
Vignette for RedeR : bridging the gap between hierarchical network

representation and functional analysis.

Mauro AA Castro, Xin Wang, Michael NC Fletcher,
Kerstin B Meyer and Florian Markowetz *

http://genomebiology.com/2012/13/4/R29

mauro.a.castro@gmail.com

florian.markowetz@cruk.cam.ac.uk

April 27, 2017

Contents

1 Overview 1

2 Quick start 2
2.1 Main callback methods . 2
2.2 Interactive work . 5

3 Workflow illustration 7
3.1 Subgraphs . 7
3.2 Nested networks and clustering . 9

4 Installation 10

5 Session information 11

1 Overview

RedeR is an R-based package combined with a Java application for dynamic network visualization and
manipulation. It implements a callback engine by using a low-level R-to-Java interface to build and run
common plugins. In this sense, RedeR takes advantage of R to run robust statistics, while the R-to-Java
interface bridge the gap between network analysis and visualization.

RedeR is designed to deal with three key challenges in network analysis. Firstly, biological networks are
modular and hierarchical, so network visualization needs to take advantage of such structural features.

*Cancer Research UK - Cambridge Institute, Robinson Way Cambridge, CB2 0RE, UK.

1

http://bioconductor.org/packages/RedeR

Secondly, network analysis relies on statistical methods, many of which are already available in resources
like CRAN or Bioconductor. However, the missing link between advanced visualization and statistical
computing makes it hard to take full advantage of R packages for network analysis. Thirdly, in larger
networks user input is needed to focus the view of the network on the biologically relevant parts, rather
than relying on an automatic layout function. RedeR is designed to address these challenges (additional
information is available at Castro et al. [1]).

RedeR uses different strategies to link R to Java:

� Data interface: implements the callback engine to make calls from R via xml-rpc protocol. It sets
R as client and RedeR as server.

� Graphic interface: it wraps R graphics into RedeR classes.

The design of the software is depicted from Figure 1. Complex graphs with many attributes can be
transferred from-and-to R using addGraph and getGraph functions.

Figure 1: Schematic representation of RedeR calls. In the low-level interface, the Apache xmlrpc
webserver[2] is used to link R to Java.

2 Quick start

2.1 Main callback methods

The first step is to build the server port, which will be required in all remote procedure calls. By default
the constructor RedPort should set all details:

> library (RedeR)

> rdp <- RedPort()

Next, invoke RedeR using the method calld:

2

> calld(rdp)

Within an active interface, then the method ’addGraph’ can easily send R graphs to the application.
For example, the following chunk adds an igraph[3] object (Fig.2):

> library (igraph)

> g1 <- graph.lattice(c(5,5,5))

> addGraph(rdp, g1, layout.kamada.kawai(g1))

Figure 2: A toy example added to RedeR by the addGraph function.

Conversely, RedeR graphs can be transferred to R and wrapped in igraph objects:

> g2 <- getGraph(rdp)

> resetd(rdp)

The interface accepts additional graph attributes, as for example edge direction, edge width, edge weight,
node shape, node size, node color etc. In igraph objects, vertex and edge attributes can be assigned as
arbitrary R objects. In order to pass these extensible features to RedeR the attributes must be provided
in a valid syntax.1

Another strategy is to wrap graphs into containers and then send it to the Java application. Next, the
subgraphs g3 and g4 are assigned to different nested structures (Fig.3).

> g3 <- barabasi.game(10)

> g4 <- barabasi.game(10)

> V(g3)$name<-paste("sn",1:10,sep="")

> V(g4)$name<-paste("sm",1:10,sep="")

> addGraph(rdp, g3, isNest =TRUE, gcoord=c(25,25), gscale=50)

> addGraph(rdp, g4, isNest =TRUE, gcoord=c(75,75), gscale=50)

In this case, the subgraphs can be handled apart from each other. For example, the following chunk
selects all nodes assigned to the container ”N0”and then gets back the subgraph (the selection step can
also be done interactively).

1See getGraph and addGraph specification for additional details.

3

Figure 3: Nested graphs in RedeR using the command addGraph.

> selectNodes(rdp,"N0")

> g5 <- getGraph(rdp, status= "selected")

> resetd(rdp)

As a suggestion, try some RedeR features in the Java side (e.g. open samples s2 or s3 in the main panel
and enjoy the dynamic layout options!).

4

2.2 Interactive work

The next chunk generates a scale-free graph according to the Barabasi-Albert model[3] and sends the
graph to RedeR without any layout information.

> g6 <- barabasi.game(500)

> addGraph(rdp, g6, zoom=20)

Then using the ”relax”options available in the app you can tune the graph layout as presented in Figure
4.

> relax(rdp,p2=400,p5=30,ps=T)

Figure 4: Scale-free graph according to the Barabasi-Albert model[3].

