
Analysis of high-throughput microscopy-
based screens with imageHTS

Gregoire Pau, Xian Zhang, Michael Boutros, and
Wolfgang Huber
gregoire.pau@embl.de

October 17, 2016

Contents

1 Introduction . 2

2 Analysis of a microscopy-based screen 2

2.1 Initialization . 2

2.2 Cell segmentation . 4

2.3 Quantification of cell features 6

2.4 Prediction of cell classes 7

2.5 Phenotype summarization 9

2.6 Configuration files and complete script 10

3 Getting access to remote screen data 12

3.1 Initialization . 12

3.2 Inspecting data . 12

4 Session info . 16

mailto:gregoire.pau@embl.de

Analysis of high-throughput microscopy-based screens with imageHTS

1 Introduction

imageHTS is an R package dedicated to the analysis of high-throughput microscopy-
based screens. The package provides a modular and extensible framework to seg-
ment cells, extract quantitative cell features, predict cell types and browse screen
data through web interfaces. Designed to operate in distributed environments,
imageHTS provides a standardized access to remote screen data, facilitating the
dissemination of high-throughput microscopy-based screens.
In the following, we first show how to use imageHTS to analyse a microscopy-based
RNA interference (RNAi) screen by automated cell segmentation and extraction of
morphological cell features. In a second example, we demonstrate how to access
and analyse data from a remote screen repository.

2 Analysis of a microscopy-based screen

The kimorph screen is an RNAi screen where HeLa cells were fixed 48 h after
siRNA transfection and stained for DNA, tubulin and actin. The screen assays 800
siRNAs and is described in [1]. In this section, we are analyzing a 12-well subset of
this screen, of reduced image quality (due to package size considerations), located
in the inst/submorph directory of the imageHTS package.

2.1 Initialization

In imageHTS, screen data files can be accessed in two locations: in a local
repository, indicated by localPath, or in an optional remote server designated
by serverURL. If a file is not present in the local repository, e.g. for storage ca-
pacity reasons, imageHTS automatically retrieves the corresponding file from the
remote server to the local repository. This dual repository feature is useful when
screen data is stored in a different location from where it is analysed.
After loading the package imageHTS, we initialize an imageHTS object with par

seImageConf. The function takes 3 arguments: an imageHTS configuration file
and the variables localPath and serverURL. The imageHTS configuration file,
in DCF format, describes the general screen configuration: where the microscopy
images are located and how the plates and wells are named. We are using the
imageHTS configuration file shown in section 2.6. A detailed description of the
imageHTS configuration file can be found in the manual pages of parseImageConf.
We set the variable localPath to a temporary directory, for storing intermediate
analysis files. The variable serverURL can point either to a directory or an external
URL. In the following example, serverURL points to the submorph screen data
directory of the imageHTS package, which contains the source images acquired
from the microscope.

> library('imageHTS')

2

Analysis of high-throughput microscopy-based screens with imageHTS

> localPath = tempdir()

> serverURL = system.file('submorph', package='imageHTS')

> x = parseImageConf('conf/imageconf.txt', localPath=localPath,

+ serverURL=serverURL)

File "conf/imageconf.txt" read.

Number of plates= 1

Number of replicates= 2

Number of wells= 384

Number of channels= 3

Number of spots= 1

The imageHTS object x is now instantiated. The function configure configures
the screen by providing the screen description, the plate configuration layout (how
sample, control and empty wells are located in the plates) and the screen log.
The function annotate sets up the mapping between reagents and gene targets.
Both functions originate from the package cellHTS2, dedicated to the analysis of
low-content RNAi screens [2]. The imageHTS class extends the cellHTS class and
both functions are fully compatible with their cellHTS2 counterparts. See cellHTS2
documentation for details.

> x = configure(x, 'conf/description.txt', 'conf/plateconf.txt',

+ 'conf/screenlog.txt')

> x = annotate(x, 'conf/annotation.txt')

In imageHTS, each well is uniquely referred by an unique ID. Well unique IDs are
generated by the function getUnames, which can filter wells according to their plate,
replicate, row, column or content type (as described in the plate configuration file).
The following example enumerates the wells that are not empty.

