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Abstract

Cell differentiation processes are achieved through a continuum of hierarchical intermediate
cell-states that might be captured by single-cell RNA seq. Existing computational approaches
for the assessment of cell-state hierarchies from single-cell data might be formalized under a
general framework composed of i) a metric to assess cell-to-cell similarities (combined or not with
a dimensionality reduction step), and ii) a graph-building algorithm (optionally making use of a
cells-clustering step). Sincell R package implements a methodological toolbox allowing flexible
workflows under such framework. Furthermore, Sincell contributes new algorithms to provide cell-
state hierarchies with statistical support while accounting for stochastic factors in single-cell RNA
seq. Graphical representations and functional association tests are provided to interpret hierarchies.
Some functionalities are illustrated in a real case study where their ability to discriminate noisy
from stable cell-state hierarchies is demonstrated.
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1 Introduction

Unbiased transcriptome profiling of individual cells through RNA-seq allows capturing the continuum of
cell states transited through a differentiation or activation process. Such continuum can be represented
by a sequential ordering of cell-states ultimately leading to heterogeneous cell types within a sample. The
assessment of cell-state hierarchies from single RNA-seq is challenging due to the intrinsic stochasticity
of gene expression and technical noise. Statistical support is further needed in experimental settings
where the number of cells is several orders of magnitude lower than the number of genes profiled.

A number of computational methods have been developed to assess cell-state hierarchies from single-cell
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data generated with different technologies (see Juliá et al Bioarxiv 2014, Supplementary Table 1). The
different methods can be dissected into prototypical steps: a) the assessment of a cell-to-cell similarity
matrix by a given metric (preceded or not with a dimensionality reduction step), and b) a graph-building
algorithm that can optionally make use of a cells-clustering step.

Sincell integrates the various components of that general workflow in a way that they can be combined
in a user-defined manner (see Juliá et al Bioarxiv 2014, Figure 1). Different alternatives are provided for
each step of the analysis and new algorithms are contributed. Notably, Sincell implements algorithms
to assess the statistical support of cell-state hierarchies derived from single-cell RNAseq. Different
graphical representations and functional association tests are proposed to help the user interpreting
the results. A complete description of the package and algorithms herein can be found in Juliá et al
(Bioarxiv, 2014)

2 Installing Sincell package

Sincell depends on following CRAN-R packages: entropy; fastICA; fields; ggplot2; igraph; MASS; proxy;
reshape2; Rtsne; scatterplot3d, TSP.

Installing Sincell package from Bioconductor will also install all its dependencies:

source("http://bioconductor.org/biocLite.R")

biocLite("sincell")

In this vignette we will further make use of libraries ”biomaRt” and ”monocle” from Bioconductor:

packages.bioconductor<-c("biomaRt","monocle")

packages.bioconductor.2install <- packages [!(packages.bioconductor

%in% installed.packages()[, "Package"])]

if(length(packages.bioconductor.2install)>0){
for (i in 1:length(packages.bioconductor.2install)){

biocLite(packages.bioconductor.2install[i])

}
}

We may now load package Sincell

library(sincell)

3 Loading an expression matrix into a Sincell object

Sincell workflow starts from an expression matrix comprising the expression levels of each single-cell
in the experiment (displayed by columns) for each detected gene (displayed by rows). Before starting
using Sincell , quality controls to filter out individual cells from the analysis have to be performed by
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the user. Expression levels need also to be previously normalized to account for library size or technical
variability (e.g. through the use of spike-in molecules).

Some Sincell functions are computationally intensive. Implementation of some Sincell ’s algorithms
in C++ as well as parallelization of Sincell ’s functions permit to decrease running times. However,
working with a gene expression matrix of several thousands of genes can lead to long computing times
depending on the available hardware. If time or computation capacity is an issue, we recommend the
user to restrict the analysis to the most variable protein coding genes in the dataset. These genes drive
most of the signal to assess cell-state hierarchies and restricting the analyses to them should not bias
the final results. Typically, the ensemble of Sincell routines on an expression matrix with 2000 genes
and 180 individual cells takes less than one hour in a laptop with 8GB RAM. Nevertheless, selecting the
most variable genes is not straightforward due to the mean-variance relationship. To select the most
variable genes we refer the user to the two following excellent tutorials:

i) the HSC Harvard Catalyst Single-Cell Workshop 2014: RNA-seq (http://pklab.med.harvard.edu/
scw2014/subpop tutorial.html; Section ”Identifying highly variable genes”)

and ii) Bioconductor RNA-Seq workflow (http://master.bioconductor.org/help/workflows/rnaseqGene/
#de; Section ”The rlog transformation”).

Quoting from this last document by Love M, Anders S and Huber W:

”Many common statistical methods for exploratory analysis of multidimensional data, especially methods
for clustering and ordination (e.g., principal-component analysis and the like), work best for (at least
approximately) homoskedastic data; this means that the variance of an observed quantity (here, the
expression strength of a gene) does not depend on the mean. In RNA-Seq data, however, variance
grows with the mean. For example, if one performs PCA (principal components analysis) directly on a
matrix of normalized read counts, the result typically depends only on the few most strongly expressed
genes because they show the largest absolute differences between samples”

To avoid this bias, we recommend the user performing a variance stabilizing transformation. The
simplest way is taking the logarithm of the normalized count values plus 10 (or 100) pseudocounts. More
sophisticated strategies are provided by the function rlog and other variance stabilizing transformations
discussed in the Bioconductor package DESeq2 .

To restrict the analysis to protein coding genes, a list of them can be downloaded from Ensembl
BioMart (http://www.ensembl.org/biomart/) for different organisms and in different types of gene id’s
(e.g. Entrez, Ensembl, HGNC). Bioconductor package biomaRt provides access to that information
from the R environment (see below).

Once quality control, normalization and variance stabilization (e.g. log transformation with 100 pseu-
docounts) have been performed and the most variable genes identified (e.g. the 2000 most variable
protein coding genes), we are ready to start working with Sincell .

Function sc InitializingSincellObject() initializes a Sincell object from the gene expression matrix

# Do not run

SincellObject<-sc_InitializingSincellObject(ExpressionMatrix)

In this vignette we will illustrate Sincell usage on a publicly available single-cell RNA-seq dataset taken

http://pklab.med.harvard.edu/scw2014/subpop_tutorial.html
http://pklab.med.harvard.edu/scw2014/subpop_tutorial.html
http://master.bioconductor.org/help/workflows/rnaseqGene/#de
http://master.bioconductor.org/help/workflows/rnaseqGene/#de
http://bioconductor.org/packages/DESeq2
http://www.ensembl.org/biomart/
http://bioconductor.org/packages/biomaRt
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from Trapnell et al 2014. In this work, authors generated single-cell RNA-seq libraries for differentiating
myoblasts at 0, 24, 48 and 72 hours. Original data can be accessed at GEO database accession number
GSE52529 (ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE52nnn/GSE52529/suppl/GSE52529 fpkm matrix.
txt.gz). Following Trapnell et al 2014 and the vignette of its associated Bioconductor package monocle
, the expression matrix is restricted to genes differentially expressed between cells from times 0 and the
ensemble of cells of times 24, 28 and 72 hours of differentiation. Steps to achieve this are reported below
quoting monocle’s vignette, though we recommend not to run them here due to the long computing
time needed to complete them.

