
exploRase:

Multivariate exploratory analysis and

visualization for systems biology

Michael Lawrence, Dianne Cook, Eun-Kyung Lee

October 26, 2016

1 Overview of exploRase

As its name suggests, exploRase is designed to facilitate the exploratory analysis
of biological data using R and Bioconductor. exploRase aims to leverage R in
conjunction with GGobi to provide the biologist with the necessary tools and
guidance for analyzing and visualizing high-throughput biological data. The
user controls exploRase through a Graphical User Interface (GUI), which is
shown in Figure 1. The GGobi tool provides interactive multivariate visualiza-
tions for exploRase.

There is a wide range of analysis methods available in exploRase. Most of
them are based on functions available in the default installation of R, while the
biology specific methods rely on Bioconductor. All of the methods are delib-
erately simple. The user is able to compare biological conditions and calculate
similarities between biological entities, such as genes, based on the experimental
data. exploRase also features hierarchical clustering of entities and a search tool
for finding entities matching user-defined patterns (up,down,up,...) in the data.
There are two front-ends for linear modeling. The first is based on the limma
(Smyth, 2005) package from Bioconductor and is geared towards estimating
the effect of experimental treatments. The second is designed for time-course
experiments and uses the lm() function to fit a polynomial time model.

If you want to get started right away with exploRase, please skip to the
section 3. Otherwise, please continue reading for further details on the features
of exploRase.

2 exploRase in detail

The main GUI of exploRase, shown in Figure 1, has five basic components. The
largest is the entity metadata notebook, which contains a tab for each entity
type of interest. The default types are genes, proteins, and metabolites, but

1



Figure 1: The main GUI of exploRase.

Figure 2: The exploRase GUI with the filter panel expanded. The active filter
rule includes only the genes that are brushed yellow.

2



Figure 3: The experimental design table, with a column for each factor and a
row for each condition.

new types are easily added using the exploRase API. Each tab contains a table
and an expandable filter component for filtering the table rows. The table has
a row for each biological entity in the experimental data. The columns of the
table contain metadata, such as biological function and biochemical pathway
membership. There are two special columns at the left. The first displays the
color of the entity that was chosen by the user. This color matches the color of
the glyphs for the entity in the GGobi plots. The other column indicates the
user-defined entity lists to which the entity belongs. The table may be sorted
according to a particular column by clicking on the header for the column.

There is a filtering component that the user may expose above the table, as
shown in Figure 2. This filters the table, as well as the GGobi plots, by any
column in the table, as well as by entity list membership. Columns containing
character data may be filtered according to whether a cell value equals, starts
with, ends with, contains, lacks, or matches by regular expression the test value.
Numeric values may be tested for being greater than, less than, equal to, or not
equal to the test number. When filtering by color, the user may choose from
the current palette of colors. The saved rules are displayed in a table below the
rule editor. There is a checkbox in each row that toggles the activation state of
the rule. Buttons allow the deletion of selected rules and the batch activation
and deactivation of every rule. If a rule is saved, it is combined with all future
rules, unless it is deactivated or deleted.

To the left of the entity metadata table are two lists, one on top of the
other. The upper one lists the biological samples in the experimental data. The
user may select samples from the list in order to limit the scope of many of the
analysis functions. Clicking on the details button below the list displays a table
describing the experimental design, as shown in Figure 3. There is a sortable
column for each factor in the experiment, and the rows correspond to conditions.
The bottom panel contains the user-defined entity lists. The lists store a group

3



Figure 4: The hierarchical cluster browser. Clicking on a node selects its children
in the exploRase metadata table. In this screenshot, the “High in mutant” genes
have been clustered according to the mutant conditions. The left child of the
root has been selected, resulting in the selection of five genes in exploRase.

of user-selected entities, usually based on the result of an analysis. Selecting an
entity list automatically selects the entities from the list in the entity metadata
tables.

