was increased from 0% to 15%. The outliers were constructed for a gene by
multiplying the count of a single sample by 100. Sensitivity and specificity were
calculated by thresholding on p-values. Points indicate an adjusted p-value of 0.1.
DESeq2 filters genes with potential outliers for samples with 3 to 6 replicates,
while replacing outliers for samples with 7 or more replicates, hence the filtering
can be turned off for the top row (m=10) and the replacement can be turned off
for the bottom row (m=20).

p <- ggplot(res, aes(x=precpadj, y=oneminusprec, color=algorithm))
p + scale_x_continuous(breaks=c(0,.1,.2)) +

scale_y_continuous(breaks=c(0,.1,.2)) +
geom_line() + theme_bw() +
facet_grid(m ~ percentOutlier) +
geom_abline(intercept=0,slope=1) +
xlab("adjusted p-value") + ylab("1 - precision (FDR)") +
coord_cartesian(xlim=c(-.03, .25), ylim=c(-.05, .25)) +
geom_point(aes(x=precpadj, y=oneminusprec, shape=algorithm),

data=res[res$precpadj == .1,])

Outlier handling: One minus the precision (false discovery rate) plotted over
various thresholds of adjusted p-value. Shown is the results for the same simula-
tion with outliers described in the previous figure. Points indicate an adjusted
p-value of 0.1.

6



0% outlier 5% outlier 10% outlier 15% outlier

●

●

●

●

●

●

●

●

0.0

0.1

0.2

0.0

0.1

0.2
m

=
10

m
=

20

0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2
adjusted p−value

1 
−

 p
re

ci
si

on
 (

F
D

R
)

algorithm
● DESeq2

DESeq2−noFilt

DESeq2−noRepl

edgeR

edgeR−robust

Figure 5: FDR and target FDR in presence of outliers.

Accuracy of log fold change estimates

The following simulations used Negative Binomial random variables with mean
and dispersion pairs samples from the joint distribution of mean-dispersion
estimates from the Pickrell data. In addition, true differences between two
groups were randomly generated, according to the following models, diagrammed
below. The accuracy of four methods for estimating the log fold change between
groups were compared by the root mean squared error (RMSE) and the mean
absolute error (MAE). The four methods were chosen for their particular focus
on the logs fold change estimate. The code to generate these results is in
simulateLFCAccuracy.R.

par(mfrow=c(2,2),mar=c(3,3,3,1))
n <- 1000
brks <- seq(from=-4,to=4,length.out=20)
trimit <- function(x) x[x > -4 & x < 4] # for visualization only
myhist <- function(x, ...) hist(x, breaks=brks, border="white",

col="blue", xlab="", ylab="", ...)
myhist(trimit(rnorm(n)), main="bell")
myhist(trimit(c(rnorm(n * 8/10), runif(n * 2/10, -4, 4))), main="slab bell")
myhist(c(rep(0, n * 8/10), runif(n * 2/10, -4, 4)), main="slab spike")
myhist(c(rep(0, n * 8/10), sample(c(-2, 2), n * 2/10, TRUE)), main="spike spike")

Benchmarking LFC estimation: Models for simulating logarithmic (base 2) fold
changes. For the bell model, true logarithmic fold changes were drawn from a
Normal with mean 0 and variance 1. For the slab bell model, true logarithmic
fold changes were drawn for 80% of genes from a Normal with mean 0 and
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Figure 6: Examples of simulated log2 fold changes.
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variance 1 and for 20% of genes from a Uniform distribution with range from
-4 to 4. For the slab spike model, true logarithmic fold changes were drawn
similarly to the slab bell model except the Normal is replaced with a spike of
logarithmic fold changes at 0. For the spike spike model, true logarithmic fold
changes were drawn according to a spike of logarithmic fold changes at 0 (80%)
and a spike randomly sampled from -2 or 2 (20%). These spikes represent fold
changes of 1/4 and 4, respectively.

load("results_simulateLFCAccuracy.RData")
library("ggplot2")
library("Hmisc")
p <- ggplot(data=res, aes(x=m, y=RMSE, color=method, shape=method))
p + stat_summary(fun.y=mean, geom="point") +

stat_summary(fun.y=mean, geom="line") +
stat_summary(fun.data=mean_cl_normal, geom="errorbar") +
theme_bw() + xlab("total sample size") + facet_wrap(~ type) +
scale_x_continuous(breaks=unique(res$m))
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Figure 7: Root mean squared error in estimating log2 fold changes.

