
Using the charm package to estimate DNA

methylation levels and find differentially

methylated regions

Peter Murakami*, Martin Aryee, Rafael Irizarry

October 10, 2012

Johns Hopkins School of Medicine / Johns Hopkins School of Public Health
Baltimore, MD, USA

1 Introduction

The Bioconductor package charm can be used to analyze DNA methylation data
generated using McrBC fractionation and two-color Nimblegen microarrays. It
is customized for use with data the from the custom CHARM microarray [2],
but can also be applied to many other Nimblegen designs. The preprocessing
and normalization methods are described in detail in [1].

Functions include:

� Quality control

� Finding suitable control probes for normalization

� Percentage methylation estimates

� Identification of differentially methylated regions

� Plotting of differentially methylated regions

As input we will need raw Nimblegen data (.xys) files and a corresponding
annotation package built with pdInfoBuilder. This vignette uses the following
packages:

� charm: contains the analysis functions

� charmData: an example dataset

� pd.charm.hg18.example: the annotation package for the example dataset

*pmurakam@jhsph.edu

1

� BSgenome.Hsapiens.UCSC.hg18: A BSgenome object containing genomic
sequence used for finding non-CpG control probes

Each sample is represented by two xys files corresponding to the untreated
(green) and methyl-depleted (red) channels. The 532.xys and 635.xys suffixes
indicate the green and red channels respectively.

2 Analyzing data from the custom CHARM mi-
croarray

Load the charm package:

R> library(charm)

R> library(charmData)

3 Read in raw data

Get the name of your data directory (in this case, the example data):

R> dataDir <- system.file("data", package="charmData")

R> dataDir

[1] "C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/data"

First we read in the sample description file:

R> phenodataDir <- system.file("extdata", package="charmData")

R> pd <- read.delim(file.path(phenodataDir, "phenodata.txt"))

R> phenodataDir

[1] "C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/extdata"

R> pd

filename sampleID tissue

1 136421_532.xys 441_liver liver

2 136421_635.xys 441_liver liver

3 136600_532.xys 449_spleen spleen

4 136600_635.xys 449_spleen spleen

5 3788602_532.xys 449_liver liver

6 3788602_635.xys 449_liver liver

7 3822402_532.xys 441_spleen spleen

8 3822402_635.xys 441_spleen spleen

9 5739902_532.xys 624_colon colon

10 5739902_635.xys 624_colon colon

11 5875602_532.xys 441_colon colon

12 5875602_635.xys 441_colon colon

2

A valid sample description file should contain at least the following (arbi-
trarily named) columns:

� a filename column

� a sample ID column

� a group label column (optional)

The sample ID column is used to pair the methyl-depleted and untreated
data files for each sample. The group label column is used when identifying
differentially methylated regions between experimental groups.

The validatePd function can be used to validate the sample description file.
When called with only a sample description data frame and no further options
validatePd will try to guess the contents of the columns.

R> res <- validatePd(pd)

Now we read in the raw data. The readCharm command makes the assump-
tion (unless told otherwise) that the two xys files for a sample have the same file
name up to the suffixes 532.xys (untreated) and 635.xys (methyl-depleted). The
sampleNames argument is optional. Note that if the ff package has been loaded
previously in your R session, the output of readCharm will contain ff rather
than matrix objects, and all subsequent charm functions acting on it (except
those in pipeline 2 described below) will recognize this and use ff objects also.
Using the ff package is recommended when the data set is otherwise too large
for the amount of memory available.

R> rawData <- readCharm(files=pd$filename, path=dataDir, sampleKey=pd,

sampleNames=pd$sampleID)

Checking designs for each XYS file... Done.

Allocating memory... Done.

Reading C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/data/136421_532.xys.

Reading C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/data/136600_532.xys.

Reading C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/data/3788602_532.xys.

Reading C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/data/3822402_532.xys.

Reading C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/data/5739902_532.xys.

Reading C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/data/5875602_532.xys.

Checking designs for each XYS file... Done.

Allocating memory... Done.

Reading C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/data/136421_635.xys.

Reading C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/data/136600_635.xys.

Reading C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/data/3788602_635.xys.

Reading C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/data/3822402_635.xys.

Reading C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/data/5739902_635.xys.

Reading C:/Users/biocbuild/bbs-3.5-bioc/R/library/charmData/data/5875602_635.xys.