> unames = setdiff(getUnames(x), getUnames(x, content='empty'))

> unames

[1] "001-01-A03" "001-01-A05" "001-01-B03" "001-01-B05" "001-01-C03"

[6] "001-01-D03" "001-02-A03" "001-02-A05" "001-02-B03" "001-02-B05"

[11] "001-02-C03" "001-02-D03"

12 wells are non-empty in this screen. Metadata (plate, replicate, content, gene
target, annotation) about the wells is retrieved using the function getWellFeatures.

> getWellFeatures(x, unames[1:3])

plate well controlStatus PlateName Content siRNAID

001-01-A03 1 A03 ubc P1 control <NA>

001-01-A05 1 A05 sample P1 sample M-005300-00

001-01-B03 1 B03 ubc P1 control <NA>

GeneID LocusID Accession

001-01-A03 UBC <NA> <NA>

3

Analysis of high-throughput microscopy-based screens with imageHTS

001-01-A05 AAK1 22848 NM_014911

001-01-B03 UBC <NA> <NA>

2.2 Cell segmentation

Cells present in wells can be segmented using the function segmentWells. seg

mentWells is a high-level function that takes a vector of unique well IDs and a
DCF segmentation parameter file. segmentWells uses the low-level segmentation
function indicated by the field seg.method of the segmentation parameter file to
segment individual well images. For each well, segmentWells writes in the local
directory: calibrated image data ’cal’, segmentation data ’seg’ and several JPEG
images. Files can be accessed later on with the functions fileHTS and readHTS,
as shown in the sequel.
If an unique well is given, segmentWells returns a list of three images: a calibrated
image, a nucleus mask and a cell mask. The images can be manipulated with the
package EBImage [3] and visualized using the command display. The function
highlightSegmentation merges the calibrated image, the nucleus and cell masks
to produce a composite image that highlights the segmentation information.
In the following, we segment the third negative control well rluc using the seg-
mentation parameter file shown in section 2.6. The field seg.method of the file
indicates the function segmentATH to segment the well. This function is specifically
designed to segment cells stained for DNA and cytoskeletal proteins but any other
segmentation function can be used, e.g. for segmenting yeast cells in bright field
images or segmenting organelles stained with specific markers.

> uname = getUnames(x, content='rluc')[3]

> print(uname)

[1] "001-02-C03"

> y = segmentWells(x, uname=uname,

+ segmentationPar='conf/segmentationpar.txt')

001-02-C03: rccussfs nbcells=88 OK

> display(y$cal)

> hseg = highlightSegmentation(0.6*ycal, ynseg, y$cseg, thick=TRUE)

> display(hseg)

Segmentation of the full screen is done with the following commands and takes
about 4 minutes with a single processor. Since wells can be segmented indepen-
dently from each other, segmentation of the full screen can be easily parallelized
using many processors. The following example is not run in this vignette, due to
time constraints.

> unames = setdiff(getUnames(x), getUnames(x, content='empty'))

> segmentWells(x, unames, 'conf/segmentationpar.txt')

4

Analysis of high-throughput microscopy-based screens with imageHTS

Figure 1: Calibrated image ’y$cal’ from well ’001-02-C03’.

Figure 2: Segmented image ’hseg’ from well ’001-02-C03’. Cell nucleus is highlighted in
yellow and cell membrane is indicated in magenta.

In imageHTS, all screen data files can be accessed through the function file

HTS, including configuration files, source images, segmentation data, cell features
and JPEG images. fileHTS creates paths pointing to screen data files, using a
standardized naming scheme. The following example shows, for the well indicated
by uname, how to get access to first channel of the source image, calibrated image
data, and the JPEG image of the well.

> fileHTS(x, type='source', uname=uname, channel=1)

[1] "C:/Users/biocbuild/bbs-3.4-bioc/tmpdir/RtmpAFFUmj/source/PK-11B-pl1/Well-C003/Tritc.jpeg"

> fileHTS(x, type='seg', uname=uname)

[1] "C:/Users/biocbuild/bbs-3.4-bioc/tmpdir/RtmpAFFUmj/data/001-02/001-02-C03_seg.rda"

> fileHTS(x, type='viewfull', uname=uname)

[1] "C:/Users/biocbuild/bbs-3.4-bioc/tmpdir/RtmpAFFUmj/view/001-02/001-02-C03_full.jpeg"

5

Analysis of high-throughput microscopy-based screens with imageHTS

2.3 Quantification of cell features

Quantification of cell features is done by the high-level function extractFeatures

on a set of wells, using a feature parameter file. Similar to the function seg

mentWells, extractFeatures uses the function indicated by the field extractfea

tures.method of the feature parameter file to extract cell features. For each well,
extractFeatures writes features in the local directory, in tab-separated format. In
the following example, we extract cell features from the well indicated by uname,
using the feature parameter file shown in section 2.6.

