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1 Overview

BiRewire is an R package implementing high-performing routines for the ran-
domisation of bipartite graphs preserving their node degrees (i.e. Network
Rewiring), through the Switching Algorithm (SA) [5].
This package is particularly useful for the randomisation of ’0-1’ tables (or
presence-absence matrices) in which the distributions of non-null entries (i.e.
presence distributions) must be preserved both across rows and columns. By
considering these tables as incidence matrices of bipartite graphs then this prob-
lem reduces to bipartite network rewiring.
For example, by modeling a genomic dataset as a binary event matrix (BEM),
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in which rows correspond to samples, columns correspond to genes and the
(i, j) entry is non-null if the i-th sample harbours a mutation in the j-th gene,
then with BiRewire is possible to randomise the dataset preserving its muta-
tion rates both across samples and genes. This is crucial to preserve tumour
specific alterations, dependencies between gene-mutations and heterogeneity in
mutation/copy-number-alteration rates across patients.
Large collections of such randomised tables can be then used to approximate
samples from the uniform distribution of all the possible genomic datasets with
the same mutation-rates of the initial one. Finally this data can be used as null
model to test the statistical significance of several combinatorial properties of
the original dataset: for example the tendency of a group of genes to be co- or
mutually-mutated [7].

Moreover, with se same routines, it is possible to generate a rewired version
of a given directed signed network (DSG), encoding for example a patway or
a signaling network (for details see section 5 and [2]). Similar procedures have
been implemented in order to manage undirected networks. Since version 3.6.0,
the SA can be performed also on matrices containing NAs. In this case the
SA works as usual but the position of NA will be preserved. This feature is
available if the graph is encoded whith its incidence/adjacence matrix and not
in the case of DSG.

Specifically, with BiRewire users can:

1. create bipartite graphs from genomic BEMs (or, generally, from any kind
of presence-absence matrix);

2. perform an analysis, which consists of studying the trend of Jaccard Sim-
ilarity between the original network and its rewired versions across the
switching steps (by using a user-defined sampling time), and analytically
estimating the number of steps at which this similarity reaches a plateau
(i.e. the maximal level of randomness is achieved) according to the lower
bound derived in [1];

3. generate rewired versions of a bipartite graph with the analytically derived
bound as number of switching steps or a user-defined one;

4. derive projections of the starting network and its rewired version and
perform different graph-theory analysis on them;

5. generate a set of netwoks correctly drawn from the suitable null-model
starting from the initial BEM;

6. monitoring the behaviour of the Markov chain underlying the SA

7. perform the same analysis described in point 1,2,3,5 and 6 for undirected
graphs and directed signed graphs (DGS).

All the functions of the package are written in C-code and R-wrapped. A
reduced version of the packages has been also implemented in Python https:

//github.com/andreagobbi/pyBiRewire.
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2 Installation

It is possible to download the package from http://www.ebi.ac.uk/~iorio/

BiRewire and install it with the shell-command:

R CMD INSTALL BiRewire_xx.yy.zz.tar.gz

or with biocLite() directly in R:

source("http://bioconductor.org/biocLite.R")

biocLite("BiRewire")

Moreover, the sources of the developement version are available here http:

//www.bioconductor.org/packages/devel/bioc/html/BiRewire.html. Al-
ternatively, the source files can be cloned from the github repositories: https://
github.com/andreagobbi/BiRewire and https://github.com/andreagobbi/

BiRewire--release using the command

git clone git@github.com:andreagobbi/BiRewire--release.git

git clone git@github.com:andreagobbi/BiRewire.git

We suggest to use the biocLite function from R in order to have the last working
relase package (build and check procedure).

To load BiRewire use the following commands:

> library(BiRewire)

3 Package Dependencies

BiRewire requires the R packages Matrix igraph [6], slam [11] and tsne [12]
available at the CRAN repository.