R> rawData

3

TilingFeatureSet (storageMode: lockedEnvironment)

assayData: 243129 features, 6 samples

element names: channel1, channel2

protocolData

rowNames: 441_liver 449_spleen ... 441_colon (6

total)

varLabels: filenamesChannel1 filenamesChannel2

dates1 dates2

varMetadata: labelDescription channel

phenoData

rowNames: 441_liver 449_spleen ... 441_colon (6

total)

varLabels: sampleID tissue arrayUT arrayMD

varMetadata: labelDescription channel

featureData: none

experimentData: use 'experimentData(object)'

Annotation: pd.charm.hg18.example

4 Array quality assessment

We can calculate array quality scores and generate a pdf report with the qcRe-

port command.
A useful quick way of assessing data quality is to examine the untreated

channel where we expect every probe to have signal. Very low signal intensities
on all or part of an array can indicate problems with hybridization or scanning.
The CHARM array and many other designs include background probes that
do not match any genomic sequence. Any signal at these background probes
can be assumed to be the result of optical noise or cross-hybridization. Since
the untreated channel contains total DNA a successful hybridization would have
strong signal for all untreated channel genomic probes. The array signal quality
score (pmSignal) is calculated as the average percentile rank of the signal robes
among these background probes. A score of 100 means all signal probes rank
above all background probes (the ideal scenario).

R> qual <- qcReport(rawData, file="qcReport.pdf")

R> qual

pmSignal sd1 sd2

441_liver 78.56437 0.1950274 0.1932112

449_spleen 81.46541 0.1755225 0.1227921

449_liver 83.95419 0.1249030 0.2409803

441_spleen 81.43751 0.1180708 0.1824810

624_colon 82.55727 0.1490854 0.2035761

441_colon 79.38069 0.3130266 0.3962373

The PDF quality report is shown in Appendix A. Three quality metrics are
calculated for each array:

4

1. Average signal strength: the average percentile rank of untreated channel
signal probes among the background (anti-genomic) probes.

2. Untreated channel signal standard deviation. The array is divided into
a series of rectangular blocks and the average signal level calculated for
each. Since probes are arranged randomly on the array there should be
no large differences between blocks. Arrays with spatial artifacts have a
larg standard deviation between blocks.

3. Methyl-depleted channel signal standard deviation.

To remove samples with a quality score less than 78, we could do this:

R> qc.min = 78

R> ##Remove arrays with quality scores below qc.min:

R> rawData=rawData[,qual$pmSignal>=qc.min]

R> qual=qual[qual$pmSignal>=qc.min,]

R> pd=pd[pd$sampleID%in%rownames(qual),]

R> pData(rawData)$qual=qual$pmSignal

and to identify which probes have a mean quality score above 75 we could
do this:

R> pmq = pmQuality(rawData)

R> rmpmq = rowMeans(pmq)

R> okqc = which(rmpmq>75)

We now want to calculate probe-level percentage methylation estimates for
each sample. As a first step we need to identify a suitable set of unmethylated
control probes from CpG-free regions to be used in normalization.

R> library(BSgenome.Hsapiens.UCSC.hg18)

R> ctrlIdx <- getControlIndex(rawData, subject=Hsapiens, noCpGWindow=600)

We can check the success of the control probes by comparing their intensity
distribution with the non-control probes (before any normalization in which the
control probes are used).

R> cqc = controlQC(rawData=rawData, controlIndex=ctrlIdx, IDcol="sampleID",

expcol="tissue", ylimits=c(-6,8),

outfile="boxplots_check.pdf", height=7, width=9)

R> cqc

non_control control diff

624_colon 3.539289e-01 -2.026216 2.380145

441_colon -5.328170e-02 -1.723868 1.670586

441_liver -1.475199e-01 -1.650623 1.503104

449_liver 3.455137e-01 -1.747331 2.092844

449_spleen -4.097402e-02 -2.404196 2.363222

441_spleen -1.070891e-05 -1.481341 1.481330

5

We can also access the probe annotation using standard functions from the
oligo package.

R> chr = pmChr(rawData)

R> pns = probeNames(rawData)

R> pos = pmPosition(rawData)

R> seq = pmSequence(rawData)

R> pd = pData(rawData)

5 Percentage methylation estimates and differ-
entially methylated regions (DMRs)

The minimal code required to estimate methylation would be p <- methp(rawData,

controlIndex=ctrlIdx). However, it is often useful to get methp to produce
a series of diagnostic density plots to help identify non-hybridization quality
issues. The plotDensity option specifies the name of the output pdf file, and
the optional plotDensityGroups can be used to give groups different colors.
Remember that if the ff package was loaded before producing rawData with
readCharm, the output of methp will be an ff rather than a matrix object.
charm functions (except those in pipeline 2 described below) will handle ff p

objects automatically.