> extractFeatures(x, uname, 'conf/featurepar.txt')

001-02-C03: gmbhc OK

Cell features can be accessed using the function fileHTS, as described above. How-
ever, for convenience purposes, the function readHTS combines fileHTS and reads
the corresponding file, according to the specified format (here, tab-separated). The
following example reads the cell feature matrix of well ’001-02-C03’.

> y = readHTS(x, type='ftrs', uname=uname, format='tab')

> dim(y)

[1] 88 293

> y[1:10, 1:7]

spot id c.s.area c.s.perimeter c.s.radius.mean c.s.radius.sd

1 1 1 3214 317 33.82418 8.647554

2 1 2 2205 183 26.59331 5.793902

3 1 3 1693 171 24.15556 5.847740

4 1 4 4560 323 39.69377 7.712418

5 1 5 3363 296 33.96740 8.939805

6 1 6 3513 246 35.24268 8.472181

7 1 7 5111 310 40.48104 7.407180

8 1 8 4199 312 37.14185 5.575376

9 1 9 3931 330 38.06178 12.982466

10 1 10 5815 365 43.39953 5.527656

c.s.radius.min

1 13.78002

2 11.99122

3 12.15843

4 26.55506

5 19.10263

6 19.57477

7 26.45049

8 27.07191

9 18.37205

10 31.82344

6

Analysis of high-throughput microscopy-based screens with imageHTS

88 cells are present in the well and each cell is described with 293 features. Cell fea-
tures include geometrical features, moment-based features, Haralick moments and
Zernicke features. Cell features are described in the manual pages of the function
getFeatures of the package EBImage. Some features have a direct interpretation,
such as c.s.area, which measures the cell area or c.t.b.mean, which quantifies the
cell tubulin mean intensity. In the following example, we display the distribution
of the latter within the cells of the well, and identify the cells that have a tubulin
intensity higher than 1600.

> ctub <- y$c.t.b.mean*y$c.s.area

> hist(ctub, 20, xlab='Cell tubulin intensity (a.u.)', main='')

> abline(v=1600, col=2)

> cellid = which(ctub>1600)

> print(cellid)

[1] 2 8 10 15 72

Cell tubulin intensity (a.u.)

F
re

qu
en

cy

500 1000 1500 2000 2500

0
2

4
6

8
10

12

Figure 3: Distribution of cell tubulin intensity in cells of well ’001-02-C03’.

Five cells have a tubulin content higher than 1600. Since rows of cell feature matrix
are synchronised with cell indexes in segmentation masks, cells can be easily traced
back by loading the segmentation information, as shown in the following example.

> cal = readHTS(x, type='cal', uname=uname, format='rda')

> seg = readHTS(x, type='seg', uname=uname, format='rda')

> cseg = rmObjects(seg$cseg, setdiff(1:nrow(y), cellid))

> hightub = highlightSegmentation(0.6*cal, cseg=cseg, thick=TRUE)

> display(hightub)

2.4 Prediction of cell classes

Cell features can be used as covariates to classify cells, using supervised learning and
a set of manually annotated cells. The function readLearnTS takes as arguments a
training set file and the feature parameter file, previously used in extractFeatures.

7

Analysis of high-throughput microscopy-based screens with imageHTS

Figure 4: Cells of well ’001-02-C03’ having a tubulin intensity higher than 1600.

The training set is a list of labelled cells and the feature parameter file contains the
field remove.classification.features, indicating the features that should not be
used during training/classification (e.g. cell position). Construction of the training
set is done using the annotation web module cellPicker as described in the section
3.2.
The function readLearnTS uses a Support Vector Machine with a radial ker-
nel to predict cell labels. Training is done by parameter grid-search and 5-fold
cross-validation, to minimize classification error. The function creates the file
data/classifier.rda, which contains the trained classifier. The following exam-
ple trains a cell classifier, but is not run in the vignette due to time constraints.

> set.seed(1)

> readLearnTS(x, 'conf/featurepar.txt', 'conf/trainingset.txt')

After training, prediction of cell labels is done by the function predictCellLabels.
The function writes for each well a vector of predicted cell labels. The following
example predicts the cell labels of the well ’01-02-C03’, using a classifier previously
trained on a set of 66 cells labelled with 3 cell classes: I (interphase), M (mitotic)
and D (debris).