# Within R console we load monocle package:

library(monocle)

# WARNING: do not run

HSMM <- detectGenes(HSMM, min_expr = 0.1)

expressed_genes <- row.names(subset(fData(HSMM), num_cells_expressed >= 50))

# The vector expressed_genes now holds the identifiers for genes expressed in

# at least 50 cells of the data set.

# Keeping expressed genes with q-value < 0.01

diff_test_res <- differentialGeneTest(HSMM[expressed_genes,],

fullModelFormulaStr = "expression~Media")

ordering_genes <- row.names(subset(diff_test_res, qval < 0.01))

HSMM <- HSMM[ordering_genes,]

In order to keep the running time of this vignette short, we provide the expression matrix produced by
previous steps:

data(ExpressionMatrix)

From the expression matrix we get the log-transformed expression matrix

EMlog <- unique(

log(ExpressionMatrix[which(apply(ExpressionMatrix,1,var)>0),]+1)

)

EMlog <- as.matrix( EMlog[as.logical(apply(!is.nan(EMlog),1,sum)),])

Optionally, we can change gene Ensembl identifiers to HGCN symbols using biomaRt

GeneEnsemblID<-rownames(EMlog)

head(GeneEnsemblID)

## [1] "ENSG00000000460.12" "ENSG00000001630.11" "ENSG00000003989.12"

## [4] "ENSG00000005448.12" "ENSG00000010292.8" "ENSG00000011426.6"

GeneEnsemblID <- sapply( strsplit(GeneEnsemblID, split=".",fixed=TRUE),"[",1)

head(GeneEnsemblID)

## [1] "ENSG00000000460" "ENSG00000001630" "ENSG00000003989" "ENSG00000005448"

ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE52nnn/GSE52529/suppl/GSE52529_fpkm_matrix.txt.gz
ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE52nnn/GSE52529/suppl/GSE52529_fpkm_matrix.txt.gz
http://bioconductor.org/packages/monocle
http://bioconductor.org/packages/monocle
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## [5] "ENSG00000010292" "ENSG00000011426"

library("biomaRt")

ensembl = useMart( "ensembl", dataset = "hsapiens_gene_ensembl" )

genemap <- getBM( attributes = c("ensembl_gene_id", "entrezgene", "hgnc_symbol"),

filters = "ensembl_gene_id", values = GeneEnsemblID, mart = ensembl )

idx <- match(GeneEnsemblID, genemap$ensembl_gene_id )

GeneEntrez <- genemap$entrezgene[ idx ]

GeneHGCN <- genemap$hgnc_symbol[ idx ]

rownames(EMlog)[!is.na(GeneHGCN)&(GeneHGCN!="")]<-

GeneHGCN[!is.na(GeneHGCN)&(GeneHGCN!="")]

head(rownames(EMlog))

## [1] "C1orf112" "CYP51A1" "SLC7A2" "WDR54" "NCAPD2" "ANLN"

Finally, we can initialize a Sincell object from the gene expression matrix. This done with the function
sc InitializingSincellObject(). At this stage, genes with a variance equal to zero are filtered out from
the gene expression matrix.

SO<-sc_InitializingSincellObject(EMlog)

Within a Sincell object, the loaded gene expression matrix can be accessed as a named list member
”expressionmatrix”

expressionmatrix<-SO[["expressionmatrix"]]

4 Assessment of a cell-to-cell distance matrix

4.1 Assessment of a cell-to-cell distance matrix with a metric of choice

The first requirement to obtain a cell-state hierarchy is to assess a cell-to-cell distance matrix. Sincell ’s
function sc distanceObj() provides both linear and non-linear distances: Euclidean distance, Pearson
and Spearman correlation, L1 distance, Cosine distance and Mutual Information.

## Assessment of a cell-to-cell distance matrix

# help(sc_distanceObj())

# Euclidean distance

SO<-sc_distanceObj(SO, method="euclidean")

cell2celldist_Euclidean<-SO[["cell2celldist"]]

# Cosine distance

SO<-sc_distanceObj(SO, method="cosine")

cell2celldist_Cosine<-SO[["cell2celldist"]]
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# Distance based on 1-Pearson correlation

SO<-sc_distanceObj(SO, method="pearson")

cell2celldist_Pearson<-SO[["cell2celldist"]]

# Distance based on 1-Spearman correlation

SO<- sc_distanceObj(SO, method="spearman")

cell2celldist_Spearman<-SO[["cell2celldist"]]

# L1 distance

SO<- sc_distanceObj(SO, method="L1")

cell2celldist_L1<-SO[["cell2celldist"]]

# Mutual information distance is assessed by making bins of expression levels

# as defined by the "bines" parameter. This function internally calls function

# mi.empirical from package "entropy" using unit="log2".

SO<-sc_distanceObj(SO, method="MI", bins=c(-Inf,0,1,2,Inf))

cell2celldist_MI<-SO[["cell2celldist"]]

4.2 Assessment of a cell-to-cell distance matrix with an intermediate di-
mensionality reduction step

The cell-to-cell distance matrix can be assessed on the new dimensions obtained from a dimensionality
reduction algorithm. Sincell ’s function sc DimensionalityReduction() provides access to the main types
of dimensionality reduction techniques either linear or non-linear, from which cell-to-cell distances can
be assessed. The methods provided are: Principal Component Analysis (PCA), Independent Component
Analysis (ICA), t-Distributed Stochastic Neighbor Embedding (tSNE), classical Multidimensional Scaling
and non-metric Multidimensional Scaling.

For instance, to perform a PCA with 3 dimensions:

# help(sc_DimensionalityReductionObj)

# Principal Component Analysis (PCA)

SO <- sc_DimensionalityReductionObj(SO, method="PCA", dim=3)

cellsLowDimensionalSpace_PCA<-SO[["cellsLowDimensionalSpace"]]

When choosing PCA, the proportion of variance explained by each of the principal axes can be plotted
to allow the user judge whether more dimensions should be considered:

plot(SO[["EigenValuesPCA"]],las=1,

main="Proportion of variance explained by\neach PCA principal axis",

ylab="Proportion of variance",xlab="Principal axes",

pch=16,ylim=c(0,0.25))

ICA and t-SNE are other two types of dimensionality reduction techniques that can be used:
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Figure 1: Proportion of variance explained by each principal axis obtained by a Principal Component
Analysis (PCA) of the expression matrix.

# Independent Component Analysis (ICA)

SO <- sc_DimensionalityReductionObj(SO, method="ICA", dim=3)

cellsLowDimensionalSpace_ICA<-SO[["cellsLowDimensionalSpace"]]

# t-Distributed Stochastic Neighbor Embedding (t-SNE)

SO <- sc_DimensionalityReductionObj(SO, method="tSNE", dim=3)

cellsLowDimensionalSpace_tSNE<-SO[["cellsLowDimensionalSpace"]]

The reader should be aware that ICA and tSNE are optimization algorithms, therefore different runs
can lead to different solutions on the same input. Those stochastic differences are expected to be small
though in certain cases two runs could lead to very different results.

We note also that Sincell makes use of the Rtsne implementation of the Barnes-Hut algorithm, which
approximates the likelihood. The user should be aware that this is a less accurate version of t-SNE than
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e.g. the one used as basis of viSNE (Amir,E.D. et al. 2013, Nat Biotechnol 31, 545?552).

To run Multidimensional Scaling:

# Classic Multidimensional Scaling (classical-MDS).

SO <- sc_DimensionalityReductionObj(SO, method="classical-MDS", dim=3)

cellsLowDimensionalSpace_classicalMDS<-SO[["cellsLowDimensionalSpace"]]

# Non-metric Multidimensional Scaling (nonmetric-MDS).

SO <- sc_DimensionalityReductionObj(SO, method="nonmetric-MDS", dim=3)

cellsLowDimensionalSpace_nonmetricMDS<-SO[["cellsLowDimensionalSpace"]]

Once the dimensionality reduction has been performed, the cell-to-cell distance matrix that has been
calculated on the new low dimensional space can be accessed as:

# Cell-to-cell distance matrix from coordinates in low dimensional space

cell2celldist <- SO[["cell2celldist"]]

4.3 Graphical representation of individual cells in low dimensional space

At this stage, the graphical representation of the individual cells into a low dimensional space can help
identifying patterns of relative similarities as well as groups of cell-states:

To represent the first two dimensions of the low-dimensional space:

plot(t(cellsLowDimensionalSpace_ICA),col= "black",

xlab="First axis after dimensionality reduction",

ylab="Second axis after dimensionality reduction")

# We can add to the plot the individual cell identifiers

# as indicated by the column's name of the matrix

text(t(cellsLowDimensionalSpace_ICA),colnames(cellsLowDimensionalSpace_ICA),

pos=3,cex=0.4,col="black")

If additional information about the individual cells is available, it can be used to further define coloring
schemes that would help interpreting the observed variability. For instance, in the data from Trapnell
et al 2014, we can use time points of differentiating myoblasts (0, 24, 48 and 72 hours) as the color
scheme to interpret the relative position of cells in low dimensional space (Figure ??, left)