4 Notation

Let G be a bipartite graph, i.e. a graph containing two classes of nodes Vr and
Vc such that every edge e ∈ E connects one node in the first class to a node in
the second class.
Let B be the incidence matrix of G, i.e. the |Vr| × |Vc| binary matrix whose
generic entry mi,j is not null if an only if (i, j) ∈ E.
The number of edges is indicated with e = |E| and the edge density with
d = e

|Vr||Vc| .

The SA performs N Switching Steps (SSs), in which:

1. two edges (a, b) and (c, d) both ∈ E are randomly selected,

2. if a 6= c, b 6= d, (a, d) 6∈ E and (b, d) 6∈ E then:

(a) the edges (a, d) and (b, d) are added to E and

(b) the edges (a, b) and (c, d) are removed from E.
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Notice that we count a SS only if it is successfully performed.
The Jaccard Index (JI, [10]) is used to quantify the similarity between the

original graph and its rewired version at the k-th SS. Since the SA preserves the
degree distribution and does not alter the number of nodes, the JI, indicated
with s(k), can be computed as

s(k) =
x(k)

2e− x(k)
,

where x(k) is the number of edges in common between the two graphs. Fixed
a small error δ, the number N of SSs providing the rewired version of a net-
work with the maximally achievable level of randomness (in terms of average
dissimilarity from the original network) is asymptotically equal to

e(1− d)

2
ln

1− d
δ

.

More detailed, we analitically derived the fixed point of the underlying
Markov chain x̄; fixed a δ we can extimate the distance of the current state
of the chain respect to this fixed point in terms of fraction of edges δ. For
large netowrk we can assumne that a distance less than one edge is satisfiable
(see [?]), so the bound reads:

e(1− d)

2
ln e(1− d),

but in order to manage smaller network the bound with the parameter δ results
to be more general. This bound is much lower than the empirical one proposed
in [5] (see Reference for details).

5 Directed Signed Network

A directed signed network (DSG) G is a directed network in which the edges
are encoded with a triplet (a, b, ∗) where a denotes the source node, b the target
node and ∗ the sign of the relation (the sign of the edge). In our case (path-
ways and signaling) ∗ can be positive + and negative −. In [2] we show how
to create a correspondence between a DSG and a couple (B+, B−) of bipar-
tite networks. This correspondence f , and its inverse f−1 are useful for the
creation of a rewired version of G: we rewire independently B+ and B− and
we rebuild the final DSG G∗ using f−1. A DGS is usually encoded in a SIF
format (Simple Interaction File see http://wiki.cytoscape.org/Cytoscape_

User_Manual/Network_Formats for more informations). In the case of DSG a
suitable SIF file has 3 columns: the first encodes the source nodes, the second
the sign and the last the source nodes.

6 Function Description

In this section all the functions implemented in BiRewire are described with a
simple practical example in which a real breast cancer dataset is modeled as
a bipartite network, and randomised preserving the mutation-rate both across
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samples and genes (i.e. the corresponding bipartite network is rewired). In
each of the following functions it is possible to perform N successful switching
steps (see [1] for more details about this more general bound) using the flag
exact=TRUE. To prevent a possible indinite loop, the program performs at
maximum MAXITER MUL*max.iter iterations.

6.1 birewire.analysis.bipartite and.undirected

First of all, we create a bipartite network modeling a genomic breast cancer
dataset downloaded from the Cancer Genome Atlas (TCGA) projects data
portal http://tcga.cancer.gov/dataportal/, used in [1] From this dataset
germline mutations were filtered out with state-of-the-art softwares; synonymous
mutations and mutations identified as benign and tolerated were also removed.
The resulting bipartite graph has nr = 757 nodes (corresponding to samples),
nc = 9, 757 nodes (corresponding to genes), and e = 19, 758 edges connecting
a node in nr to a node in nc if the gene corresponding to the node in nr is
mutated to the samples corresponding to the node in nC . The edge density of
this network is 0.27%.

