
A New Interface to Render Graphs Using

Rgraphviz

Florian Hahne

April 24, 2017

Contents

1 Overview 1

2 Introduction 1

3 Default rendering parameters 3
3.1 Default node parameters . 4
3.2 Default edge parameters . 6
3.3 Default graphwide parameters . 9

4 Parameters for individual nodes/edges 10

5 Graphical parameters that affect the layout 15
5.1 Node shapes . 15
5.2 Edge arrowheads and arrowtails 17

6 Sessioninfo 19

1 Overview

This vignette shows how to use Rgraphviz’s updated interface for rendering of
graphs. For details on graph layout see the Vignette “How To Plot A Graph Us-
ing Rgraphviz”. Note that the design of the interface is independent of graphviz,
however no bindings to any other graph layout software have been implemented
so far.

2 Introduction

There are two distinct processes when plotting graphs: layout, which places
nodes and edges in a (usually two-dimensional) space, and rendering, which
is the actual drawing of the graph on a graphics device. The first process

1

is typically the more computationally expensive one and relies on sophisticated
algorithms that arrange the graph’s components based on different criteria. The
arrangement of the nodes and edges depends on various parameters such as the
desired node size, which again may be a function of the size of the node labels.
Rendering of a graph is often subject to frequent changes and adaptions, and it
makes sense to separate the two processes in the software implementation. It is
also important to realize that the process of getting a good layout is iterative,
and using default parameter settings seldom yields good plots.

The code available for doing graph layout in Bioconductor is based mainly
on the Graphviz project and the Boost graph library. However, because the
rendering of a graph is separated from the layout, one can use other graph
layout algorithms, as long as the requirements of the rendering interface are
met.

In the process of laying out a graph some amount of information is generated,
mostly regarding the locations and dimensions of nodes on a two-dimensional
plane and the trajectories of the edges. Bioconductor graph objects now contain
a slot renderInfo to hold this information. The typical workflow of a graph
layout is to pass a graph object to the layout function, which returns another
graph object containing all the necessary information for subsequent rendering.
The process of calling a layout algorithm is encapsulated in the layoutGraph

function. Calling this function without any further arguments will result in
using one of the Graphviz layout algorithms via the the Rgraphviz package. We
assume a knowledge of graph layout and the available Graphviz options in the
remainder of this Vignette and will mostly deal with the rendering part, here.

The rendering of a graph relies solely on R’s internal plotting capabilities. As
for all other plotting functions in R, many parameters controlling the graphical
output can be tuned. However, because there are several parts of a graph
one might want to modify (e.g., nodes, edges, captions), setting the graphical
parameters is slightly more complex than for other plots. We have established
a hierarchy to set global defaults, graph-specific parameters, and settings that
apply only to individual rendering operations.

To demonstrate the new rendering interface we first generate a graph using
the graph package and lay it out using the default Graphviz dot layout.

> library("Rgraphviz")

> set.seed(123)

> V <- letters[1:10]

> M <- 1:4

> g1 <- randomGraph(V, M, 0.2)

> g1 <- layoutGraph(g1)

> renderGraph(g1)

2

a

b

c

d

e

f

g

h

i j

3 Default rendering parameters

There is a hierarchy to set rendering parameters for a graph. The levels of this
hierarchy are

1. The session: These are the defaults that will be used for a parameter if
not set somewhere further down the hierarchy. You can change the session
defaults at any time using the function graph.par.

2. Rendering operation: Defaults can be set for a single rendering operation,
that is, for a single call to renderGraph using its graph.pars argument.

3. Individual nodes or edges: Parameters for individual nodes or edges in a
graph object can be set using the nodeRenderInfo and edgeRenderInfo

functions.

Note that all parameters set in renderGraph’s graph.pars argument are
transient, whereas setting session-wide parameters will affect all subsequent ren-
dering operations. Setting parameters via the nodeRenderInfo and edgeRen-

derInfo functions affects the individual graph objects, and these changes will
obviously be retained in all subsequent layout or rendering operations of that
particular graph.

3

3.1 Default node parameters

We now use our example graph to further explore these options. Let’s start with
the nodes: We want to fill all our nodes with a gray color and use a red color
for the node names. Since this should be applied to all nodes, we set a global
rendering parameter using graph.par:

> graph.par(list(nodes=list(fill="lightgray", textCol="red")))

> renderGraph(g1)

a

b

c

d

e

f

g

h

i j

Setting a session-wide parameter has side-effects for all subsequent rendering
operations, and we will soon see how to archive the same setting using the
nodeRenderInfo function.

Note that graph.par takes as single argument a list of rendering parame-
ters. There are three different types of parameters the user might want to set:
nodewide parameters, edgewide parameters and parameters that control fea-
tures of the whole graph. Accordingly, the parameters list passed to graph.par

may contain the list items nodes, edges and graph. Each of these list items can
again be a list of available plotting parameters. In our example, the parameters
are fill and textCol. All currently available node parameters are:

� col: the color of the line drawn as node border. Defaults to black.