First, we build a color vector for the single-cell RNA-seq libraries according to their time of differentiation
at 0, 24, 48 and 72 hours, as indicated in the column’s name of the matrix:

ColorT0<-"blue"

ColorT24<-"green"

ColorT48<-"orange"

ColorT72<-"red"

colorSCsByTime<- character(dim(SO[["expressionmatrix"]])[2])
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colorSCsByTime[grep("T0_", colnames(SO[["expressionmatrix"]]))]<- ColorT0

colorSCsByTime[grep("T24_",colnames(SO[["expressionmatrix"]]))]<- ColorT24

colorSCsByTime[grep("T48_",colnames(SO[["expressionmatrix"]]))]<- ColorT48

colorSCsByTime[grep("T72_",colnames(SO[["expressionmatrix"]]))]<- ColorT72

mycex<-1.2

mylwd<-4

myps<-1.2

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,6))

plot(t(cellsLowDimensionalSpace_ICA),col= colorSCsByTime, xlab="First axis",

ylab="Second axis",main="ICA")

par(fig = c(0, 1, 0, 1), oma = c(0, 0, 0, 0), mar = c(0, 0, 0, 0), new = TRUE,

xpd = TRUE)

plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n")

legend("right",title="Time\npoint", c("0h","24h","48h","72h"),

fill= c(ColorT0,ColorT24,ColorT48,ColorT72), inset=c(0.03,0), bty="n")

To further interpret the relative position in the low dimensional space, individual cells can be colored
according to the intensity of expression of a user-defined marker gene. Sincell implements function
sc marker2color() to help creating color scales (Figure ??, right):

myMarker<-"CDK1"

colorSCsByMarker<-sc_marker2color(SO, marker=myMarker, color.minimum="yellow3",

color.maximum="blue", relative.to.marker=TRUE)

mycex<-1.2

mylwd<-4

myps<-1.2

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,6))

plot(t(cellsLowDimensionalSpace_ICA[1:2,]),col= colorSCsByMarker,

xlab="First axis", ylab="Second axis",

main=paste("ICA - Marker:",myMarker),pch=10)

We may now produce a panel with the results for different dimensionality reduction algorithms exploring
up to 3 dimensions:

mycex<-1.5

mylwd<-4

myps<-1.2

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,10))

zones=matrix(c(1:8),ncol=2,byrow=FALSE)

layout(zones)
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Figure 2:

myxlab="First axis"

myylab="Second axis"

plot(t(cellsLowDimensionalSpace_PCA[1:2,]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="PCA")

plot(t(cellsLowDimensionalSpace_ICA[1:2,]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="ICA")

plot(t(cellsLowDimensionalSpace_tSNE[1:2,]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="tSNE")

plot(t(cellsLowDimensionalSpace_nonmetricMDS[1:2,]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="nonmetricMDS")

myxlab="Third axis"

myylab="Second axis"

plot(t(cellsLowDimensionalSpace_PCA[c(3,2),]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="PCA")

plot(t(cellsLowDimensionalSpace_ICA[c(3,2),]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="ICA")
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Figure 3: Representation of individual cells in the low dimensional space obtained by performing an
Independent Component Analysis on the initial expression matrix. Color code on the left represents the
time point of the differentiating myoblast library, while on the right it represents the relative expression
levels of the marker from minimum (yellow) to maximum (blue).

plot(t(cellsLowDimensionalSpace_tSNE[c(3,2),]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="tSNE")

plot(t(cellsLowDimensionalSpace_nonmetricMDS[c(3,2),]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="nonmetricMDS")

par(fig = c(0, 1, 0, 1), oma = c(0, 0, 0, 0), mar = c(0, 0, 0, 0),

new = TRUE, xpd = TRUE)

plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n")

legend("right",title="Time\npoint", c("0h","24h","48h","72h"),

fill= c(ColorT0,ColorT24,ColorT48,ColorT72), inset=c(0.01,0),bty="n")

Figure 4 represents individual cells in several low dimensional spaces as calculated by different algorithms:
PCA, ICA, tSNE and non-metric MDS. Panels on the left represent axis 1 and 2, and panels on the
right axis 3 and 2 of the corresponding algorithm. Color code corresponds to the time of differentiation
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as indicated in the legend. It can be observed that the non-metric Multidimensional Scaling is able
to separate in its 1st and 3rd dimension the samples according to their time of differentiation. This
example shows that exploring different algorithms as well as different dimensions can help capturing the
internal structure of the data.

Further inspection of low dimensional spaces can be done with a 3D visualization as provided by the rgl
package:

library(rgl)

# Coloring by time point

plot3d(t(cellsLowDimensionalSpace_nonmetricMDS),

cex=1, size=2, type="s", col= colorSCsByTime)

plot3d(t(cellsLowDimensionalSpace_ICA),

cex=1, size=2, type="s", col= colorSCsByTime)

plot3d(t(cellsLowDimensionalSpace_PCA),

cex=1, size=2, type="s", col= colorSCsByTime)

plot3d(t(cellsLowDimensionalSpace_tSNE),

cex=1, size=2, type="s", col= colorSCsByTime)

# Coloring by marker

plot3d(t(cellsLowDimensionalSpace_nonmetricMDS), cex=1, size=2, type="s", col= colorSCsByMarker)

For the following steps in the vignette we will use an ICA dimensionality reduction in two dimensions:

# Independent Component Analysis (ICA)

SO <- sc_DimensionalityReductionObj(SO, method="ICA", dim=2)

5 Assessment of a cell-state hierarchy

In Sincell, a cell-state hierarchy is obtained by applying a graph-building algorithm on the previously
calculated cell-to-cell distance matrix. Graph-building algorithms may be applied on the cells taken
individually or in groups of highly similar cells, as determined by an intermediate clustering step.

5.1 Optional clustering of individual cells

Identifying groups of cells particularly homogeneous among them by using a clustering step is recom-
mended to avoid misleading representations produced by a graph-building algorithm: i.e. when two
cells, despite being very similar, fall far apart in the graph not because they are different but because
they are connected through intermediate cells that are even more similar to either two.

Sincell ’s function sc clusterObj() calculates a disconnected graph where the connected components are
the clusters generated by a clustering method. This function provides access to the different clustering
methods reported below, and the cells grouped in each cluster can be easily accessed through the
function clusters() from igraph package:
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Figure 4: Representation of individual cells in low dimensional space (see text).
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# help(sc_clusterObj)

# Clusters defined as subgraphs generated by a maximum pair-wise distance cut-off:

# From a totally connected graph where all cells are connected to each other,

# the algorithm keeps only pairs of cells connected by a distance lower than

# a given threshold

SO<- sc_clusterObj(SO, clust.method="max.distance", max.distance=0.5)

cellsClustering_SubgraphDist <-SO[["cellsClustering"]]

clusters(SO[["cellsClustering"]])

# Clusters defined as subgraphs generated by a given rank-percentile of the

# shortest pair-wise distances:

# From a totally connected graph where all cells are connected to each other,

# the algorithm keeps only the top "x" percent of shortest pairwise distances.

# In the example, only the shortest 10\% of all pairwise distances are retained

# to define subgraphs.

SO<- sc_clusterObj(SO, clust.method="percent", shortest.rank.percent=10)

cellsClustering_SubgraphPercent <-SO[["cellsClustering"]]

clusters(SO[["cellsClustering"]])

# K-Nearest Neighbours (K-NN) clustering.

# In the example k is set up to 3

SO <- sc_clusterObj (SO, clust.method="knn", mutual=FALSE, k=3)

cellsClustering_KNN <-SO[["cellsClustering"]]

clusters(SO[["cellsClustering"]])

# K-Mutual Nearest Neighbours clustering.

# We present here a variant from K-NN clustering in which only k reciprocal

# nearest neighbours are clustered together.

SO <- sc_clusterObj (SO, clust.method="knn", mutual=TRUE, k=3)

cellsClustering_KMNN <-SO[["cellsClustering"]]

clusters(SO[["cellsClustering"]])