Above the tables is the toolbar, which contains many important buttons.
The first button is a shortcut for loading a project. Perhaps the most important
button is the brush tool that colors the selected entities in the current metadata
table and the GGobi plots. The color is selected from a palette that drops down
from the button. Besides the brush button are buttons for resetting the colors
to the default (gray) and synchronizing the colors with the result of brushing in
GGobi. The next button to the right queries AtGeneSearch, a web front-end to
MetNetDB (Wurtele et al., 2003), for accessing additional metadata about the
selected entities. AtGeneSearch provides links to other web data sources. The
final button creates an entity list from the selected entities and adds it to the
list at the bottom left.

At the top of the main exploRase GUI is the menubar. The File menu pro-
vides options for loading and saving files and projects. A project is a collection
of files that belong to a single analysis. A project physically consists of a di-
rectory in the file system containing the files to be loaded. exploRase requires
several different types of data to function: experimental data, entity metadata,
experimental design information, and saved entity lists. Loading all of these
at the beginning of a session is tedious and error prone. The project feature
overcomes this by automatically loading all of the files in a directory chosen by
the user. The files are loaded appropriately based on their file extension.

The Analysis menu lists a collection of simple methods, mostly designed for
microarray analysis. The results are added as a column in the entity metadata

4



Figure 5: The pattern finder. The calculated patterns across a time course
experiment are shown in the Pattern column as arrows representing the direction
of each transition. The pattern finder dialog selects rows that match the specified
pattern. Here a constantly increasing pattern has been selected.

table and as a variable in GGobi. This allows the user to sort and filter ac-
cording to the results, as well as visualize the results in GGobi. The first set of
methods is useful for finding entities with levels that differ greatly between two
selected conditions. The methods include subtracting one condition from the
other, calculating the residuals from regressing one condition against the other,
and finding the Mahalanobis distances across the conditions. The next set of
methods are distance measures (Euclidean and Pearson correlation, centered
and uncentered) for comparing a selected entity against the rest within a single
sample. The final two methods are hierarchical clustering and pattern finding.
The cluster results are displayed in an interactive R plot, shown in Figure 4,
where clicking on a branch point selects all of the child entities in the entity
table. The pattern finder calculates whether a gene is significantly rising or
dropping relative to the others for each sample transition. A change is called
significant if it is in the upper or lower third of the changes. The results are
displayed as arrows embedded in the metadata table, as shown in Figure 5. The
dialog in Figure 5 allows the user to query for specific patterns. The matching
entities are selected in the table.

The Model menu launches front-ends to linear modeling tools in R. Both
front-ends are shown in Figure 6. The limma front-end leverages the limma
package from Bioconductor. It prompts the user for the treatments to include
in the model, including interactions. The user may also choose which results to
include in the table and GGobi. An advanced drop-down offers additional op-
tions that are not usually of interest, such as the method for p-value adjustment
and tests for time linearity. For time course modeling, a different front-end is
provided, based on the R lm() function. It is similar to the limma front-end,

5



Figure 6: Linear modeling front-ends. On the left is the front-end to limma,
and on the right is the temporal modeling front-end. The user may select the
factors and outputs of interest, as well as specify various other parameters.

Figure 7: Simple subsetting GUI. The user may activate rules that filter entities
based on their level, fold change, and replicate variance.

except time is automatically included and all other factors are crossed with
time. It is also possible to define the degree of the time polynomial and choose
whether the time values are actual or virtual (the indices of the time points).

The final menu contains tools for processing experimental data. There is
a convenience function for calculating replicate means, medians, and standard
deviations. The means and medians are loaded into the dataset, so the user
may analyze and view them in the same way as the original variables. The
standard deviations are only added to GGobi for visualization. them to the data.
The second option launches the dialog shown in Figure 7 that provides several
simple rules for filtering out entities based on the experimental data. The cutoffs
are based on minimum value, minimum fold-change, and maximum variance
between replicates. This helps the user focus on entities with substantial levels
that are changing more between treatments than within. The user may enter
the test values directly or use the slider to get some idea of the range of values.