R> p <- methp(rawData, controlIndex=ctrlIdx,

plotDensity="density.pdf", plotDensityGroups=pd$tissue)

R> head(p)

441_liver 449_spleen 449_liver 441_spleen 624_colon

[1,] 0.2238871 0.3851121 0.3838011 0.5533608 0.3256549

[2,] 0.7940413 0.6882399 0.3520629 0.8646770 0.5202657

[3,] 0.1419512 0.1248538 0.2418654 0.2082550 0.3173302

[4,] 0.5750124 0.4747203 0.4785456 0.4863800 0.3544160

[5,] 0.5853813 0.5202058 0.4144217 0.4311458 0.3625524

[6,] 0.6466173 0.7477538 0.7482526 0.7120180 0.8620204

441_colon

[1,] 0.2950393

[2,] 0.8789355

[3,] 0.6945979

[4,] 0.4580516

[5,] 0.3676730

[6,] 0.8152410

For a simple unsupervised clustering of the samples, we can plot the results
of a classical multi-dimensional scaling analysis.

R> cmdsplot(labcols=c("red","black","blue"), expcol="tissue",

rawData=rawData, p=p, okqc=okqc, noXorY=TRUE,

outfile="cmds_topN.pdf", topN=c(100000,1000))

6

null device

1

The density plots are shown in Appendix B and the MDS plot is shown in
Appendix C.

5.1 Pipeline 1 (recommended): Regression-based DMR-
finding after correcting for batch effects

Optionally, we may wish to restrict our search for DMRs to non-control probes
exceeding some quality threshold. We may do that simply by subsetting:

R> Index = setdiff(which(rmpmq>75),ctrlIdx)

R> Index = Index[order(chr[Index], pos[Index])]

R> p0 = p #save for pipeline 2 example

R> p = p[Index,]

R> seq = seq[Index]

R> chr = chr[Index]

R> pos = pos[Index]

R> pns = pns[Index]

R> pns = clusterMaker(chr,pos)

You might also wish to consider excluding some probes from the between-array
normalization step in methp earlier using the excludeIndex argument, e.g., ex-
cludeIndex=which(rmpmq<=50), however, note that it is probably inadvisable
to remove probes from between-array normalization in methp that you will end
up using in the analysis (note that the probes with mean qc < x1 are a subset
of the probes with mean qc < x2 when x1=50 and x2=75 as in this example.
Setting x1>x2 is not recommended as it would result in un-normalized probes
being used in the analysis). Using the clusterMaker function was necessary in
order to redefine the array regions since removing probes may result in too few
probes per region or unacceptably large gaps between probes within the same
region. At this point it may also be helpful to remove arrays whose average
correlation with all other arrays is below some threshold, since it is often rea-
sonable to assume that most probes are not differentially methylated between
arrays. Unsupervised clustering would also probably tend to show such arrays
as clustering separately. Another reason for removing arrays at this point is
if they have missing data on any of the covariates to be used in the following
analysis. Remember that any arrays excluded from this point forward should
be removed from both p and pd.

To identify DMR candidates, we use the dmrFind function. As it requires
the same mod and mod0 arguments as the sva() function from the sva package,
we must first create these. Data with paired samples may be accommodated by
including the pair ID column as a factor in mod and mod0.

R> mod0 = matrix(1,nrow=nrow(pd),ncol=1)

R> mod = model.matrix(~1 +factor(pd$tissue,levels=c("liver","colon","spleen")))

7

We may now call dmrFind. Setting the coeff argument to 2 means that we
are interested in the colon-liver comparison, since it is the second column of mod
that defines that comparison in the linear model.

R> library(corpcor)

R> thedmrs = dmrFind(p=p, mod=mod, mod0=mod0, coeff=2, pns=pns, chr=chr, pos=pos)

Running SVA

Number of significant surrogate variables is: 1

Iteration (out of 5):1 2 3 4 5

Regression

Obtaining estimates for factor(pd$tissue, levels = c("liver", "colon", "spleen"))colon

Smoothing

==

....

Found 187 potential DMRs

To compare liver and spleen, set coeff to 3. To compare colon and spleen,
you must redefine mod such that the first level is either colon or spleen, and then
set coeff appropriately, e.g., mod = model.matrix(1 + factor(pd$tissue,

levels=c("colon","spleen","liver"))) and coeff=2. To avoid repeating
the SVA analysis within dmrFind, you may provide the surrogate variables al-
ready identified above as an argument to subsequent dmrFind calls through the
svs argument. The surrogate variables are located in thedmrs$args$svs, so
adding svs=thedmrs$args$svs to the call to dmrFind would prevent SVA from
being called again. As long as p (or logitp, if you provided logitp to dmrFind),
mod, and mod0 are the same, the surrogate variables will be the same regardless
of which comparison you explore.