For single-cell data we recommend using K-NN. Other methods available in the sc clusterObj() function
are:

# K-medoids, as calculated by function pam() in package "cluster" on

# the distance matrix SO[["cell2celldist"]] with a predefined number of groups k

SO <- sc_clusterObj (SO, clust.method="k-medoids", mutual=TRUE, k=3)

cellsClustering_kmedoids <-SO[["cellsClustering"]]

clusters(SO[["cellsClustering"]])

# Agglomerative clustering as calculated by function hclust with different

# methods and "cutting" the tree in a given number of groups k with

# function cutree()
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SO <- sc_clusterObj (SO, clust.method="complete", mutual=TRUE, k=3)

cellsClustering_hclustcomplete <-SO[["cellsClustering"]]

clusters(SO[["cellsClustering"]])

When applying hierarchical agglomerative clustering or k-medoids clustering, we recommend the user
no to create clusters of large sizes that, later in the workflow, might risk masking meaningful gradients
in the graphs/hierarchies. We refer the reader to common clustering and plotting R functions to further
explore the optimal number of clusters to be used as a parameter in the previous hierarchical and
k-means clustering: http://www.statmethods.net/advstats/cluster.html

5.2 Graph-building step

Sincell ’s function sc GraphBuilderObj() provides access to three different algorithms to assess a graph
from a cell-to-cell distance matrix: the Minimum Spanning Tree (MST), the Maximum Similarity
Spanning Tree (SST) and the Iterative Mutual Clustering Graph (IMC). SST and IMC are two new
graph-building algorithms implemented in Sincell for the first time and are described in Juliá et al
(Bioarxiv, 2014).

For example, to assess MST, SST or IMC graphs on the cell-to-cell distance matrix previously assessed
for the Sincell Object ”SO” we may run:

# help(sc_GraphBuilderObj)

# Minimum Spanning Tree (MST)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="MST",

graph.using.cells.clustering=FALSE)

cellstateHierarchy_MST<-SO[["cellstateHierarchy"]]

# Maximum Similarity Spanning Tree (SST)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="SST",

graph.using.cells.clustering=FALSE)

cellstateHierarchy_SST<-SO[["cellstateHierarchy"]]

# Iterative Mutual Clustering Graph (IMC)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="IMC")

cellstateHierarchy_IMC<-SO[["cellstateHierarchy"]]

Optionally, algorithms in sc GraphBuilderObj() can use clusters of cells to i) overlay connections between
pairs of cells belonging to the same cluster (in the case of MST):

# Minimum Spanning Tree (MST) with previous clustering of cells

# MST with K-Mutual Nearest Neighbours clustering

SO <- sc_clusterObj (SO, clust.method="knn", mutual=TRUE, k=5)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="MST",

graph.using.cells.clustering=TRUE)

http://www.statmethods.net/advstats/cluster.html
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cellstateHierarchy_MST_clustKNN<-SO[["cellstateHierarchy"]]

# MST with K-medoids

SO <- sc_clusterObj (SO, clust.method="k-medoids", k=15)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="MST",

graph.using.cells.clustering=TRUE)

cellstateHierarchy_MST_clustKmedoids<-SO[["cellstateHierarchy"]]

or ii) treat those clusters as atomic elements in the graph-building process together with non-clustered
cells (in the case of SST):

# SST with previous clustering of cells

# SST with K-Mutual Nearest Neighbours clustering

SO <- sc_clusterObj (SO, clust.method="knn", mutual=TRUE, k=5)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="SST",

graph.using.cells.clustering=TRUE)

cellstateHierarchy_SST_clustKNN<-SO[["cellstateHierarchy"]]

# SST with K-medoids

SO <- sc_clusterObj (SO, , clust.method="k-medoids", k=15)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="SST",

graph.using.cells.clustering=TRUE)

cellstateHierarchy_SST_clustKmedoids<-SO[["cellstateHierarchy"]]

By definition, IMC builds a connected graph through iterations on the clustering results produced by the
K-Mutual Nearest Neighbour (K-MNN) algorithm, so there is no need to indicate a value for parameter
”graph.using.cells.clustering”.

5.3 Graphical representation of cell-state hierarchies

In this section, we illustrate how to obtain graphical representations of the graphs generated with
Sincell ’s function sc GraphBuilderObj(). These hierarchies are ”igraph” graph objects (see ”igraph” R
package documentation at http://igraph.org/r/) representing a totally connected graph. A number of
visual displays can help interpreting the cell-state hierarchy. Figure 5 is generated with the following
code:

# Plotting parameters

vertex.size=5;

edge.color="black";

edge.width=2;

vertex.label.cex=0.2;

vertex.label.dist=1

vertex.color=colorSCsByTime

vertex.label="";

http://igraph.org/r/
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layout.graph=layout.kamada.kawai;

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,10))

zones=matrix(c(1:4),ncol=2,byrow=FALSE)

graphics::layout(zones)

plot.igraph(cellstateHierarchy_MST ,main="MST",

vertex.color=vertex.color,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

plot.igraph(cellstateHierarchy_SST_clustKNN ,main="SST - KNN cluster",

vertex.color=vertex.color,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

plot.igraph(cellstateHierarchy_SST_clustKmedoids ,main="SST - K-medoids",

vertex.color=vertex.color,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

plot.igraph(cellstateHierarchy_IMC ,main="IMC",

vertex.color=vertex.color,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

Figure 5 represents four of the cell-state hierarchies calculated in Section 5.2. The color code corresponds
to the time of differentiation of myoblast samples, as indicated in the legend. It can be observed that
cells from time point 0h are highly homogeneous, clustering together in the hierarchy. However, Cells
from time points 24, 48 and 72 hours are intertwined in the hierarchy. Indeed, some cells from different
time points are more similar among them than among other cells from the same timepoint, suggesting
a heterogeneity of cell-states (i.e. pseudotimes) within sample.

As previously described for the graphical representation of individual cells in low dimensional space (see
Section 4.3), different color schemes can be used:

i) a continuous color scale reflecting the expression levels of a maker of choice:

# To color by marker, set following parameter to:

vertex.color=colorSCsByMarker
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Figure 5: Representation of cell-state hierarchies assessed with different methods (see text).

and ii) a color code representing qualitative information about the samples (e.g. time points of differ-
entiating myoblasts in Trapnell et al 2014: 0, 24, 48 and 72 hours)

# To color by time point:

vertex.color=colorSCsByTime

To represent individual cell identifiers in the graphs, set:

vertex.label=colnames(SO[["expressionmatrix"]]);

Different layout options can also be explored to better represent the graph:

a) Using the layout of cells provided by the low dimensional spaced used (if any) to assess the cell-to-cell
distance matrix. For example:
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layout=t(cellsLowDimensionalSpace_ICA[1:2,])

b) or using other igraph layouts, for instance:

layout=layout.fruchterman.reingold

layout=layout.reingold.tilford

layout=layout.graphopt

layout=layout.svd

layout=layout.lgl

5.4 Comparisson of hierarchies assessed by different algorithms on the same
data

Sincell ’s function sc ComparissonOfGraphs() provides a way to compare the graphs resulting from the
different algorithms. The distance between two graphs is assessed as 1 minus their similarity, which
is calculated as the Spearman rank correlation between the two graphs of the shortest distance for all
pairs of cells. The function prints the distance matrix comparing the graphs and plots a hierarchical
clustering of the hierarchies:

sc_ComparissonOfGraphs(

cellstateHierarchy_MST,

cellstateHierarchy_SST_clustKNN,

cellstateHierarchy_SST_clustKmedoids,

# graph.names=c("MST","SST-KNNcluster","SST-K-medoids"),

cellstateHierarchy_IMC,

graph.names=c("MST","SST-KNNcluster","SST-K-medoids","IMC")

)

## MST SST-KNNcluster SST-K-medoids

## SST-KNNcluster 0.0950

## SST-K-medoids 0.7597 0.7292

## IMC 0.0972 0.0409 0.6923

6 Algorithmic strategies to provide statistical support to cell-
state hierarchies from single-cell RNAseq

The fact that a cell-state hierarchy is obtained by using previous algorithms does not necessarily imply
that it reflects a true biological scenario of cell activation/differentiation. It might well be that the
hierarchy obtained is mainly driven by noise due to either biological or technical factors. Furthermore,
the relative contribution of stochastic factors to the observed differences across cells is expected to
be higher if cells within a sample are in a homogeneous steady-state. In that case, a low cell-to-
cell heterogeneity will lead to cell-state hierarchies very sensitive to small variations in the initial gene
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expression data. On the other extreme, high levels of cell-to-cell heterogeneity driven by a real granularity
in an activation/differentiation process will translate into robust hierarchies that can be reproduced
despite stochastic perturbations of the data.