� lty: the type of the line drawn as node border. Defaults to solid. Valid
values are the same as for the R’s base graphic parameter lty.

4

� lwd: the width of the line drawn as node border. Defaults to 1.Note that
the underlying low level plotting functions do not support vectorized lwd

values. Instead, only the first item of the vector will be used.

� fill: the color used to fill a node. Defaults to transparent.

� textCol:the font color used for the node labels. Defaults to black.

� fontsize: the font size for the node labels in points. Defaults to 14. Note
that the fontsize will be automatically adjusted to make sure that all
labels fit their respective nodes. You may want to increase the node size
by supplying the appropriate layout parameters to Graphviz in order to
allow for larger fontsizes.

� cex: Expansion factor to further control the fontsize. As default, this
parameter is not set, in which case the fontsize will be clipped to the
node size. This mainly exists to for consistency with the base graphic
parameters and to override the clipping of fontsize to nodesize.

� shape: This is not really a graphical parameter. See Section 5 for details.

In the next code chunk we set the defaults for all remaining node parameters:

> graph.par(list(nodes=list(col="darkgreen", lty="dotted", lwd=2, fontsize=6)))

> renderGraph(g1)

a

b

c

d

e

f

g

h

i j

5

Similar to R’s base par function, the original values of a modified paramter
are returned by graph.par and you may want to assign them to an object in
order to later revert your changes.

A useful feature when plotting graphs is to control the shape of the nodes.
However, shapes have an impact on the ideal location of nodes and, even more
so, the edges between them. Hence, the layout algorithm needs to be re-run
whenever there are changes in node shapes. In Section 5 we will learn how to
control node shapes and also some features of the edges.

3.2 Default edge parameters

Now, let’s take a look at the parameters that control the appearence of edges.
They are:

� col: the color of the edge line. Defaults to black.

� lty: the type of the edge line. Defaults to solid. Valid values are the
same as for the R’s base graphic parameter lty.

� lwd: the width of the edge line. Defaults to 1.

� textCol:the font color used for the edge labels. Defaults to black.

� fontsize: the font size for the edge labels in points. Defaults to 14.

� cex: Expansion factor to further control the fontsize. This mainly exists
to be consistent with the base graphic parameters.

� arrowhead, arrowtail Again, not really a plotting parameter. Section 5
provides details.

First, we set some attributes that control the edge lines.

> graph.par(list(edges=list(col="lightblue", lty="dashed", lwd=3)))

> renderGraph(g1)

6

a

b

c

d

e

f

g

h

i j

In order to show the effects of the edge label parameters, we first have to
add such labels. layoutGraph will pass them on to Graphviz when they are
specified as edgeAttrs:

> labels <- edgeNames(g1)

> names(labels) <- labels

> g1 <- layoutGraph(g1, edgeAttrs=list(label=labels))

> renderGraph(g1)

7

a

b

c

d

e

f

g

h

i j

a~b

a~d

a~e

a~f

a~hb~f

b~d

b~e

b~h

c~h

d~e

d~f

d~he~f

e~h

f~h

Now we can start tweaking them:

> graph.par(list(edges=list(fontsize=18, textCol="darkred")))

> renderGraph(g1)

8

a

b

c

d

e

f

g

h

i j

a~b

a~d

a~e

a~f

a~hb~f

b~d

b~e

b~h

c~h

d~e

d~f

d~he~f

e~h

f~h

3.3 Default graphwide parameters

Some features of a graph are not really attributes of either nodes or edges. They
can be controlled through the graphwide rendering parameters:

� main: text that is plotted as the main title. Unless set explicitely, no title
will be plotted.

� sub: text that is plotted as subtitle at the bottom of the graph. Unless
set explicitely, no subtitle will be plotted.

� col.main: the font color used for the title. Defaults to black.

� cex.main: Expansion factor for the fontsize used for the title. Defaults to
1.2

� col.sub: the font color used for the subtitle. Defaults to black.

� cex.sub: Expansion factor for the fontsize used for the subtitle. Defaults
to 1

Here, we add both a title and a subtitle to the plot.

9

> graph.par(list(graph=list(main="A main title...",

+ sub="... and a subtitle", cex.main=1.8,

+ cex.sub=1.4, col.sub="gray")))

> renderGraph(g1)

A main title...

... and a subtitle

a

b

c

d

e

f

g

h

i j

a~b

a~d

a~e

a~f

a~hb~f

b~d

b~e

b~h

c~h

d~e

d~f

d~he~f

e~h

f~h

Of course we could set all graph-, node-, and edgewide parameters in one
single call to graph.par. Instead of defining global settings with graph.par

we could also provide a list with the same structure to renderGraph through
its graph.pars argument. Those will only be applied in the respective render-
ing operation, whereas options set using the function graph.par are retained
throughout the whole R session.