Also note that if you adjust for covariates, their effects will be controlled
for when finding DMRs, however their effects are not removed from the matrix
of ”cleaned” percent methylation estimates (i.e., cleanp) returned by dmrFind,
which by default removes only batch effects (i.e., the surrogate variables iden-
tified by SVA). Consequently the adjustment covariate effects will still show up
in the clustering results (and will probably be enhanced) and in the DMR plots
(since they do not get removed from the cleanp matrix). Only the surrogate
variables identified by SVA will be removed from the clustering results and the
DMR plots, regardless of whether or not you adjust for covariates. Setting
rob=FALSE in dmrFinder will cause the covariates’ effects to be removed from
cleanp as well (all except the covariate of interest). rob=TRUE by default because
covariates explicitly adjusted for should typically be real biological rather than
technical confounders, and removing the effects of real biological confounders
from the percent methylation estimates would change them from being our best
estimate of what the true percent methylation is for each probe in our sample
to an adjusted version of this.

If you want to obtain FDR q-values for the DMR candidates returned by
dmrFind, you may use the qval function as follows:

8

R> withq = qval(p=p, dmr=thedmrs, numiter=3, verbose=FALSE, mc=1)

....

The numiter argument is set to 3 here only for convenience of demonstration. In
reality it should be much higher (hundreds, if not thousands). The p argument
provided must be the same as the one used in dmrFind. The qval function
utilizes the parallel package that comes with R as of version 2.14. By default,
mc=1 (no parallelization), however on multiple-core machines you can set qval

to use more cores to parallelize the process. If you are working in a shared
computing environment, take care not to request more cores than are available
to you.

We may plot DMR candidates from dmrFind using the plotDMRs function.
In order to mark the location of CpG islands in the second panel of each plot,
we must first obtain a table identifying CpG islands. CpG island definitions
according to the method of Wu et al (2010) [3] are available for a large number
of genomes and are one source for such a table. Alternatively, CpG island
definitions may be obtained from the UCSC Genome Browser, which is what
we will use here for this example.

R> con <- gzcon(url(paste("http://hgdownload.soe.ucsc.edu/goldenPath/hg18/database/","cpgIslandExt.txt.gz", sep="")))

R> txt <- readLines(con)

R> cpg.cur <- read.delim(textConnection(txt), header=FALSE, as.is=TRUE)

R> cpg.cur <- cpg.cur[,1:3]

R> colnames(cpg.cur) <- c("chr","start","end")

R> cpg.cur <- cpg.cur[order(cpg.cur[,"chr"],cpg.cur[,"start"]),]

R> plotDMRs(dmrs=thedmrs, Genome=Hsapiens, cpg.islands=cpg.cur, exposure=pd$tissue,

outfile="./colon-liver.pdf", which_plot=c(1),

which_points=c("colon","liver"), smoo="loess", ADD=3000,

cols=c("black","red","blue"))

Making 1 figures

Plotting DMR candidate 1

Instead of plotting the probe p-values in the 3rd panel, you may also wish to
inspect the behavior of the green channel (total) across the DMR regions. To
do this, you must first have obtained the green channel intensity matrix, which
we do here after spatial adjustment and background correction. In addition to
specifying panel3="G", we must also provide G and the sequences corresponding
its rows (because the intensities are further corrected for gc-content).

R> dat0 = spatialAdjust(rawData, copy=FALSE)

R> dat0 = bgAdjust(dat0, copy=FALSE)

R> G = pm(dat0)[,,1] #from oligo

R> G = G[Index,]

R> plotDMRs(dmrs=thedmrs, Genome=Hsapiens, cpg.islands=cpg.cur, exposure=pd$tissue,

outfile="./colon-liver2.pdf", which_plot=c(1),

which_points=c("colon","liver"), smoo="loess", ADD=3000,

cols=c("black","red","blue"), panel3="G", G=G, seq=seq)

9

......Making 1 figures

Plotting DMR candidate 1

5.1.1 Continuous covariate of interest

The dmrFind function also handles a continuous covariate of interest. Here we
generate an artificial continuous covariate called x and perform the analysis
using that.

R> pd$x = c(1,2,3,4,5,6)

R> mod0 = matrix(1,nrow=nrow(pd),ncol=1)

R> mod = model.matrix(~1 +pd$x)

R> coeff = 2

R> thedmrs2 = dmrFind(p=p, mod=mod, mod0=mod0, coeff=coeff, pns=pns, chr=chr, pos=pos)

Running SVA

Number of significant surrogate variables is: 2

Iteration (out of 5):1 2 3 4 5

Regression

Obtaining estimates for pd$x

Smoothing

==

....