> predictCellLabels(x, uname)

001-02-C03: D=18 I=67 M=3 OK

67 interphase, 3 mitotic and 18 debris cells were predicted in the image. The
following example retrieves and displays the predicted cell labels.

> clab = readHTS(x, type='clabels', uname=uname, format='tab')

> labid = split(1:nrow(clab), clab$label)

> inter = seg$cseg%in%labid$I

> mito = seg$cseg%in%labid$M

> debris = seg$cseg%in%labid$D

> dc = Image(c(inter+mito, inter, debris+inter), colormode='Color',

8

Analysis of high-throughput microscopy-based screens with imageHTS

+ dim=c(dim(seg$cseg)[1:2], 3))

> dc = highlightSegmentation(0.5*dc+0.2*drop(cal), cseg=seg$cseg,

+ thick=TRUE)

> display(dc)

Figure 5: Predicted cell labels (grey: interphase, red: mitotic, blue: debris) in well ’001-02-
C03’.

Overall prediction is very good, except for few cells. Classification performance
can be easily improved by enlarging the training set and re-run the training and
predicting steps. The cellPicker web module, described in section 3.2, has an
interactive cell annotation interface which is very useful to refine the training set.

2.5 Phenotype summarization

Cell population features are summarized by summarizeWells. The function com-
putes for each well a phenotypic profile, which summarizes cell population fea-
tures. Currently, a phenotypic profile consist of: cell number n, median cell feature
med.* (for each feature) and cell class ratios. summarizeWells creates the file
data/profiles.tab which contains the phenotypic profiles. The following example
computes the phenotypic profiles of all the wells, but is not run in the vignette due
to time constraints.

> summarizeWells(x, unames, 'conf/featurepar.txt')

In the following example, the phenotypic profiles (previously computed and stored
in the imageHTS package) are loaded with readHTS and averaged by well type.
Only the following features are considered: n (cell number), med.c.s.area (median
cell size), med.c.t.b.mean (median cell tubulin density), M (mitotic cell fraction)
and D (debris cell fraction).

> profiles = readHTS(x, type='file', filename='data/profiles.tab',

+ format='tab')

9

Analysis of high-throughput microscopy-based screens with imageHTS

> wfcontent =

+ factor(as.character(getWellFeatures(x, unames)$controlStatus))

> table(wfcontent)

wfcontent

rluc sample ubc

4 4 4

> zwf = split(1:nrow(profiles), wfcontent)

> ft = c('n', 'med.c.s.area', 'med.c.t.b.mean', 'M', 'D')

> avef = do.call(rbind,

+ lapply(zwf, function(z) colMeans(profiles[z, ft])))

> print(avef)

n med.c.s.area med.c.t.b.mean M D

rluc 99.00 2446.750 0.2496445 0.010388399 0.1573825

sample 86.75 2793.375 0.2324918 0.031074095 0.1455122

ubc 26.75 1576.250 0.4220933 0.005813953 0.7868731

There are 4 rluc negative controls, 4 ubc positive controls and 4 sample wells in
this screen. The average number of cells in ubc wells is 26.75, lower than in rluc

wells, 99.00. Moreover, the average fraction of debris cells in ubc wells, 0.79, is
higher than in rluc wells, 0.16. A larger number of replicates and proper statistical
testing would be needed to determine whether the observed changes are statistically
significant.

2.6 Configuration files and complete script

Configurations files used in this vignette are reproduced in this section. Since the
files are part of the screen data, they can be read using fileHTS. In the following
example, we display the imageHTS configuration file, the segmentation parameter
file and the feature parameter file.