In Figure 5a the same graph is used to exemplify the community structure mapped by the edge-
betweenness function available in RedeR. In Figure 5b these communities are nested to containers,
which are objects of the same class of the nodes but with additional behaviors (Fig.5c). You can build
these containers either using R or Java functions (see options available in the clustering main menu and
in the shortcuts of the nested objects, i.e., right-click a container).

For the next example you will need to reproduce the graph from Figure 5b (or any graph with containers)
in the RedeR app, then select one of the communities, and run the chunk below: a simple degree
distribution should be plotted in the R side.

> g <- getGraph(rdp, status= "selected")

> if(vcount(g)>0)plot(degree.distribution(g), xlab = "k", ylab = "P(k)", pch=19)

> resetd(rdp)

5

(a) Communities (b) Graphs into containers

(c) Subnetworks

Figure 5: Community structure: (a) subgraphs detected based on edge betweenness; (b) nested com-
munities into containers; (c) subnetworks in hidden containers.

6

3 Workflow illustration

This section provides a sequence of steps that illustrates how users might integrate its own pre-processed
data in a given network to visualize subgraphs and nested networks. Please refer to Castro et al. [1] for
more details about the biological background and experimental design of each example.

3.1 Subgraphs

� 1 - start the app (i.e. ’calld’ method).

� 2 - get a dataframe and an interactome:
> data(ER.limma)

> data(hs.inter)

> dt <- ER.limma

> gi <- hs.inter

� 3 - extract a subgraph and set attributes to RedeR (i.e. logFC from t3-t0 contrast):
> gt3 <- subg(g=gi, dat=dt[dt$degenes.t3!=0,], refcol=1)

> gt3 <- att.setv(g=gt3, from="Symbol", to="nodeAlias")

> gt3 <- att.setv(g=gt3, from="logFC.t3", to="nodeColor", breaks=seq(-2,2,0.4), pal=2)

ps. some genes will not be found in the interactome!

� 4 - extract another subgraph and set attributes to RedeR (i.e. logFC from t6-t0 contrast):
> gt6 <- subg(g=gi, dat=dt[dt$degenes.t6!=0,], refcol=1)

> gt6 <- att.setv(g=gt6, from="Symbol", to="nodeAlias")

> gt6 <- att.setv(g=gt6, from="logFC.t6", to="nodeColor", breaks=seq(-2,2,0.4), pal=2)

� 5 - extract another subgraph and set attributes to RedeR (i.e. logFC from t12-t0 contrast):
> gt12 <- subg(g=gi, dat=dt[dt$degenes.t12!=0,], refcol=1)

> gt12 <- att.setv(g=gt12, from="Symbol", to="nodeAlias")

> gt12 <- att.setv(g=gt12, from="logFC.t12", to="nodeColor", breaks=seq(-2,2,0.4), pal=2)

� 6 - add subgraphs to the app (Fig.6):
> addGraph(rdp, gt3, gcoord=c(10,25), gscale=20, isNest=TRUE, theme='tm1', zoom=30)

> addGraph(rdp, gt6, gcoord=c(20,70), gscale=50, isNest=TRUE, theme='tm1', zoom=30)

> addGraph(rdp, gt12, gcoord=c(70,55), gscale=80, isNest=TRUE, theme='tm1', zoom=30)

� 7 - nest subgraphs (i.e. overlap time-series):
> nestNodes(rdp, nodes=V(gt3)$name, parent="N1", theme='tm2')

> nestNodes(rdp, nodes=V(gt6)$name, parent="N2", theme='tm2')

> nestNodes(rdp, nodes=V(gt3)$name, parent="N4", theme='tm3')

� 8 - assign edges to containers
> mergeOutEdges(rdp)

� 9 - relax the network
> relax(rdp,50,400)

7

� 10 - add a color legend (other types are available):2

> scl <- gt3$legNodeColor$scale

> leg <- gt3$legNodeColor$legend

> addLegend.color(rdp, colvec=scl, labvec=leg, title="node color (logFC)")

� 11 - select a gene:
> selectNodes(rdp,"RET")

� 12 - reset graph:
> resetd(rdp)

-2
.0

node color (logFC)

-1
.6

-1
.2

-0
.8

-0
.4

 0
.0

 0
.0

 0
.4

 0
.8

 1
.2

 1
.6

 2
.0

6h

12h

N4
N5

N3

3h

CAV1

HCK

GRB7

JAK2

PIK3R1

RET

MALL

RND1

CAV1

HCK

GRB7

JAK2

PIK3R1

RET

MALL

AKAP1

RND1

CAV1

HCK

GRB7

JAK2

PIK3R1

RET

MALLAKAP1

RND1

Figure 6: Nested subnetworks. This graph shows genes differentially expressed in estrogen-treated MCF-
7 cells at 3, 6 and 12 h (relative to 0 h). The insets correspond to the overlap between consecutive time
points (adapted from Castro et al.[1]).

2Legends are set only via command line in the current version.