Root mean squared error (RMSE) for estimating logarithmic fold changes under
the four models of logarithmic fold changes and varying total sample size m.
Simulated Negative Binomial counts were generated for two groups and for 1000
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genes. Points and error bars are drawn for the mean and 95% confidence interval
over 10 replications.

p <- ggplot(data=res[grepl("spike",res$type),],
aes(x=m, y=DiffRMSE, color=method, shape=method))

p + stat_summary(fun.y=mean, geom="point") +
stat_summary(fun.y=mean, geom="line") +
stat_summary(fun.data=mean_cl_normal, geom="errorbar") +
theme_bw() + xlab("total sample size") + ylab("RMSE only of DE genes") +
facet_wrap(~ type) +
scale_x_continuous(breaks=unique(res$m))
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Figure 8: Root mean squared error for only differentially expressed genes.

Root mean squared error (RMSE) of logarithmic fold change estimates, only
considering genes with non-zero true logarithmic fold change. For the same
simulation, shown here is the error only for the 20% of genes with non-zero
true logarithmic fold changes (for bell and slab bell all genes have non-zero
logarithmic fold change).

p <- ggplot(data=res, aes(x=m, y=MAE, color=method, shape=method))
p + stat_summary(fun.y=mean, geom="point") +

stat_summary(fun.y=mean, geom="line") +
stat_summary(fun.data=mean_cl_normal, geom="errorbar") +
theme_bw() + xlab("total sample size") + ylab("MAE") +
facet_wrap(~ type) +
scale_x_continuous(breaks=unique(res$m))

Mean absolute error (MAE) of logarithmic fold change estimates. Results for
the same simulation, however here using median absolute error in place of root
mean squared error. Mean absolute error places less weight on the largest errors.
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Figure 9: Mean absolute error in estimating log2 fold changes.

p <- ggplot(data=res[grepl("spike",res$type),],
aes(x=m, y=DiffMAE, color=method, shape=method))

p + stat_summary(fun.y=mean, geom="point") +
stat_summary(fun.y=mean, geom="line") +
stat_summary(fun.data=mean_cl_normal, geom="errorbar") +
theme_bw() + xlab("total sample size") + ylab("MAE only of DE genes") +
facet_wrap(~ type) +
scale_x_continuous(breaks=unique(res$m))

Mean absolute error (MAE) of logarithmic fold change estimates, only considering
those genes with non-zero true logarithmic fold change.

Transformations and distances for recovery of true clusters

The following simulation evaluated a set of methods for transformation, and
for calculating distances betweeen vectors of counts, for their performance in
recapturing true clusters in simulated data. Negative Binomial counts were
generated in four groups, each with four samples. These groups were generated
with 20% of genes given Normally-distributed log fold changes from a centroid.
The standard deviation of the Normal for the non-null genes was varied to make
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Figure 10: Mean absolute error for only differentially expressed genes.

the clustering easier or more difficult. The mean of the centroid and the dispersion
of the counts were drawn as pairs from the joint distribution of estimates from
the Pickrell et al dataset. As the Pickrell dataset has high dispersion (RNA-Seq
counts of lymphoblast cells across a population of individuals), simulations
were also considered wherein the dispersion was 0.1 and 0.25 times the Pickrell
dispersions. Hierarchical clustering with complete linkage was used to separate
the samples into four predicted clusters, using a variety of combinations of
transformation and distance. These predicted clusters were then compared to
the true clusters according to the simulation using the adjusted Rand Index.
Furthermore, two variations were considered, one in which the size factors between
conditions were equal and one in which the size factors within each group were
[1, 1, 1/3, 3]. The code to generate these results is in simulateCluster.R.

load("results_simulateCluster.RData")
library("ggplot2")
library("Hmisc")
res$sizeFactor <- factor(res$sizeFactor)
levels(res$sizeFactor) <- paste("size factors", levels(res$sizeFactor))
res$dispScale <- factor(res$dispScale)
levels(res$dispScale) <- paste(levels(res$dispScale),"x dispersion")
p <- ggplot(res, aes(x=rnormsd, y=ARI, color=method, shape=method))
p + stat_summary(fun.y=mean, geom="point", aes(shape=method)) +

stat_summary(fun.y=mean, geom="line") +
stat_summary(fun.data=mean_cl_normal, geom="errorbar") +
facet_grid(sizeFactor ~ dispScale, scale="free") + theme_bw() +
ylab("adjusted Rand Index") + xlab("SD of group differences")

Adjusted Rand Index from clusters using various transformation and distances
compared to the true clusters from simulation. The methods assessed were
Euclidean distance on counts normalized by size factor, log2 of normalized counts
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Figure 11: Clustering accuracy over the size of group differences.

plus a pseudocount of 1, and after applying the rlog and variance stabilizing
transformation. Additionally, the Poisson Distance from the PoiClaClu package
was used for hierarchical clustering. The points indicate the mean from 20
simulations and the bars are 95 percent confidence intervals.