Found 211 potential DMRs

To plot the DMR results, you may either categorize the continuous covariate
as for example as follows

R> groups = as.numeric(cut(mod[,coeff],c(-Inf,2,4,Inf))) #You can change these cutpoints.

R> pd$groups = c("low","medium","high")[groups]

R> plotDMRs(dmrs=thedmrs2, Genome=Hsapiens, cpg.islands=cpg.cur, exposure=pd$groups,

outfile="./test.pdf", which_plot=c(1), smoo="loess", ADD=3000,

cols=c("black","red","blue"))

Making 1 figures

Plotting DMR candidate 1

or you may plot the correlation of each probe with the covariate as follows:

R> plotDMRs(dmrs=thedmrs2, Genome=Hsapiens, cpg.islands=cpg.cur, exposure=pd$x,

outfile="./x.pdf", which_plot=c(1), smoo="loess", ADD=3000,

cols=c("black","red","blue"))

Making 1 figures

Plotting DMR candidate 1

10

An additional function that can be helpful for working with tables with
columns ”chr”, ”start”, and ”end” as many of the objects required or returned
by these functions are is the regionMatch function, which finds for each region
in one table the nearest region in another table (using the nearest() function
in the IRanges package) and provides information on how near they are to each
other.

R> ov = regionMatch(thedmrs$dmrs,thedmrs2$dmrs)

chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr2 chr20 chr21 chr22 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chrX

R> head(ov)

dist matchIndex type amountOverlap insideDist size1

1 0 2 cover NA NA 1467

2 0 7 cover NA NA 1053

3 0 9 cover NA NA 1117

4 0 126 cover NA NA 877

5 0 1 inside NA 0 1001

6 0 34 cover NA NA 873

size2

1 1467

2 948

3 877

4 142

5 1136

6 561

One may also plot regions other than DMR candidates returned by dmrFind,
using the plotRegions function.

R> mytable = thedmrs$dmrs[,c("chr","start","end")]

R> mytable[2,] = c("chr1",1,1000) #not on array

R> mytable$start = as.numeric(mytable$start)

R> mytable$end = as.numeric(mytable$end)

R> plotRegions(thetable=mytable[c(1),], cleanp=thedmrs$cleanp, chr=chr,

pos=pos, Genome=Hsapiens, cpg.islands=cpg.cur, outfile="myregions.pdf",

exposure=pd$tissue, exposure.continuous=FALSE)

Making 1 figures

null device

1

5.2 Pipeline 2: DMR-finding without adjusting for batch
or other covariates

We can identify differentially methylated regions using the original dmrFinder:

11

R> dmr <- dmrFinder(rawData, p=p0, groups=pd$tissue,

compare=c("colon", "liver","colon", "spleen"),

removeIf=expression(nprobes<4 | abs(diff)<.05 | abs(maxdiff)<.05))

R> names(dmr)

[1] "tabs" "p" "l" "chr" "pos"

[6] "pns" "index" "gm" "groups" "args"

[11] "comps" "package"

R> names(dmr$tabs)

[1] "colon-liver" "colon-spleen"

R> head(dmr$tabs[[1]])

chr start end p1 p2

319 chr12 88272817 88273844 0.8428603 0.2005431

358 chr13 27090247 27091263 0.7748122 0.1843361

1750 chr6 52637747 52638747 0.7073828 0.1877457

1116 chr20 60187423 60188227 0.8206489 0.2033901

473 chr15 58673117 58673819 0.8251858 0.3097418

133 chr11 14620645 14621065 0.8445404 0.3523039

regionName indexStart indexEnd nprobes

319 chr12:88266873-88274292 40465 40489 25

358 chr13:27090144-27095500 45272 45291 20

1750 chr6:52635302-52638967 160819 160843 25

1116 chr20:60143957-60188418 122600 122623 24

473 chr15:58669815-58674073 57658 57677 20

133 chr11:14620645-14623686 28438 28450 13

area ttarea diff maxdiff

319 16.057930 789.7434 0.6423172 0.7588859

358 11.809522 734.8542 0.5904761 0.7325250

1750 12.990928 652.8536 0.5196371 0.6568954

1116 14.814212 532.5629 0.6172588 0.8308850

473 10.308878 526.9032 0.5154439 0.6572693

133 6.399075 465.1490 0.4922366 0.6409308

When called without the compare option, dmrFinder performs all pairwise com-
parisons between the groups.

We can also plot DMR candidates with the dmrPlot function. Here we plot
just the top DMR candidate from the first DMR table.

R> dmrPlot(dmr=dmr, which.table=1, which.plot=c(1), legend.size=1,

all.lines=TRUE, all.points=FALSE, colors.l=c("blue","black","red"),

colors.p=c("blue","black"), outpath=".", cpg.islands=cpg.cur, Genome=Hsapiens)

12

Smoothing:

==

Done.