4 Parameters for individual nodes/edges

In many cases we don’t want to globally change certain parameters for all nodes
or edges, but rather do this selectively to highlight individual nodes/edges or
subsets thereof. To this end, parameters for individual nodes and edges can be
set using the nodeRenderInfo and edgeRenderInfo functions. Both nodeRen-

derInfo and edgeRenderInfo are replacement functions that operate directly
on the graph object. For completeness, graphRenderInfo is the function that
can be used to control the graph-wide attributes (like captions and subtitles).
When you change a parameter in the graph object this will be carried on across

10

all further rendering and layout operations. The settings made by edgeRender-

Info and nodeRenderInfo take precedence over all other default settings.
The parameters to be set have to be given as named lists, where each list

item can contain named vectors for certain options. For example, the following
code sets the fill color of nodes a and b to yellow.

> nodeRenderInfo(g1) <- list(fill=c(a="lightyellow", b="lightyellow"))

> renderGraph(g1)

A main title...

... and a subtitle

a

b

c

d

e

f

g

h

i j

a~b

a~d

a~e

a~f

a~hb~f

b~d

b~e

b~h

c~h

d~e

d~f

d~he~f

e~h

f~h

The names of the vectors have to match the node or edge names of the graph.
Node names are straightforward (the result of calling the function nodes on a
graph object), however edge names are made up of the names of the connected
nodes separated by ~, the tilde symbol. An edge between nodes a and b would
be named a~b. For a directed graph a~b is the edge fom a to b, and b~a is the
edge from b to a. For undirected graphs the two are equivalent. edgeNames

returns the names of all edges in a graph. The following code changes the line
type of the edges between nodes b and f and nodes b and h to solid and their
line color to orange.

> edgeRenderInfo(g1) <- list(lty=c("b~f"="solid", "b~h"="solid"),

+ col=c("b~f"="orange", "b~h"="orange"))

> renderGraph(g1)

11

A main title...

... and a subtitle

a

b

c

d

e

f

g

h

i j

a~b

a~d

a~e

a~f

a~hb~f

b~d

b~e

b~h

c~h

d~e

d~f

d~he~f

e~h

f~h

Changes in the rendering of specific nodes or edges is often motivated by
certain classes or features they represent and we don’t want to set this manually
but rather use a programmatic approach:

> baseNodes <- letters[1:4]

> fill <- rep("lightblue", length(baseNodes))

> names(fill) <- baseNodes

> nodeRenderInfo(g1) <- list(fill=fill)

> renderGraph(g1)

12

A main title...

... and a subtitle

a

b

c

d

e

f

g

h

i j

a~b

a~d

a~e

a~f

a~hb~f

b~d

b~e

b~h

c~h

d~e

d~f

d~he~f

e~h

f~h

Both nodeRenderInfo and edgeRenderInfo also allow to set parameters for
all edges or nodes of the graph at once. The syntax is simple: instead of a
named vector one can pass a scalar for a given parameter. This value will then
be assigned to all available nodes or edges.

> nodeRenderInfo(g1) <- list(lty=1)

> edgeRenderInfo(g1) <- list(lty=1, lwd=2, col="gray")

> renderGraph(g1)

13

A main title...

... and a subtitle

a

b

c

d

e

f

g

h

i j

a~b

a~d

a~e

a~f

a~hb~f

b~d

b~e

b~h

c~h

d~e

d~f

d~he~f

e~h

f~h

The easiest way to set an attribute back to its default (the session default if
it has been set) is to pass in a NULL list item via the respective setter function.

> nodeRenderInfo(g1) <- list(fill=list(b=NULL, d=NULL))

> renderGraph(g1)

14

A main title...

... and a subtitle

a

b

c

d

e

f

g

h

i j

a~b

a~d

a~e

a~f

a~hb~f

b~d

b~e

b~h

c~h

d~e

d~f

d~he~f

e~h

f~h

5 Graphical parameters that affect the layout

As mentioned before, some graphical parameters are somewhat on the border
between graph layout and graph rendering. The shape of the node for example
does not drastically affect it’s location, however the layout of the edges pointing
to and from this node might slightly change. Since manipulating these attributes
is a frequent operation in graph plotting, we decided to make them available
through the rendering interface.

5.1 Node shapes

Node shapes can be set using the shape parameter. Currently, the rendering
function supports the following shape types:

� circle this is the default value. Circular nodes are not affected by changes
in width or height, the algorithm will always use a quadratic bounding
box

� ellipse this shape allows for differences in width and height. Elliptical
nodes often fit node labels better without wasting too much real estate.

� box, rectangle A rectangular node.