> f = fileHTS(x, 'file', filename='conf/imageconf.txt')

> cat(paste(readLines(f), collapse='\n'), '\n')

AssayName: submorph

SourceFilenamePattern: source/PK-{replicate}B-pl{plate}/Well-{row}0{col}/{channel}.jpeg

PlateNames: 1

ReplicateNames: 10, 11

RowNames: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P

ColNames: 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

ChannelNames: Tritc, FITC, Hoechst

> f = fileHTS(x, 'file', filename='conf/segmentationpar.txt')

> cat(paste(readLines(f), collapse='\n'), '\n')

10

Analysis of high-throughput microscopy-based screens with imageHTS

seg.method: segmentATH

nuc.athresh.filter: makeBrush(35, shape='box')/(35*35)

nuc.athresh.t: 0.00424

nuc.morpho.kernel: makeBrush(3, shape='diamond')

nuc.watershed.tolerance: 3

nuc.watershed.neighbourood: 2

nuc.min.density: 0.1

nuc.min.size: 125.0625

nuc.max.size: 2070.25

adj.a: 2.82*a - 0.17

adj.t: 5.03*t - 0.35

adj.h: 2.99*h - 0.15

cell.thresh.filter: matrix(c(0,1,0,1,2,1,0,1,0)/6,nc=3,nr=3)

cell.thresh.t: 0.12

cell.morpho.kernel: makeBrush(3, shape='diamond')

cell.propagate.lambda: 0.0001

cell.propagate.mix.power: 0.2

cell.min.density: 0.1

cell.max.edgepratio: 0.3

cell.min.size: 150.0625

cell.max.size: 14491.75

cell.max.perimeter: 769.3

thumbnail.crop: 100, 600, 200, 400

thumbnail.resize.width: 200

> f = fileHTS(x, 'file', filename='conf/featurepar.txt')

> cat(paste(readLines(f), collapse='\n'), '\n')

extractfeatures.method: getCellFtrsATH

cell.classes: D, I, M

remove.classification.features: c.a.m.cx, c.a.m.cy, c.t.m.cx, c.t.m.cy, c.h.m.cx, c.h.m.cy, c.m.m.cx, c.m.m.cy, n.a.m.cx, n.a.m.cy, n.t.m.cx, n.t.m.cy, n.h.m.cx, n.h.m.cy

cellHTS.features: n, med.c.s.area, med.c.m.m.eccentricity, med.n.ah.cor, M

cellHTS.features.name: Number of cells, Median cell size, Median cell ecc., Median A/H nuc. corr., Metaphase fraction

The following example is the complete script used to automatically segment cells,
quantify cell features, predict cell labels and summarize phenotypes of the whole
screen. The example is not run in this vignette, due to time constraints.

> library('imageHTS')

> localPath = tempdir()

> serverURL = system.file('submorph', package='imageHTS')

> x = parseImageConf('conf/imageconf.txt', localPath=localPath,

+ serverURL=serverURL)

11

Analysis of high-throughput microscopy-based screens with imageHTS

> x = configure(x, 'conf/description.txt', 'conf/plateconf.txt',

+ 'conf/screenlog.txt')

> x = annotate(x, 'conf/annotation.txt')

> unames = setdiff(getUnames(x), getUnames(x, content='empty'))

> segmentWells(x, unames, 'conf/segmentationpar.txt')

> extractFeatures(x, unames, 'conf/featurepar.txt')

> readLearnTS(x, 'conf/featurepar.txt', 'conf/trainingset.txt')

> predictCellLabels(x, unames)

> summarizeWells(x, unames, 'conf/featurepar.txt')

3 Getting access to remote screen data

The dual repository architecture of imageHTS allows an easy access to remote
screen data. In the following, we are analysing the full kimorph RNAi screen, tar-
geting about 800 protein coding genes in HeLa cells. Screen details are available
in [1]. The screen has been previously analysed by imageHTS and screen data
is located at http://www.ebi.ac.uk/huber-srv/cellmorph/kimorph/. The interac-
tive webQuery browsing interface is available at http://www.ebi.ac.uk/huber-srv/
cellmorph/kimorph/webquery/.

3.1 Initialization

We first initialize an imageHTS object by setting the variable serverURL to the
screen data URL and the local repository localPath to an empty local directory. We
next configure and annotate the imageHTS objects using the screen configuration
files. The files, absent in the local screen directory, are automatically downloaded
from the remote server.

> localPath = file.path(tempdir(), 'kimorph')

> serverURL = 'http://www.ebi.ac.uk/huber-srv/cellmorph/kimorph/'

> x = parseImageConf('conf/imageconf.txt', localPath=localPath,

+ serverURL=serverURL)

> x = configure(x, 'conf/description.txt', 'conf/plateconf.txt',

+ 'conf/screenlog.txt')

> x = annotate(x, 'conf/annotation.txt')

3.2 Inspecting data

We enumerate the non-empty wells with getUnames and retrieve metadata about
them using getWellFeatures. The controlStatus field contains the well type. We
then load the well phenotypic profiles using readHTS in the variable xd.