To help discriminating reliable cell-state hierarchies from noisy rearrangements, Sincell implements two
algorithms: i) a strategy relying on a gene resampling procedure and ii) an algorithm based on random
cell substitution with in silico-generated cell replicates.

As in previous sections, we illustrate the use of these algorithms on the four single-cell RNA-seq libraries
for differentiating myoblasts at 0, 24, 48 and 72 hours generated by Trapnell et al 2014. However, this
time we will analyse the 4 libraries independently and ask whether a cell-state hierarchy obtained from
each of them separately is actually statistically supported. This mimics a scenario where a potential
user analyses a single-cell library from one experiment (e.g. condition) and tries to figure out whether
the biological sample contains heterogeneity of cell-states that might be represented in the form of a
hierarchy with statistical support.

Let’s obtain first the cell-state hierarchy for each time using the first two dimensions of a dimensionality
reduction with Independent Component Analysis (ICA) and a Minimum Spanning Tree (MST)

t0 <- grep("T0_", colnames(EMlog))

t24 <- grep("T24_", colnames(EMlog))

t48 <- grep("T48_", colnames(EMlog))

t72 <- grep("T72_", colnames(EMlog))

EMlog_t0<-EMlog[,t0]

EMlog_t24<-EMlog[,t24]

EMlog_t48<-EMlog[,t48]

EMlog_t72<-EMlog[,t72]

dim(EMlog_t0)

## [1] 575 69

dim(EMlog_t24)

## [1] 575 74

dim(EMlog_t48)

## [1] 575 79

dim(EMlog_t72)

## [1] 575 49

SO_t0 <- sc_InitializingSincellObject(EMlog_t0)

SO_t0 <- sc_DimensionalityReductionObj(SO_t0, method="ICA",dim=2)

SO_t0 <- sc_GraphBuilderObj(SO_t0, graph.algorithm="MST",

graph.using.cells.clustering=FALSE)

SO_t24 <- sc_InitializingSincellObject(EMlog_t24)
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SO_t24 <- sc_DimensionalityReductionObj(SO_t24, method="ICA",dim=2)

SO_t24 <- sc_GraphBuilderObj(SO_t24, graph.algorithm="MST",

graph.using.cells.clustering=FALSE)

SO_t48 <- sc_InitializingSincellObject(EMlog_t48)

SO_t48 <- sc_DimensionalityReductionObj(SO_t48, method="ICA",dim=2)

SO_t48 <- sc_GraphBuilderObj(SO_t48, graph.algorithm="MST",

graph.using.cells.clustering=FALSE)

SO_t72 <- sc_InitializingSincellObject(EMlog_t72)

SO_t72 <- sc_DimensionalityReductionObj(SO_t72, method="ICA",dim=2)

SO_t72 <- sc_GraphBuilderObj(SO_t72, graph.algorithm="MST",

graph.using.cells.clustering=FALSE)

Figure 6 represents the cell-state hierarchies calculated separately for each myoblast differentiation time:

# Plotting parameters

vertex.size=5;

edge.color="black";

edge.width=2;

vertex.label.cex=0.2;

vertex.label.dist=1

vertex.color=colorSCsByTime

vertex.label="";

layout.graph=layout.kamada.kawai;

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,10))

zones=matrix(c(1:4),ncol=2,byrow=FALSE)

graphics::layout(zones)

plot.igraph(SO_t0[["cellstateHierarchy"]],main="0 hours",

vertex.color=ColorT0,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

plot.igraph(SO_t24[["cellstateHierarchy"]],main="24 hours",

vertex.color=ColorT24,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

plot.igraph(SO_t48[["cellstateHierarchy"]],main="48 hours",

vertex.color=ColorT48,vertex.label=vertex.label,
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Figure 6: Cell-state hierarchies of differentiating myoblast samples at 4 time points (0,24,48 and 72h)
obtained through a dimensionality reduction with Independent Component Analysis (ICA, 2 dimensions)
and a Minimum Spanning Tree (MST)

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

plot.igraph(SO_t72[["cellstateHierarchy"]],main="72 hours",

vertex.color=ColorT72,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)
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6.1 Statistical support of cell-state hierarchies by gene resampling

One strategy to provide statistical support to a connected graph representing a cell-state hierarchy, is
the one implemented in Sincell ’s function sc StatisticalSupportByGeneSubsampling() . This function
performs ”s” times a random subsampling of a given number ”n” of genes on the original gene expression
matrix. Then, for each sampling, a new connected graph of cells is generated using the same parameters
as for the hierarchy being tested. In each subsampling, the similarity between the resulting connected
graph and the original one is assessed as the Spearman rank correlation between the two graphs of
the shortest distance for all pairs of cells. The distribution of Spearman rank correlation values of all
subsamplings might be interpreted as the distribution of similarities between hierarchies that would be
obtained from small changes in the data. A distribution with a high median and small variance would
indicate a well-supported cell-state hierarchy. On the contrary, a distribution with a low median of
similarities and/or a wide variance would indicate a hierarchy very sensitive to changes in the data, and
therefore not highly statistically supported.

To provide statistical support by gene subsampling to the cell-state hierarchies obtained in the differ-
entiating myoblasts libraries at 0, 24, 48 and 72 hours, we may run:

# For the sake of time we set here num_it=100.

# For a higher significance, we recommend setting num_it=1000

SO_t0<-sc_StatisticalSupportByGeneSubsampling(SO_t0, num_it=100)

## The summary of the distribution of Spearman rank correlations

## between the original hierarchy and the hierarchies obtained

## from 100 resamplings of 287 genes in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.618 0.757 0.851 0.830 0.914 0.967

SO_t24<-sc_StatisticalSupportByGeneSubsampling(SO_t24, num_it=100)

## The summary of the distribution of Spearman rank correlations

## between the original hierarchy and the hierarchies obtained

## from 100 resamplings of 287 genes in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.671 0.859 0.890 0.882 0.920 0.963

SO_t48<-sc_StatisticalSupportByGeneSubsampling(SO_t48, num_it=100)

## The summary of the distribution of Spearman rank correlations

## between the original hierarchy and the hierarchies obtained

## from 100 resamplings of 287 genes in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.803 0.901 0.921 0.916 0.937 0.968

SO_t72<-sc_StatisticalSupportByGeneSubsampling(SO_t72, num_it=100)

## The summary of the distribution of Spearman rank correlations

## between the original hierarchy and the hierarchies obtained

## from 100 resamplings of 287 genes in the initial expression matrix is:
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## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.851 0.906 0.925 0.924 0.944 0.972

The distribution of Spearman rank correlation values of all subsampings is stored as a vector in Sin-
cellObject[[”StatisticalSupportbyGeneSubsampling”]] and a summary is printed to the standard output.