Plotting finished.

We can also plot any given genomic regions using this data by using the
regionPlot function, supplying the regions in a data frame that must have
columns with names ”chr”, ”start”, and ”end”. Naturally, regions that are not
on the array will not appear in the resulting file.

R> mytab = data.frame(chr=as.character(dmr$tabs[[1]]$chr[1]),

start=as.numeric(c(dmr$tabs[[1]]$start[1])),

end=as.numeric(c(dmr$tabs[[1]]$end[1])), stringsAsFactors=FALSE)

R> regionPlot(tab=mytab, dmr=dmr, cpg.islands=cpg.cur, Genome=Hsapiens,

outfile="myregions.pdf", which.plot=1:5, plot.these=c("liver","colon"),

cl=c("blue","black"), legend.size=1, buffer=3000)

Smoothing:

==

Done.

1

Plotting finished.

R>

The DMR plot is shown in Appendix D, and the plot of the user-provided
region is shown in Appendix E.

5.2.1 Analysis of paired samples

If the samples are paired, we can also analyze them as such. To show this,
let’s pretend that the samples in our test data set are paired, and then use the
dmrFinder function with the "paired" argument set to TRUE and the "pairs"
argument specifying which samples are pairs. (In this example we also have to
lower the cutoff since there are not enough samples to find any regions with the
default cutoff of 0.995.)

R> pData(rawData)$pair = c(1,1,2,2,1,2)

R> dmr2 <- dmrFinder(rawData, p=p0, groups=pd$tissue,

compare=c("colon", "liver","colon", "spleen"),

removeIf=expression(nprobes<4 | abs(diff)<.05 | abs(maxdiff)<.05),

paired=TRUE, pairs=pData(rawData)$pair, cutoff=0.95)

==

We plot the, say, third DMR with the dmrPlot function (shown in Appendix
F)

13

R> dmrPlot(dmr=dmr2, which.table=1, which.plot=c(3), legend.size=1, all.lines=TRUE,

all.points=FALSE, colors.l=c("blue","black"), colors.p=c("blue","black"),

outpath=".", cpg.islands=cpg.cur, Genome=Hsapiens)

==

Plotting finished.

Plotting user-provided regions using the results of paired analysis is done
using the regionPlot function as before (shown in Appendix G).

R> regionPlot(tab=mytab, dmr=dmr2, cpg.islands=cpg.cur, Genome=Hsapiens,

outfile="myregions_paired.pdf", which.plot=1:5,

plot.these=c("colon-liver"), cl=c("black"), legend.size=1, buffer=3000)

==

1

Plotting finished.

References

[1] Martin J. Aryee, Zhijin Wu, Christine Ladd-Acosta, Brian Herb, Andrew P.
Feinberg, Srinivasan Yegnasubramanian, and Rafael A. Irizarry. Accurate
genome-scale percentage dna methylation estimates from microarray data.
Biostatistics, 12(2):197–210, 2011.

[2] Irizarry et al. Comprehensive high-throughput arrays for relative methyla-
tion (charm). Genome Research, 18(5):780–790, 2008.

[3] Wu et al. Redefining cpg islands using a hierarchical hidden markov model.
Biostatistics, 11(3):499–514, 2010.

6 Appendix A: Quality report

14

441_colon

441_liver

441_spleen

449_liver

449_spleen

624_colon

●

●

●

●

●

●

70 75 80 85 90

Signal strength

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4

Channel 1
standard deviation

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4

Channel 2
standard deviation

Signal strength histogram

Signal strength

F
re

qu
en

cy

78 79 80 81 82 83 84

0.
0

0.
5

1.
0

1.
5

2.
0

Untreated Channel: PM probe quality

441_colon

30 50 70 90

441_liver

30 50 70 90

441_spleen

30 50 70 90

449_liver

30 50 70 90
449_spleen

30 50 70 90

624_colon

30 50 70 90

Enriched Channel: PM signal intensity

441_colon

8 9 10 11 12

441_liver

8 9 10 11 12

441_spleen

8 9 10 11 12

449_liver

8 9 10 11 12
449_spleen

8 9 10 11 12

624_colon

8 9 10 11 12

7 Appendix B: Density plots

Each row corresponds to one stage of the normalization process (Raw data, Af-
ter spatial and background correction, after within-sample normalization, after
between-sample normalization, percentage methylation estimates). The left col-
umn shows all probes, while the right column shows control probes.

18

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1. Raw
All probes

M

colon
liver
spleen

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

1. Raw
Control probes

M

D
en

si
ty

colon
liver
spleen

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

2. After spatial & bg
All probes

M

colon
liver
spleen

−4 −2 0 2 4 6
0.