12

http://www.ebi.ac.uk/huber-srv/cellmorph/kimorph/
http://www.ebi.ac.uk/huber-srv/cellmorph/kimorph/webquery/
http://www.ebi.ac.uk/huber-srv/cellmorph/kimorph/webquery/

Analysis of high-throughput microscopy-based screens with imageHTS

> us = setdiff(getUnames(x), getUnames(x, content='empty'))

> wfcontent = getWellFeatures(x, us)$controlStatus

> table(wfcontent)

wfcontent

sample empty ubc rluc casp1 trappc3 clspn kif11

1558 0 24 24 24 24 24 24

kif23 plk1

24 24

> xd = readHTS(x, 'file', filename='data/profiles.tab', format='tab')

> xd = xd[match(us, xd$uname),]

There are 1750 non-empty wells in this screen, including 1558 sample experiments
and 8 controls, each replicated 24 times. In the following example, we show how the
median cell size med.c.g.ss and median cell eccentricity med.c.g.ec vary within
well types.

> colors = c('#ffffff', NA, '#aaffff', '#ffaaff', '#ff44aa', '#aaaaff',

+ '#aaffaa', '#ff7777', '#aaaaaa', '#ffff77')

> par(mfrow=c(1,2))

> boxplot(xd$med.c.g.ss~wfcontent, las=2, col=colors,

+ main='Median cell size (a.u.)')

> boxplot(xd$med.c.g.ec~wfcontent, las=2, col=colors,

+ main='Median cell eccentricity (a.u.)')

●

●●●

●

●

●
●
●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

sa
m

pl
e

em
pt

y

ub
c

rlu
c

ca
sp

1

tr
ap

pc
3

cl
sp

n

ki
f1

1

ki
f2

3

pl
k1

1000

2000

3000

4000

5000

Median cell size (a.u.)

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

sa
m

pl
e

em
pt

y

ub
c

rlu
c

ca
sp

1

tr
ap

pc
3

cl
sp

n

ki
f1

1

ki
f2

3

pl
k1

0.5

0.6

0.7

0.8

Median cell eccentricity (a.u.)

Figure 6: Distribution of median cell size and median cell eccentricity among well types.

The boxplots show that the ubc control phenotype is characterized by small and
round cells, the clspn control phenotype is characterized by large cells and the
trappc3 control phenotype is characterized by elongated cells.
To have a screen-wide overview of the well phenotypes, we draw in the following
example a map of the phenotypic profiles using linear discriminant analysis (LDA),
computed on the on the controls rluc, ubc and trappc3.

13

Analysis of high-throughput microscopy-based screens with imageHTS

> library("MASS")

> z = wfcontent %in% c('rluc', 'ubc', 'trappc3')

> ft = 14:50

> ld = lda(xd[z, ft], as.character(wfcontent[z]))

> py = predict(ld, xd[, ft])

> plot(py$x[,1:2])

Two wells stand far away from the other ones. Are they novel phenotypes ? We
identify and display them in the following example.

> unames = us[which(py$x[,1]>500)]

> print(unames)

[1] "001-01-A13" "002-01-I13"

> f = fileHTS(x, type='viewunmonted', spot=3, uname=unames[1])

> img1 = readImage(f)[1791:2238,1:448,]

> display(img1)

> f = fileHTS(x, type='viewunmonted', spot=1, uname=unames[2])

> img2 = readImage(f)[1:448,1:448,]

> display(img2)

Figure 7: Well ’001-01-A13’ and ’002-01-I13’ showing staining problems.

Wells ’001-01-A13’ and ’002-01-I13’ have serious staining problems. This is an
example how a phenotypic map can be used for quality control. The wells cannot
be used in the analysis and can be flagged in the screen log configuration file. The
LDA plot is now redrawn by adjusting plot limits.

> plot(py$x[,1:2], xlim=c(-35,25), ylim=c(-20,20), cex=0.3)

> z = wfcontent!='sample'

> points(py$x[z,1:2], col=1, bg=colors[wfcontent[z]], pch=21)

> col = rep(1, length(levels(wfcontent)))

> col[2] = NA

> legend('topleft', legend=levels(wfcontent), col=col,

14

Analysis of high-throughput microscopy-based screens with imageHTS

+ pt.bg=colors[1:length(wfcontent)], pch=21, ncol=2, cex=0.8)

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−30 −20 −10 0 10 20

−
20

−
10

0
10

20

LD1

LD
2

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

sample
empty
ubc
rluc
casp1

trappc3
clspn
kif11
kif23
plk1

Figure 8: LDA projection of the phenotypic profiles, computed on the control rluc, ubc and
trappc3 wells.