We may now plot together the distribution corresponding to the hierarchies from the different time
points (Figure 7):

mycex<-1

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,6))

plot(density(SO_t0[["StatisticalSupportbyGeneSubsampling"]]),col=ColorT0,lwd=4,

main="Similarities of hierarchies \nupon gene subsamping",xlim=c(0.5,1),

ylim=c(0,20),ylab="Density",xlab="Spearman rank correlation")

lines(density(SO_t24[["StatisticalSupportbyGeneSubsampling"]]),col=ColorT24,lwd=4)

lines(density(SO_t48[["StatisticalSupportbyGeneSubsampling"]]),col=ColorT48,lwd=4)

lines(density(SO_t72[["StatisticalSupportbyGeneSubsampling"]]),col=ColorT72,lwd=4)

par(fig = c(0, 1, 0, 1), oma = c(0, 0, 0, 0), mar = c(0, 0, 0, 0),

new = TRUE, xpd = TRUE)

plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n")

legend("right",title="Time\npoint", c("0h","24h","48h","72h"),

fill= c(ColorT0,ColorT24,ColorT48,ColorT72),

inset=c(0.03,0), bty="n")

A summary of the distributions of similarities obtained upon subsampling can be printed as follows:

summary(SO_t0[["StatisticalSupportbyGeneSubsampling"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.618 0.757 0.851 0.830 0.914 0.967

summary(SO_t24[["StatisticalSupportbyGeneSubsampling"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.671 0.859 0.890 0.882 0.920 0.963

summary(SO_t48[["StatisticalSupportbyGeneSubsampling"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.803 0.901 0.921 0.916 0.937 0.968

summary(SO_t72[["StatisticalSupportbyGeneSubsampling"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.851 0.906 0.925 0.924 0.944 0.972

var(SO_t0[["StatisticalSupportbyGeneSubsampling"]])
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Figure 7: Similarities of hierarchies upon random gene subsampling. The figure represents the
similarities between a given cell-state hierarchy and the hierarchies obtained when random sets of genes
are subsampled. Four distributions are plotted corresponding to the hierarchies obtained from the
libraries at different time points: 0,24,48 and 72 hours, as indicated in the legend. A high median and a
low variance are indicative of a cell-state hierarchy robust to variations in the data. See text for details.

## [1] 0.00903

var(SO_t24[["StatisticalSupportbyGeneSubsampling"]])

## [1] 0.00303

var(SO_t48[["StatisticalSupportbyGeneSubsampling"]])

## [1] 0.000885

var(SO_t72[["StatisticalSupportbyGeneSubsampling"]])

## [1] 0.000715

Late time points (48 and 72h) lead to hierarchies with a high median while early time points (0 and 24h)
had a lower median and a higher variance. Results suggest that at the initial stages of differentiation
homogeneity of cell states is rather high, leading to a hierarchy sensitive to the set of genes in which
it is assessed and therefore less statistically supported. However, late time point showed a hierarchy
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very robust to gene subsampling, reflecting a marked heterogeneity in cell-states characteristic of more
mature differentiation stages.

6.2 Statistical support of cell-state hierarchies by random cell substitution
with in silico-generated cell replicates

Gene expression levels detected by single-cell RNA seq are subject to stochastic factors both technical
and biological. This means that, if it were possible to profile the same cell in the same cell-state
multiple times (or, more realistically, a population of individual cells in a highly homogeneous state),
the detected expression levels of a gene would randomly fluctuate within a distribution of values. In
the ideal scenario where that distribution was known for each gene, individual cell replicates could be
produced in silico, leading to variations in gene expression levels similar to what would be obtained from
in vivo replicates. The generation of in silico replicates would then permit to test the reproducibility of
the cell-state hierarchy upon random replacement of a fraction of the original cells with them.

6.2.1 Generation of in silico cell replicates

The stochastic distribution of the expression levels of a gene can be characterized by a measure of
dispersion, e.g. the variance or the coefficient of variation. It is known that the expected variation
is dependent on the mean expression values of the gene, so that the higher the mean, the higher the
variance and the lower the coefficient of variation (Anders and Huber 2010; Brennecke et al 2013).
Based on this, we can simulate a stochastic fluctuation of the expression of a gene by perturbing the
observed level in a given cell with an error term whose magnitude is consistent with the mean-variance
relationship observed in the data. By doing that in all genes from an individual cell Ci, we can produce
an in silico replicate of it.

Sincell ’s function sc InSilicoCellsReplicatesObj() implements this strategy as follows: first, the mean
and variance of all genes in the original gene expression matrix is assessed. Genes are assigned to
classes according to the deciles of mean they belong to. Next, for a given gene g, a variance v is
randomly chosen from the set of variances within the class of the gene. Then, a random value drawn
from a uniform distribution U(0,v) of mean zero and variance v is added to the expression value of
a gene g in a cell c. By perturbing in this way all genes in a reference cell c we obtain an in silico
replicate c’. Redoing the process N times, N stochastic replicates are generated for each original cell.
If method= ”cv2.deciles” in function sc InSilicoCellsReplicatesObj(), a coefficient of variation cv2 is
randomly chosen from the set of coefficient of variation values within the class of the gene. Then, the
parameter v for the uniform distribution is assessed by v=cv2*(mean**2).

To generate 100 in-silico replicates of each individual cell in the differentiating myoblasts libraries at 0,
24, 48 and 72 hours, we may run:

# For the sake of time we set here multiplier=100.

# For a higher significance, we recommend setting multiplier=1000

SO_t0 <- sc_InSilicoCellsReplicatesObj(SO_t0,

method="variance.deciles", multiplier=100)
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SO_t24 <- sc_InSilicoCellsReplicatesObj(SO_t24,

method="variance.deciles", multiplier=100)

SO_t48 <- sc_InSilicoCellsReplicatesObj(SO_t48,

method="variance.deciles", multiplier=100)

SO_t72 <- sc_InSilicoCellsReplicatesObj(SO_t72,

method="variance.deciles", multiplier=100)

The cell replicates are concatenated by columns to the original gene expression matrix and saved in the
SincellObject[[”InSilicoCellsReplicates”]].

Stochasticity in gene expression at the single-cell level has also been described as following a lognormal
distribution log(x) ˜N(m,v) (Bengtsson et al 2005; Raj et al. 2006). More recently, Shalek et al 2014
described gene expression variability in single-cell RNA-seq through a log normal distribution with a third
parameter alpha describing the proportion of cells where transcript expression was detected above a given
threshold level. Authors found that the majority of genes in their study (91%) showed distributions well
described by the three-parameter model (p <0.01, goodness of fit test; Shalek et al 2014). By setting
parameter method=”lognormal-3parameters” within Sincell ’s function sc InSilicoCellsReplicatesObj(),
the function uses this ”three parameter” model estimation to generate random perturbations of gene
expression levels and produce in silico cell replicates.

Other works have found that, for most of the genes, the variability observed among their expression
levels across individual cells was better described by a negative binomial (NB) distribution rather than
a lognormal distribution (Gr?n et al., 2014). These authors used NB distribution to model not only
technical noise but also true biological gene expression noise. Their assumption is that endogenous
mRNA abundance follows a NB as supported by a physical model of bursting expression (Raj et al.,
2006). A negative binomial noise model was also adopted in (Zeisel et al., 2015). As pointed out
in these works, NB is frequently used to model overdispersed count data and has been previously
used for bulk RNA-seq data (Anders and Huber, 2010; Robinson et al., 2010). We recommend this
approach only if normalized count data is used (i.e. not length-normalized RPKM/FPKM). By setting
parameter method=”negative.binomial” within Sincell ’s function sc InSilicoCellsReplicatesObj(), Sincell
can follow an NB distribution parameterized on the observed gene expression levels to generate random
perturbations and produce in silico cell replicates accordingly.

6.2.2 Random cell substitution with in silico-generated cell replicates

Once cell-replicates have been generated, a second strategy to provide statistical support to a connected
graph is provided by Sincell ’s function sc StatisticalSupportByReplacementWithInSilicoCellsReplicates().
This function performs ”s” times a random replacement of a given number ”n” cells on the original
gene expression matrix with a randomly selected set of in-silico replicates. Then, for each set of substi-
tutions ”s”, a new connected graph of cells is calculated using the same parameters as for the hierarchy
being tested. In each ”s”, the similarity between the resulting connected graph and the original one is
assessed as the Spearman rank correlation between the two graphs of the shortest distance for all pairs
of cells. The distribution of Spearman rank correlation values of all replacements might be interpreted
as the distribution of similarities between hierarchies that would be obtained from stochastic pertur-
bations of a proportion of cells. A distribution with a high median and small variance would indicate
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a well-supported cell-state hierarchy. On the contrary, a distribution with a low median of similarities
and/or a wide variance would indicate a hierarchy very sensitive to changes in the data, and therefore
not much statistically supported.