0
0.

2
0.

4

2. After spatial & bg
Control probes

M

D
en

si
ty

colon
liver
spleen

−4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

3. After within−sample norm
All probes

M

colon
liver
spleen

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

3. After within−sample norm
Control probes

M

D
en

si
ty

colon
liver
spleen

−4 −2 0 2 4 6

0.
00

0.
10

0.
20

0.
30

4. After between−sample norm
All probes

M

colon
liver
spleen

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

4. After between−sample norm
Control probes

M

D
en

si
ty

colon
liver
spleen

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

5. Percentage methylation
All probes

colon
liver
spleen

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

5. Percentage methylation
Control probes

D
en

si
ty

colon
liver
spleen

8 Appendix C: MDS plot

20

●

●

●

●

●

●

−40 −30 −20 −10 0 10 20 30

−
30

−
20

−
10

0
10

20

cMDS

Does not use probes in sex chromosomes.
Using the 1e+05 most variable probes, out of 145217 total.

●

●

●

colon
liver
spleen

9 Appendix D: DMR plot

DMR plot for the first DMR in the list.

22

1

1

1

1

1
1

1
1

1

1
1

1

1

1

1

1

1
1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1

1 1
1

1

1

1

1

1

1

1

1
1

1

1 1

1

1

1

1

1
1

1
1

1

1

1

1

1 1

1

1

1

0.0

0.2

0.4

0.6

0.8

1.0

p

2

2 2

2

2

2 2 2

2 2

2

2

2

2

2

2
2

2
2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2 2 2
2

2

2

2

2
2 2

2

2

2

2

2

2
2

2

2

2

2
2

2
2

2 2

2

2

2

2 2

2

2
2

2

2 2

2

2

2

3

3 3

3

3 3

3
3 3 3 3

3 3 3

3

3

3

3
3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3
3 3 3

3 3
3

3

3

3

3

3
3

3

3

3

3
3

3

3

3

3

3

3

4

4
4

4

4
4

4

4

4

4

4

4

4
4

4

4
4

4

4

4
4

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4
4

4

4

4

4

4

4

4 4
4

4 4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

colon *
liver *
spleen

88271000 88272000 88273000 88274000

0.00

0.05

0.10

0.15

Location

C
pG

 d
en

si
ty

ID:1−−chr12:88270362−88274211

10 Appendix E: Plot of an arbitrary genomic
region

For the arbtirary region we just chose the first DMR.

24

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
1

1

1
1

1

1

1

1

1

1
1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1

1 1
1

1

1

1

1

1

1

1

1
1

1

1 1

1

1

1

1

1
1

1
1

1

1

1

1

1 1

1

1

1

0.0

0.2

0.4

0.6

0.8

1.0

position

p

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2 2

2

2

2 2 2

2 2

2

2

2

2

2

2
2

2
2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2 2 2
2

2

2

2

2
2 2

2

2

2

2

2

2
2

2

2

2

2
2

2
2

2 2

2

2

2

2 2

2

2
2

2

2 2

2

2

2

3

3

3

3

3

3

3

3

3 3
3

3

3

3

3

3

3 3

3

3 3

3
3 3 3 3

3 3 3

3

3

3

3
3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3
3 3 3

3 3
3

3

3

3

3

3
3

3

3

3

3
3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4
4 4

4

4

4

4
4

4

4
4

4

4

4

4

4

4

4
4

4

4
4

4

4

4
4

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4
4

4

4

4

4

4

4

4 4
4

4 4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

colon
liver

88270000 88271000 88272000 88273000 88274000

0.00

0.05

0.10

0.15

Location

C
pG

 d
en

si
ty

ID:1−−chr12:88272817−88273844

11 Appendix F: DMR plot from analysis of paired
samples

DMR plot for the third DMR in the list

26

−1.0

−0.5

0.0

0.5

1.0

di
ffe

re
nc

e
in

 p 1

1

1
1 1

1

1

1

1

1

1

1
1

1 1

1 1

1

1

1
1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1 1
1

1

1
1

1

1

1

1

1

1

1

1

1 1

1

1

1

2

2

2
2 2

2

2

2

2
2

2

2 2

2
2

2

2

2
2

2

2 2 2

2

2 2
2

2 2

2
2

2

2

2

2

2

2

2

2

2

2
2

2

2

2
2

2 2

2

2

2
2

2

2

2

2
2

2

2

2

2
2

2
2

2
2 2

2

2

2
2

2

colon−liver *

1 Pair 1
2 Pair 2

198500 199000 199500 200000 200500 201000 201500 202000

0.00

0.05

0.10

0.15

Location

C
pG

 d
en

si
ty

ID:3−−chr17:198374−201920

12 Appendix G: Plot of an arbitrary genomic
region, shown using paired results

For the arbtirary region we simply chose the same first DMR as in appendix
E.