Control wells ubc, clspn, rluc and trappc3 are well separated from each other.
Control wells plk1 seem to display similar phenotypes than the negative control
rluc: further inspection will reveal than the siRNA reagent against plk1 did not
work in this experiment.
Several sample wells seem to have strong phenotypes, distant from negative con-
trols. Further data inspection is facilitated by the webQuery and cellPicker web
modules, which allow interactive browsing and cell selection/annotation using a web
browser. In the following example, the functions popWebQuery and popCellPicker

open the corresponding modules. See Fig. 9 for an overview of the webQuery and
cellPicker web modules.

> popWebQuery(x)

> uname = getUnames(x, content='trappc3')[1]

> popCellPicker(x, uname)

15

Analysis of high-throughput microscopy-based screens with imageHTS

Figure 9: The webQuery (top) and cellPicker (bottom) web modules.

4 Session info

This document was produced using:
• R version 3.3.1 (2016-06-21), i386-w64-mingw32

16

Analysis of high-throughput microscopy-based screens with imageHTS

• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

• Base packages: base, datasets, grDevices, graphics, grid, methods, parallel,
stats, utils

• Other packages: Biobase 2.34.0, BiocGenerics 0.20.0, EBImage 4.16.0,
MASS 7.3-45, RColorBrewer 1.1-2, cellHTS2 2.38.0, genefilter 1.56.0,
hwriter 1.3.2, imageHTS 1.24.0, locfit 1.5-9.1, splots 1.40.0, vsn 3.42.0

• Loaded via a namespace (and not attached): AnnotationDbi 1.36.0,
BiocInstaller 1.24.0, BiocStyle 2.2.0, Category 2.40.0, DBI 0.5-1,
DEoptimR 1.0-6, GSEABase 1.36.0, IRanges 2.8.0, Matrix 1.2-7.1,
RBGL 1.50.0, RCurl 1.95-4.8, RSQLite 1.0.0, Rcpp 0.12.7,
S4Vectors 0.12.0, XML 3.98-1.4, abind 1.4-5, affy 1.52.0, affyio 1.44.0,
annotate 1.52.0, bitops 1.0-6, class 7.3-14, cluster 2.0.5, colorspace 1.2-7,
e1071 1.6-7, fftwtools 0.9-7, ggplot2 2.1.0, graph 1.52.0, gtable 0.2.0,
jpeg 0.1-8, lattice 0.20-34, limma 3.30.0, munsell 0.4.3, mvtnorm 1.0-5,
pcaPP 1.9-61, plyr 1.8.4, png 0.1-7, prada 1.50.0, preprocessCore 1.36.0,
robustbase 0.92-6, rrcov 1.4-3, scales 0.4.0, splines 3.3.1, stats4 3.3.1,
survival 2.39-5, tiff 0.1-5, tools 3.3.1, xtable 1.8-2, zlibbioc 1.20.0

References

[1] F. Fuchs, G. Pau, D. Kranz, O. Sklyar, C. Budjan, S. Steinbrink, T. Horn,
A. Pedal, W. Huber, and M. Boutros. Clustering phenotype populations by
genome-wide RNAi and multiparametric imaging. Mol. Syst. Biol., 6:370, Jun
2010.

[2] M. Boutros, L. P. Bras, and W. Huber. Analysis of cell-based RNAi screens.
Genome Biol., 7:R66, 2006.

[3] G. Pau, F. Fuchs, O. Sklyar, M. Boutros, and W. Huber. EBImage–an R
package for image processing with applications to cellular phenotypes.
Bioinformatics, 26:979–981, Apr 2010.

17

	1 Introduction
	2 Analysis of a microscopy-based screen
	2.1 Initialization
	2.2 Cell segmentation
	2.3 Quantification of cell features
	2.4 Prediction of cell classes
	2.5 Phenotype summarization
	2.6 Configuration files and complete script

	3 Getting access to remote screen data
	3.1 Initialization
	3.2 Inspecting data

	4 Session info