To provide statistical support by gene substitution with in silico-generated cell replicates to the cell-state
hierarchies obtained in the differentiating myoblasts libraries at 0, 24, 48 and 72 hours, we may run:

SO_t0<-sc_StatisticalSupportByReplacementWithInSilicoCellsReplicates(SO_t0,

num_it=100,fraction.cells.to.replace=1)

## The summary of the distribution of spearman rank correlations

## between the original hierarchy and the hierarchies obtained from

## substitution of in silico generated replicates of order own

## in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.574 0.798 0.859 0.836 0.898 0.938

SO_t24<-sc_StatisticalSupportByReplacementWithInSilicoCellsReplicates(SO_t24,

num_it=100,fraction.cells.to.replace=1)

## The summary of the distribution of spearman rank correlations

## between the original hierarchy and the hierarchies obtained from

## substitution of in silico generated replicates of order own

## in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.666 0.858 0.885 0.880 0.912 0.959

SO_t48<-sc_StatisticalSupportByReplacementWithInSilicoCellsReplicates(SO_t48,

num_it=100,fraction.cells.to.replace=1)

## The summary of the distribution of spearman rank correlations

## between the original hierarchy and the hierarchies obtained from

## substitution of in silico generated replicates of order own

## in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.799 0.901 0.920 0.918 0.940 0.959

SO_t72<-sc_StatisticalSupportByReplacementWithInSilicoCellsReplicates(SO_t72,

num_it=100,fraction.cells.to.replace=1)

## The summary of the distribution of spearman rank correlations

## between the original hierarchy and the hierarchies obtained from

## substitution of in silico generated replicates of order own

## in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.852 0.904 0.927 0.925 0.943 0.970

The distribution of Spearman rank correlation values of all subsampings is stored as a vector in the
SincellObject[[”StatisticalSupportByReplacementWithInSilicoCellReplicates”]] and a summary is printed
to the standard output.
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We may now plot together the distribution corresponding to the hierarchies from the different time
points (Figure 8):

mycex<-1

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,6))

plot(density(SO_t0[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]]),

col=ColorT0,lwd=4,

main="Similarities of hierarchies upon substitution\nwith in silico cell replicates",

xlim=c(0.5,1),ylim=c(0,20),ylab="Density",xlab="Spearman rank correlation")

lines(density(SO_t24[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]]),

col=ColorT24,lwd=4)

lines(density(SO_t48[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]]),

col=ColorT48,lwd=4)

lines(density(SO_t72[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]]),

col=ColorT72,lwd=4)

par(fig = c(0, 1, 0, 1), oma = c(0, 0, 0, 0), mar = c(0, 0, 0, 0),

new = TRUE, xpd = TRUE)

plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n")

legend("right",title="Time\npoint", c("0h","24h","48h","72h"),

fill= c(ColorT0,ColorT24,ColorT48,ColorT72),

inset=c(0.03,0), bty="n")

A summary of the distributions of similarities obtained upon subsampling can be printed as follows:

summary(SO_t0[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.574 0.798 0.859 0.836 0.898 0.938

summary(SO_t24[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.666 0.858 0.885 0.880 0.912 0.959

summary(SO_t48[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.799 0.901 0.920 0.918 0.940 0.959

summary(SO_t72[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.852 0.904 0.927 0.925 0.943 0.970

var(SO_t0[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## [1] 0.00683
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Figure 8: Similarities of hierarchies upon random cell substitution with in silico-generated cell
replicates. The figure represents the similarities between a given cell-state hierarchy and the hierarchies
obtained when a random fraction of individual cells (here 100%) are substituted by a randomly chosen
in silico replicate of them. Four distributions are plotted corresponding to the hierarchies obtained from
the libraries at different time points: 0, 24, 48 and 72 hours, as indicated in the legend. A high median
and a low variance are indicative of a cell-state hierarchy robust to variations in the data. See text for
details.

var(SO_t24[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## [1] 0.00225

var(SO_t48[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## [1] 0.000695

var(SO_t72[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## [1] 0.000581

Consistent with results from the gene resampling procedure, time point 72 lead to the hierarchy with
the highest median while time point 0 had the lowest median and the highest variance. Results again
suggest that at 0 hours, homogeneity of cell states is high while at time point 72 hours, a higher degree
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of heterogeneity is present. Actually, a gradient along time can be observed (from 0 to 24, 48 and 72h)
suggesting that heterogeneity in cell-states increased as a function of time.

6.3 Note on the spike-in molecules to deconvolute technical and biological
noise.

The use of spike-in molecules is recommended in single-cell RNA-seq to infer the amount of variability
in the ex-pression levels of one gene that is expected to arise from technical factors (Brennecke et
al., 2013; Grün et al., 2014; Islam et al., 2014). More recently, Ding et al. went a step further by
using spike-ins to explicitly remove technical noise and compute de-noised gene expression levels (R
software GRM, http://wanglab.ucsd.edu/star/GRM/ , Ding et al., 2015). When spike-ins are available,
we recommend performing first technical denoise of the expression matrix before using Sincell . In such
a way, Sincell ’s computations of cell-state hierarchies would mainly rely on biological variation.

Notwithstanding, biological variation will contain two main components. First, the heterogeneity ex-
plained by truly different cell-states in a differentiation/activation process, which is the component we
aim to capture in a hierarchy. And second, the intrinsic biological noise that is expected to arise even
among cells in the same differentiation/activation state. Intrinsic biological noise originates from the
characteristics of gene expression mechanisms such as bursts of transcription (Raj et al., 2006), the
stochasticity of signal transmission (Rand et al., 2012), bimodality (Shalek et al., 2013), cell cycle
effects (McDavid et al., 2014; Buettner et al., 2015) and random monoallelic expression (Deng et al.,
2014).

Therefore, even if technical noise has been removed, it is important to test whether the hierarchy is
mainly determined by real cell-state heterogeneity or, on the contrary, it is an artifact of the intrinsic
biological noise. To this end, the reproducibility of the cell-state hierarchy can be evaluated upon
random perturbations of the de-noised expression levels. Sincell ’s strategies described above based on
either i) random gene subsampling or ii) random cell substitution with in silico-generated cell replicates,
would in that case test whether the hierarchy is robust to stochastic perturbations of the data mimicking
the effect of intrinsic biological noise.

Additionally, the user could eventually wish to test the reproducibility of the hierarchy assessed on the
original expression data (i.e. not performing first a technical de-noising step) upon random perturba-
tions exclusively based on technical noise. Estimates of technical noise for each gene can be obtained
by modeling the dependence of the coefficient of variation (cv2) of spike-in molecules as a function of
their average expression. For instance, in Brennecke et al. 2013, for each technical gene i (e.g. the
spike-ins), the sample mean (m) and sample variance of its normalized counts are estimated. Then,
the observed squared coefficients of variation (cv2) are fitted against the sample mean (m) with a
generalized linear model of the gamma family with identity link and parameterization cv2=a1/m+ al-
pha0. Applying the fitted formula to the sample mean expression levels of a gene provides an estimate
of cv2 arising from technical noise, leading to a vector so-called here cv2.estimated. By setting pa-
rameter method=”negative.binomial”, and dispersion.statistic=cv2.estimated within Sincell ’s function
sc InSilicoCellsReplicatesObj(), Sincell permits to incorporate a technical cv2 estimate per gene in the
assessment of in silico cell replicates based on normalized counts (i.e. following the previously described
negative binomial distribution whose dispersion is parameterized using the estimated technical cv2).

http://wanglab.ucsd.edu/star/GRM/
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Alternatively, in the absence of spike-in molecules, by setting parameter method=”negative.binomial”,
and dispersion.statistic=”cv2.fitted.to.data” within Sincell ’s function sc InSilicoCellsReplicatesObj()
Sincell implements the fit described in Brennecke et al. 2013 using the cv2 and m values of all
genes in the input expression matrix to provide a surrogate of technical noise estimates. However, this
alternative should not be used if the user has previously followed our recommendation in Section 1 of
using such an approach to identify highly variable genes in order to decrease the size of the input ma-
trix (http://pklab.med.harvard.edu/scw2014/subpop tutorial.html; Section ”Identifying highly variable
genes”).