Genes expressed in only one condition

As discussed by Robinson and Smyth and by Rapaport et al., it is desirable that,
in the situation in which a gene is only expressed in one condition, the statistical
significance increase with the signal to noise ratio of expression in the expressed
condition. For example, Rapaport et al. plot the − log10(p) for p values over the
signal to noise ratio. In the following code chunk we demontrate that DESeq2
has increasing − log10(p) in a comparison of two conditions in which one group
has all zero counts, e.g.: {0, 0, 0} vs {10, 10, 10}.

library("DESeq2")
m <- 6
disp <- 0.1
ii <- seq(from=1,to=4,length=7)
coldata <- DataFrame(x=factor(rep(1:2,each=m/2)))
pvals <- sapply(ii, function(i) {

mat <- matrix(as.integer(c(rep(0,m/2),rep(10^i,m/2))),nrow=1)
dds <- DESeqDataSetFromMatrix(mat, coldata, ~ x)
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sizeFactors(dds) <- rep(1,m)
dispersions(dds) <- disp
results(nbinomWaldTest(dds))$pvalue

})
plot(10^ii, -log10(pvals), log="x", type="b", xaxt="n",

xlab="group 2 counts", ylab="-log10 pvalue")
axis(1,10^(1:4),10^(1:4))
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Figure 12: Simulated gene expressed in only one condition

Session information

The session information saved in the simulateDE script:

sessInfo

## R Under development (unstable) (2015-06-25 r68588)
## Platform: x86_64-unknown-linux-gnu (64-bit)
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## Running under: CentOS release 6.5 (Final)
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] splines stats4 parallel stats graphics grDevices datasets
## [8] utils methods base
##
## other attached packages:
## [1] EBSeq_1.10.0 testthat_0.11.0
## [3] gplots_2.17.0 blockmodeling_0.1.8
## [5] DSS_2.10.0 bsseq_1.6.0
## [7] samr_2.0 matrixStats_0.50.1
## [9] impute_1.44.0 edgeR_3.12.0
## [11] limma_3.26.8 DESeq2_1.10.1
## [13] RcppArmadillo_0.6.500.4.0 Rcpp_0.12.3
## [15] SummarizedExperiment_1.0.2 GenomicRanges_1.22.4
## [17] GenomeInfoDb_1.6.3 IRanges_2.4.7
## [19] S4Vectors_0.8.11 Biobase_2.30.0
## [21] BiocGenerics_0.16.1
##
## loaded via a namespace (and not attached):
## [1] locfit_1.5-9.1 lattice_0.20-33 gtools_3.5.0
## [4] digest_0.6.9 plyr_1.8.3 chron_2.3-47
## [7] futile.options_1.0.0 acepack_1.3-3.3 RSQLite_1.0.0
## [10] ggplot2_2.0.0 zlibbioc_1.16.0 data.table_1.9.6
## [13] annotate_1.48.0 gdata_2.17.0 R.utils_2.2.0
## [16] R.oo_1.20.0 rpart_4.1-10 BiocParallel_1.4.3
## [19] geneplotter_1.48.0 foreign_0.8-66 munsell_0.4.3
## [22] nnet_7.3-12 gridExtra_2.0.0 Hmisc_3.17-1
## [25] XML_3.98-1.3 crayon_1.3.1 bitops_1.0-6
## [28] R.methodsS3_1.7.1 grid_3.3.0 xtable_1.8-2
## [31] gtable_0.1.2 DBI_0.3.1 git2r_0.13.1
## [34] scales_0.3.0 KernSmooth_2.23-15 XVector_0.10.0
## [37] genefilter_1.52.1 latticeExtra_0.6-28 futile.logger_1.4.1
## [40] Formula_1.2-1 lambda.r_1.1.7 RColorBrewer_1.1-2
## [43] survival_2.38-3 AnnotationDbi_1.32.3 colorspace_1.2-6
## [46] cluster_2.0.3 caTools_1.17.1 memoise_1.0.0
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