The genomic dataset (in the form of a binary matrix in which rows corre-
spond to samples, columns correspond to genes and the (i, j) entry is non null
if the i-th sample harbours a mutation in the j-th gene) can be loaded and
modeled as a bipartite graph, with the following commands:

> data(BRCA_binary_matrix)##loads an binary genomic event matrix for the

> ##breast cancer dataset

> g=birewire.bipartite.from.incidence(BRCA_binary_matrix)##models the dataset

> ## as igraph bipartite graph

Once the bipartite graph is created it is possible to conduct the analysis
by calling the birewire.analysis.bipartite function, using the following com-
mands:

> step=5000

> max=100*sum(BRCA_binary_matrix)

> scores<-birewire.analysis.bipartite(BRCA_binary_matrix,step,

+ verbose=FALSE,max.iter=max,n.networks=5,display=F)

>

The function birewire.analysis.bipartite returns the Jaccard similarity
sampled every step SSs (in the example above step is equal to 5000). The
SA is independentyl applyed on the initial data for n.networks times in order to
extimate the mean value of thr JI and the relative CI (as 1.96±σ/

√
n.networks).

A plot such information is displayed if the paramenter ndisplay is set to true.
The routine returns a list of two element: $N is the analitically derived bound
and $data the similarity score table.

The same analysis can be performed on general undirected networks.

> g.und<-erdos.renyi.game(directed=F,loops=F,n=1000,p.or.m=0.01)

> m.und<-get.adjacency(g.und,sparse=FALSE)

> step=100
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> max=100*length(E(g.und))

> scores.und<-birewire.analysis.undirected(m.und,step=step,

+ verbose=FALSE,max.iter=max,n.networks=5)

>

6.2 birewire.rewire.bipartite

To rewire a bipartite graph two modalities are available. Both of them can be
used with the analytical bound N as number of switching steps or with a user
defined value. The function takes in input an incidence matrix B or the an
igraph bipartite graph.

> m2<-birewire.rewire.bipartite(BRCA_binary_matrix,verbose=FALSE)

> g2<-birewire.rewire.bipartite(g,verbose=FALSE)

The first function recives in output the incidence matrix of the rewired graph
while the second one a bipartite igraph graph. See documentation for further
details.

6.3 birewire.rewire.undirected

To rewire a general undirected graph the following functions can be used:

> m2.und<-birewire.rewire.undirected(m.und,verbose=FALSE)

> g2.und<-birewire.rewire.undirected(g.und,verbose=FALSE)

6.4 birewire.similarity

This function computes the Jaccard index between two incidence matrices with
same dimensions and node degrees. It is possible also to use directly two suitable
graphs.

> sc=birewire.similarity(BRCA_binary_matrix,m2)

> sc=birewire.similarity(BRCA_binary_matrix,t(m2))#also works

6.5 birewire.rewire.bipartite.and.projections

The following functions execute the Switching Algorithm and computes simi-
larity trends across its switching steps for the two natural projections of the
starting bipartite graph

> #use a smaller graph!

> gg <- graph.bipartite( rep(0:1,length=10), c(1:10))

> result=birewire.rewire.bipartite.and.projections(gg,step=10,

+ max.iter="n",accuracy=0.00005,verbose=FALSE)

> plot(result$similarity_scores.proj2,type='l',col='red',ylim=c(0,1))
> lines(result$similarity_scores.proj1,type='l',col='blue')
> legend("top",1, c("Proj2","Proj1"), cex=0.9, col=c("blue","red"), lty=1:1,lwd=3)

6



6.6 birewire.sampler.bipartite

This function uses the SA to generate a set of K bipartite networks drawn from
the null model given by an initial bipartite graph. The function creates a main
folder (path input parameter) and a set of subfolders in order to have maximum
1000 files per folder. Notice that the initial graph is used only for the first
rewiring process, and the output of the fist process is used as inoput for the
second and so on.

> #use a smaller graph!

> gg <-graph.bipartite(rep(0:1,length=10), c(1:10))

> ## NOT RUN

> ##birewire.sampler.bipartite(get.incidence(g),K=10,path='TESTBIREWIRE',verbose=F)
> ##unlink('TESTBIREWIRE',recursive = T)

6.7 birewire.visual.monitoring.bipartite and .undirected

These functions allow to visualize the Markov Chain underlying the SA. More in
detail, given a sequence of steps to test, we sample from the SA each indicated
step generating a brunch of networks. We compute the pairwise Jaccard distance
among them, i.e. the Jaccad index is defined as 1 minus the Jaccad similarity.
Then we perform a dimensional scaling using tsne [12] and plot the result.