8

3.2 Nested networks and clustering

� 1 - get a dataframe and an igraph object:
> data(ER.deg)

> dt <- ER.deg$dat

> sg <- ER.deg$ceg

� 2 - map the dataframe to the graph:
> sg <- att.mapv(sg, dat=dt, refcol=1)

� 3 - set attributes to RedeR (i.e. gene symbols and two available numeric data):
> sg <- att.setv(sg, from="Symbol", to="nodeAlias")

> sg <- att.setv(sg, from="logFC.t3", to="nodeColor", breaks=seq(-1,1,0.2), pal=2)

> sg <- att.setv(sg, from="ERbdist", to="nodeSize", nquant=10, isrev=TRUE, xlim=c(5,40,1))

� 4 - add graph to the app (Fig.7):
> addGraph(rdp,sg)

� 5 - compute a hierarchical clustering using standard R functions:
> hc <- hclust(dist(get.adjacency(sg, attr="weight")))

� 6 - map the hclust object onto the network (pvclust objects are also compatible!):
> nesthc(rdp,hc, cutlevel=3, nmemb=5, cex=0.3, labels=V(sg)$nodeAlias)

...at this point nested objects from the network should appear mapped onto a dendrogram! different levels
of the nested structure can be set by the nesthc method. Additionally, clustering stability can be assessed
by the pvclust package, which is already compatible with RedeR interface.

� 7 - assign edges to containers:
> mergeOutEdges(rdp,nlev=2)

� 8 - relax the network:
> relax(rdp)

� 9 - add color and size legends:3

> scl <- sg$legNodeColor$scale

> leg <- sg$legNodeColor$legend

> addLegend.color(rdp, colvec=scl, labvec=leg, title="diff. gene expression (logFC)")

> scl <- sg$legNodeSize$scale

> leg <- sg$legNodeSize$legend

> addLegend.size(rdp, sizevec=scl, labvec=leg, title="bd site distance (kb)")

� 10 - reset graph:
> resetd(rdp)

3Legends are set only via command line in the current version.

9

node color

diff. gene expression (logFC)

<
-2
.0
0

-1
.8
0

-1
.4
0

-1
.0
0

-0
.6
0

-0
.2
0

0.
20

0.
60

1.
00

1.
40

1.
80

>
2.
00

node size

ER bd site distance (kb)

2.
95

45
.0
0

14
5.
29

33
4.
53

94
3.
12

AGR2

PRSS23

CAND1

SFXN2

C6orf141

AGR3 GLA

PKIB

CXCL12
CALCR

KIAA0226L

RERG CNOT8

SGK3

POC1B

FREM2

MYB

NMD3 C1orf9

PLOD2

OXR1

CCDC47

TFF1

TPD52L1

B3GALNT1

FAM110B

BZW1

PSCA

GLTPD1

ZMYND11

ABHD2

TMEM64

PGR

GREB1

Figure 7: Hierarchical networks. This graph is obtained by superimposing a dendrogram onto the
corresponding co-expression gene network (adapted from Castro et al.[1]).

4 Installation

R package

The RedeR package is freely available from Bioconductor at https://bioconductor.org/packages/RedeR/.

Java application

The RedeR jar file is already included in the R package and, as usual, to run Java applications your
system should have a copy of the JRE (Java Runtime Environment, version>=6).

10

https://bioconductor.org/packages/RedeR/

5 Session information

R version 3.4.0 (2017-04-21)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2012 R2 x64 (build 9600)

Matrix products: default

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] igraph_1.0.1 RedeR_1.24.1

loaded via a namespace (and not attached):

[1] Rcpp_0.12.10 lattice_0.20-35 digest_0.6.12 rprojroot_1.2 grid_3.4.0

[6] backports_1.0.5 magrittr_1.5 evaluate_0.10 stringi_1.1.5 Matrix_1.2-9

[11] rmarkdown_1.4 BiocStyle_2.4.0 tools_3.4.0 stringr_1.2.0 yaml_2.1.14

[16] compiler_3.4.0 htmltools_0.3.5 knitr_1.15.1

11

References

[1] Mauro AA Castro, Xin Wang, Michael NC Fletcher, Kerstin B Meyer, and Florian Markowetz. Reder:
R/bioconductor package for representing modular structures, nested networks and multiple levels of
hierarchical associations. Genome Biology, 13(4):R29, 2012. doi:10.1186/gb-2012-13-4-r29.

[2] The Apache Software Foundation. Apache xmlrpc webserver, 2010. Java implementation of XML-
RPC. URL: http://ws.apache.org/xmlrpc/.

[3] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research.
InterJournal, Complex Systems:1695, 2006. URL: http://igraph.sf.net.

12

http://dx.doi.org/10.1186/gb-2012-13-4-r29
http://ws.apache.org/xmlrpc/
http://igraph.sf.net

	1 Overview
	2 Quick start
	2.1 Main callback methods
	2.2 Interactive work

	3 Workflow illustration
	3.1 Subgraphs
	3.2 Nested networks and clustering

	4 Installation
	5 Session information