7 Functional association tests to help interpreting cell-state
hierarchies

Once a cell-state hierarchy has been assessed and its statistical support checked, the next step is
interpreting the hierarchy in functional terms. In Section 4.3 and Section 5.3 we have shown different
graphical representations that can help interpreting the hierarchies in terms of the features of the
samples/libraries (e.g. differentiation time) or the expression levels of markers of interest (Figures ??,
4, and 5). In this section, we propose an analytical approach to test whether the cell-state hierarchy
associates with a given functional gene set, that is: whether the relative similarities among the individual
cells in the hierarchy are driven by the expression levels of a subset of genes with a common functional
feature.

Sincell ’s function sc AssociationOfCellsHierarchyWithAGeneSet() implements an algorithmic strategy
to evaluate that association. First, the function calculates a new cell-state hierarchy where only the
expression levels of the genes in a given functional gene set are considered. Second, it calculates the
similarity of that hierarchy and the reference hierarchy (the one assessed on the initial gene expression
matrix). The similarity between the two hierarchies is computed as the Spearman rank correlation
between the two graphs of the shortest distance for all pairs of cells. Third, the function provides
an empirical p-value of the observed similarity between the two hierarchies. This empirical p-value is
derived from a distribution of similarities resulting from random samplings of gene sets of the same size.

# help(sc_AssociationOfCellsHierarchyWithAGeneSet())

Sincell ’s function sc AssociationOfCellsHierarchyWithAGeneSet() is particularly suited to evaluate gene
set collections from the Molecular Signatures Database (MSigDB) of the Broad Institute http://www.
broadinstitute.org/gsea/msigdb/collections.jsp). Here, we illustrate the use of this function for evaluat-
ing the association of the previously obtained hierarchy for time point 72 hours (Section 6) with the gene
sets derived from the Reactome pathway database available at MSigDB (http://www.broadinstitute.
org/gsea/msigdb/download file.jsp?filePath=/resources/msigdb/4.0/c2.cp.reactome.v4.0.symbols.gmt).

We first download gene set c2.cp.reactome.v4.0.symbols.gmt from MSigDB

# geneset.list <- lapply(strsplit(readLines("c2.cp.reactome.v4.0.symbols.gmt"),"\t"),
# as.character)

# geneset.list is provided here for illustrative purposes:

http://pklab.med.harvard.edu/scw2014/subpop_tutorial.html
http://www.broadinstitute.org/gsea/msigdb/collections.jsp
http://www.broadinstitute.org/gsea/msigdb/collections.jsp
http://www.broadinstitute.org/gsea/msigdb/download_file.jsp?filePath=/resources/msigdb/4.0/c2.cp.reactome.v4.0.symbols.gmt
http://www.broadinstitute.org/gsea/msigdb/download_file.jsp?filePath=/resources/msigdb/4.0/c2.cp.reactome.v4.0.symbols.gmt
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data(geneset.list)

head(geneset.list[[1]])

## [1] "REACTOME_GLYCOGEN_BREAKDOWN_GLYCOGENOLYSIS"

## [2] "http://www.broadinstitute.org/gsea/msigdb/cards/REACTOME_GLYCOGEN_BREAKDOWN_GLYCOGENOLYSIS"

## [3] "AGL"

## [4] "GYG1"

## [5] "PGM1"

## [6] "PHKA1"

# We establish a minimum gene set size overlap with the genes in

# the expression matrix

minimum.geneset.size=30

myAssociationOfCellsHierarchyWithAGeneSet<-list()

for (i in 1:length(geneset.list)){
if(sum(rownames(SO_t72[["expressionmatrix"]])

%in% geneset.list[[i]])>=minimum.geneset.size){

SO_t72<-sc_AssociationOfCellsHierarchyWithAGeneSet(SO_t72,geneset.list[[i]],

minimum.geneset.size=minimum.geneset.size,p.value.assessment=TRUE,

spearman.rank.threshold=0.5,num_it=1000)

myAssociationOfCellsHierarchyWithAGeneSet[[

as.character(i)]]<-list()

myAssociationOfCellsHierarchyWithAGeneSet[[

as.character(i)]][["AssociationOfCellsHierarchyWithAGeneSet"]]<-

SO[["AssociationOfCellsHierarchyWithAGeneSet"]]

myAssociationOfCellsHierarchyWithAGeneSet[[

as.character(i)]][["AssociationOfCellsHierarchyWithAGeneSet.pvalue"]]<-

SO[["AssociationOfCellsHierarchyWithAGeneSet.pvalue"]]

}
}

## The spearman rank correlation between the original hierarchy

## and the hierarchy obtained when using only the 30 genes

## common with gene list REACTOME_IMMUNE_SYSTEM is

## r= 0.657973032847333

## with an empirical p-value= 4.43e-01

## drawn from 1000 random subsamplings of equal gene set size= 30

length(names(myAssociationOfCellsHierarchyWithAGeneSet))

## [1] 7

The previous code checks the association of the hierarchy SO t72 with all Reactome pathways. If
the association with a pathway has a Spearman rank correlation higher than 0.5, an empirical p.value
is calculated and a summary of the results is printed. If no gene set passes the Spearman correlation
threshold, no messages are generated. The content of all tests is stored in the list ”myAssociationOfCell-
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sHierarchyWithAGeneSet”. In this particular case, only the pathway REACTOME IMMUNE SYSTEM
showed a high correlation, though the empirical p-value was not significant.

To test association with Gene Ontology terms. The following MSigDB collections can be tested: -
GO Biological process: c5.bp.v4.0.symbols.gmt - GO Molecular function: c5.mf.v4.0.symbols.gmt - GO
Cellular component: c5.cc.v4.0.symbols.gmt
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9 Session Info

sessionInfo()

## R version 3.3.1 (2016-06-21)

## Platform: x86_64-w64-mingw32/x64 (64-bit)

## Running under: Windows Server 2012 R2 x64 (build 9600)

##

## locale:

## [1] LC_COLLATE=C

## [2] LC_CTYPE=English_United States.1252

## [3] LC_MONETARY=English_United States.1252

## [4] LC_NUMERIC=C

## [5] LC_TIME=English_United States.1252

##

## attached base packages:

## [1] splines stats4 parallel stats graphics grDevices utils

## [8] datasets methods base

##

## other attached packages:

## [1] biomaRt_2.30.0 monocle_2.2.0 DDRTree_0.1.4

## [4] irlba_2.1.2 VGAM_1.0-2 ggplot2_2.1.0

## [7] Biobase_2.34.0 BiocGenerics_0.20.0 Matrix_1.2-7.1

## [10] sincell_1.6.0 igraph_1.0.1 knitr_1.14

##

## loaded via a namespace (and not attached):

## [1] spam_1.4-0 statmod_1.4.26 slam_0.1-38

## [4] reshape2_1.4.1 lattice_0.20-34 colorspace_1.2-7

## [7] fastICA_1.2-0 XML_3.98-1.4 DBI_0.5-1

## [10] entropy_1.2.1 RColorBrewer_1.1-2 HSMMSingleCell_0.107.2

## [13] matrixStats_0.51.0 foreach_1.4.3 plyr_1.8.4

## [16] stringr_1.1.0 fields_8.4-1 munsell_0.4.3

## [19] combinat_0.0-8 gtable_0.2.0 codetools_0.2-15

## [22] evaluate_0.10 IRanges_2.8.0 AnnotationDbi_1.36.0

## [25] highr_0.6 Rcpp_0.12.7 scales_0.4.0

## [28] formatR_1.4 limma_3.30.0 S4Vectors_0.12.0
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## [31] scatterplot3d_0.3-37 BiocStyle_2.2.0 stringi_1.1.2

## [34] Rtsne_0.11 qlcMatrix_0.9.5 dplyr_0.5.0

## [37] grid_3.3.1 tools_3.3.1 bitops_1.0-6

## [40] magrittr_1.5 maps_3.1.1 RSQLite_1.0.0

## [43] RCurl_1.95-4.8 proxy_0.4-16 tibble_1.2

## [46] cluster_2.0.5 MASS_7.3-45 pheatmap_1.0.8

## [49] assertthat_0.1 iterators_1.0.8 R6_2.2.0

## [52] TSP_1.1-4
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