> ggg <- graph.bipartite( rep(0:1,length=10), c(1:10))

> ## NOT RUN

> ##birewire.visual.monitoring.bipartite(ggg,display=F,n.networks=10)

> g <- erdos.renyi.game(1000,0.1)

> ##birewire.visual.monitoring.undirected(g,display=F,n.networks=10)

6.8 birewire.load.dsg and birewire.save.dsg

The first function reads a SIF DSG from a given path and the second writes a
DSG in a specific path.

6.9 birewire.induced.bipartite and birewire.build.dsg

These two functions encoded the correspondence between a DSG and a ordered
couple of bipartite graphs (B+, B−). The first takes a SIF object, loaded with
birewire.load.dsg and produces a list with the positive and negative bipartite
graph, the second one build a SIF object starting from a list of two bipartite
networks.

> data(test_dsg)

> dsg=birewire.induced.bipartite(test_dsg,delimitators=list(negative='-',positive='+'))
> tmp=birewire.build.dsg(dsg,delimitators=list(negative='-',positive='+'))

6.10 birewire.rewire.dsg

Function for generating a rewired version of a given DSG G. The parameters
are quite the same of birewire.rewire.bipartite: in this case it is possible
to control the number of SS independently for the positivemax.iter.pos and
negative max.iter.neg part of G.
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> dsg2=birewire.rewire.dsg(dsg=dsg)

DONE in 0 seconds

DONE in 0 seconds

> tmp=birewire.build.dsg(dsg2,delimitators=list(negative='-',positive='+'))

6.11 birewire.similarity.dsg

Computes the Jaccard index between two DSGs.

> birewire.similarity.dsg(dsg,dsg2)

[1] 0.1578947

6.12 birewire.sampler.dsg

This function uses the SA to generate a set of K DSG in SIF format drawn
from the null model given by an initial DSG. The function creates a main folder
(path input parameter) and a set of subfolders in order to have maximum 1000
files per folder. See birewire.sampler.bipartite from more details.

> ##NOT RUN

> ##birewire.sampler.dsg(dsg,K=10,path='TESTBIREWIREDSG',verbose=F,
> ## delimitators=list(negative='-',positive='+'))
> ##unlink('TESTBIREWIREDSG',recursive = T)

7 Directed graphs

Notice that a directed graph can be encoded as a DSG with only positive (nega-
tive) part. All the routines involving DSG could be used also for directed graphs
building a DSN as a R list with just one element named positive.

8 Example

Here we collect the functionalities of the package in a single example. The
output plot of the analysis is showed in Fig.1 on the left side and the output of
the monitoring procedure is displayed in Fig.1 on the right side.

> ##NOT RUN

> #ggg <- bipartite.random.game(n1=100,n2=40,p=0.2)

> #For recovering quickly the bound N we can perform a short analysis

> #N=birewire.analysis.bipartite(get.incidence(ggg,sparse=F),max.iter=2,step=1)$N

> #Now we can perform the real analysis

> #res=birewire.analysis.bipartite(get.incidence(ggg,sparse=F),

> # max.iter=10*N,n.networks=10)

> #and monitoring the markov chain

> #birewire.visual.monitoring.bipartite(ggg,display=T,n.networks=75,

> # sequence=c(1,10,200,500,"n",10000),ncol=3)

> #Now we can generate a null model

> #birewire.sampler.bipartite(ggg,K=10000,path="TESTBIREWIREBIPARTITE")
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Figure 1: The output plots of birewire.analyis.bipartite(left side) and of
birewire.visual.monitoring.bipartite(right side) relative to the example in
section 8. The gradient of the colour from blue to red indicates the position of
the sampling network respect the others. The starting network (blue) is marked
with the text start.
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