28

−1.0

−0.5

0.0

0.5

1.0

di
ffe

re
nc

e
in

 p

1

1 1
1

1

1

1

1
1

1

1

1

1
1

1
1

1 1

1

1
1 1

1

1

1
1

1

1

1 1

1
1

1 1
1

1

1

1

1

1

1

1
1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
1 1

1
1

1

1

1 1

1

1

1

1

1

1 1

1

1
1

1

2

2

2 2

2

2

2

2
2

2

2
2 2

2

2

2

2
2 2

2
2

2

2 2

2

2

2

2

2

2
2 2

2
2

2

2
2

2

2

2

2

2

2

2

2
2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2
2

2

2

2

2

2

2

2
2

2

2

2

2

2
2

2
2

2

2

2

2

2

2
2

2 2
2

2
2 2

2

2

2
2

2
2

2

2

2

2 2

2

2

2

2

colon−liver

88270000 88271000 88272000 88273000 88274000

0.00

0.05

0.10

0.15

Location

C
pG

 d
en

si
ty

ID:1−−chr12:88269837−88274211

13 Details

This document was written using:

R> sessionInfo()

R version 3.4.0 (2017-04-21)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2012 R2 x64 (build 9600)

Matrix products: default

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats4 grid parallel stats graphics

[6] grDevices utils datasets methods base

other attached packages:

[1] corpcor_1.6.9

[2] BSgenome.Hsapiens.UCSC.hg18_1.3.1000

[3] BSgenome_1.44.0

[4] rtracklayer_1.36.0

[5] GenomicRanges_1.28.0

[6] GenomeInfoDb_1.12.0

[7] charmData_1.11.0

[8] pd.charm.hg18.example_0.99.4

[9] DBI_0.6-1

[10] oligo_1.40.0

[11] Biostrings_2.44.0

[12] XVector_0.16.0

[13] IRanges_2.10.0

[14] S4Vectors_0.14.0

[15] oligoClasses_1.38.0

[16] RSQLite_1.1-2

[17] charm_2.22.0

[18] genefilter_1.58.0

[19] RColorBrewer_1.1-2

[20] fields_8.10

[21] maps_3.1.1

[22] spam_1.4-0

[23] SQN_1.0.5

30

[24] nor1mix_1.2-2

[25] mclust_5.2.3

[26] Biobase_2.36.0

[27] BiocGenerics_0.22.0

loaded via a namespace (and not attached):

[1] locfit_1.5-9.1 Rcpp_0.12.10

[3] lattice_0.20-35 Rsamtools_1.28.0

[5] gtools_3.5.0 digest_0.6.12

[7] foreach_1.4.3 sva_3.24.0

[9] BiocInstaller_1.26.0 zlibbioc_1.22.0

[11] annotate_1.54.0 Matrix_1.2-9

[13] preprocessCore_1.38.0 splines_3.4.0

[15] BiocParallel_1.10.0 RCurl_1.95-4.8

[17] bit_1.1-12 DelayedArray_0.2.0

[19] compiler_3.4.0 multtest_2.32.0

[21] mgcv_1.8-17 SummarizedExperiment_1.6.0

[23] GenomeInfoDbData_0.99.0 ff_2.2-13

[25] codetools_0.2-15 matrixStats_0.52.2

[27] XML_3.98-1.6 GenomicAlignments_1.12.0

[29] MASS_7.3-47 bitops_1.0-6

[31] nlme_3.1-131 xtable_1.8-2

[33] affyio_1.46.0 limma_3.32.0

[35] iterators_1.0.8 siggenes_1.50.0

[37] tools_3.4.0 survival_2.41-3

[39] AnnotationDbi_1.38.0 memoise_1.1.0

[41] affxparser_1.48.0

31

	Introduction
	Analyzing data from the custom CHARM microarray
	Read in raw data
	Array quality assessment
	Percentage methylation estimates and differentially methylated regions (DMRs)
	Pipeline 1 (recommended): Regression-based DMR-finding after correcting for batch effects
	Continuous covariate of interest

	Pipeline 2: DMR-finding without adjusting for batch or other covariates
	Analysis of paired samples

	Appendix A: Quality report
	Appendix B: Density plots
	Appendix C: MDS plot
	Appendix D: DMR plot
	Appendix E: Plot of an arbitrary genomic region
	Appendix F: DMR plot from analysis of paired samples
	Appendix G: Plot of an arbitrary genomic region, shown using paired results
	Details