15

� triangle this is currently only partly supported due to restrictions in the
Graphviz interface. Edges locations might not be optimal when triangular
nodes are used.

� plaintext no node shape at all, only the node labels are plotted.

Lets change all nodes shapes to ellipses first and then try out some of the
remaining shapes on single nodes. Because of their impact on the overall layout,
we have to run layoutGraph again in order for these modifications to work.

> nodeRenderInfo(g1) <- list(shape="ellipse")

> nodeRenderInfo(g1) <- list(shape=c(g="box", i="triangle",

+ j="circle", c="plaintext"))

> g1 <- layoutGraph(g1)

> renderGraph(g1)

A main title...

... and a subtitle

a

b

c

d

e

f

g

h

i j

a~b

a~d

a~e

a~f

a~hb~f

b~d

b~e

b~h

c~h

d~e

d~f

d~he~f

e~h

f~h

To provide even more flexibility, the values of the shape attributes can also be
user-defined functions. renderGraph will call these functions internally, passing
on a number of parameters. The most important parameter is a two-by-two
matrix giving the bounding box of the respective node. This information should
be used in the self-defined node plotting function to control the node location
and also its size. No clipping ever occurs to this bounding box, and if the user
decides to extend the node size beyond these limits, overplotting with other
nodes or edges is very likely. The additional parameters that are passsed on to

16

the function are: labelX, labelY, fill, col, lwd, lty, textCol, style, label
and fontsize. Consult the help pages of the layoutGraph and renderGraph

functions for details.
As an example we will use a function that creates random thermometer plots

as node glyphs in the following code chunk. Note that we make use of the ...

argument to catch all of the passed parameters that we don’t really need. We
also remove the edge labels from the graph to tidy it up a little.

> edgeRenderInfo(g1) <- list(label=NULL)

> myNode <- function(x, col, fill, ...)

+ symbols(x=mean(x[,1]), y=mean(x[,2]), thermometers=cbind(.5, 1,

+ runif(1)), inches=0.5,

+ fg=col, bg=fill, add=TRUE)

> nodeRenderInfo(g1) <- list(shape=list(d=myNode, f=myNode),

+ fill=c(d="white", f="white"),

+ col=c(d="black", f="black"))

> g1 <- layoutGraph(g1)

> renderGraph(g1)

A main title...

... and a subtitle

a

b

c

d

e

f

g

h

i j

5.2 Edge arrowheads and arrowtails

Similar to the control of node shapes, renderGraph supports different types of
shapes for the tips of the edges. In undirected graphs this feature is not really

17

supported because edges are merely connecting nodes, they don’t convey any
information about direction. We can change the mode of our sample graph to
directed to further explore this feature.

> edgemode(g1) <- "directed"

The valid values for both arrowheads and arrowtails of the edges are open,
normal, dot, odot, box, obox, tee, diamond, odiamond and none. The little
helper function edgeNames can be used to list all available edge names.

> edgeRenderInfo(g1) <- list(arrowhead=c("e~h"="dot", "c~h"="odot",

+ "a~h"="diamond", "b~f"="box",

+ "a~b"="box", "f~h"="odiamond"),

+ arrowtail="tee")

> g1 <- layoutGraph(g1)

> renderGraph(g1)

A main title...

... and a subtitle

a

b

c

d

e

f

g

h

i j

●
●

There is also the option to pass a user-defined function as arrowhead or
arrowtail parameter to gain even more control. Similar to node shapes, the
function has to be able to deal with several parameters: The first parameter gives
the center of the location of the arrowhead or tail. The additional parameters
col, lwd and lty are color and line styles defined for the edges.

> myArrows <- function(x, ...)

+ {

18

+ for(i in 1:3)

+ points(x,cex=i, ...)

+ }

> edgeRenderInfo(g1) <- list(arrowtail=c("c~h"=myArrows))

> g1 <- layoutGraph(g1)

> renderGraph(g1)

A main title...

... and a subtitle

a

b

c

d

e

f

g

h

i j

●

●●●
●

6 Sessioninfo

� R version 3.4.0 (2017-04-21), x86_64-w64-mingw32

� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

� Running under: Windows Server 2012 R2 x64 (build 9600)

� Matrix products: default

� Base packages: base, datasets, grDevices, graphics, grid, methods,
parallel, stats, utils

� Other packages: BiocGenerics 0.22.0, Rgraphviz 2.20.0, XML 3.98-1.6,
graph 1.54.0

19

� Loaded via a namespace (and not attached): compiler 3.4.0, stats4 3.4.0,
tools 3.4.0

20

	Overview
	Introduction
	Default rendering parameters
	Default node parameters
	Default edge parameters
	Default graphwide parameters

	Parameters for individual nodes/edges
	Graphical parameters that affect the layout
	Node shapes
	Edge arrowheads and arrowtails

	Sessioninfo