6



3 Getting started with exploRase

To start exploRase, enter

explorase()

at the R prompt.
The first step towards analyzing your data is to load it. One must note

that exploRase is not designed for data preprocessing, so all preprocessing must
be done before loading data into exploRase. Usually this involves steps like
normalizing and log transforming the data. All files read by exploRase must
adhere to the comma separated value (CSV) format, as interpreted by the R
CSV parser. This is compatible with the output of Bioconductor tools and
the CSV export utility of Microsoft Excel. Accordingly, the file containing
the matrix of experimental measurements must be formatted as CSV, with the
values from each experimental condition stored as a column. The first row should
hold the names of the experimental conditions. The first column, which does
not require a name in the first row, should hold unique ids for each biological
entity (gene, protein, etc) measured in the experiment.

In addition to the experimental measurements, exploRase supports and, for
some features, requires, several types of metadata, all formatted as CSV. The
experimental design matrix is required for modeling and other features. Like
the experimental data, the first row should name the design factors, such as
genotype, time, and replicate. Some factor names have special meaning. In
particular, time is used as an ordered factor in the temporal modeling tool and
replicate is used in modeling and averaging over replicates. The elements in the
first column of the design matrix should match one of the column names in the
experimental data. Another helpful type of metadata is the entity information
that is shown in the central table of the exploRase GUI. The only restriction
is that the first column should hold entity identifiers that match those of the
experimental data. Finally, entity lists are stored as one or two column matrices.
If two columns are present, the first column is interpreted as the type of the
entity, such as gene, prot, or met. This allows storing entities of different types in
the same list. The other column holds the identifiers of the entities that belong
to the list. The name of that column is the name of the list in the exploRase
GUI.

In order to automatically detect the type of being loaded, exploRase expects
the input files to be named according to a specific convention. The mapping
from data type to filename extension is given in Table 1. The user must ensure
that the input files are named according to that convention.

All of these format specifications may sound intimidating, but, in practice,
loading the data is a relatively simple task. The CSV format is output by
many of the Bioconductor preprocessing tools, as well as Microsoft Excel. In
our experience, many biologists already have spreadsheets that conform to the
structures described above. The data loading process is further simplified by
support for projects: all of the data files may be placed into an empty folder
and loaded in a single step by choosing the folder in the open project dialog.

7



Type Data Extension File Extension Example
Transcriptomic Data gene data mittler.gene.data
Proteomic Data prot data some-proteins.prot.data
Metabolomic Data met data suh-yeon.met.data
Metabolomic Data met data suh-yeon.met.data
Gene Information gene info affy25k.gene.info
Protein Information prot info some-proteins.prot.info
Metabolite Information met info suh-yeons-metabolites.met.info
Gene Exp. Design gene design mittler.gene.design
Protein Exp. Design prot design some-proteins.prot.design
Metabolite Exp. Design met design suh-yeon.met.design
Interesting Entities list favorite-metabolites.list

Table 1: Mapping from data type to filename extension per the exploRase file-
naming convention. exploRase requires input files to be named accordingly.

The types of the files are determined by their file extension. An example project
may be downloaded from the exploRase website (Lawrence, 2007b).

4 exploRase in action

In order to briefly demonstrate the features of exploRase, we consider a microar-
ray dataset from an experiment investigating the response of biotin-deficient
Arabidopsis mutants to treatment with exogenous biotin. The mutants were
analyzed with and without biotin treatment. Wildtype plants were used as a
control and there were two replicates for each set of conditions. Figure 3 sum-
marizes the experimental design. The dataset was normalized using the RMA
method.

The first step, after launching exploRase, is to load the data. The easiest
way to load data into exploRase is as a project. Projects are directories in the
file system that contain the experimental data, design matrix, entity metadata,
entity lists, etc, as files. A zip archive containing an exploRase project for the
biotin data is provided on the exploRase website (Lawrence, 2007b).

To load the project:

1. Click the Open button at the left-end of the toolbar (see Figure 1).

2. In the file open dialog, select the biotin directory from the (uncompressed)
zip archive and click Open.

The primary goal of this short analysis is to determine which genes appear
to respond to biotin treatment in the mutant. Biotin treatment is not expected
to have an effect in the wildtype, since wildtype plants are able to sufficiently
produce their own biotin. In order to compare across conditions without having
to consider each replicate individually, we add the replicate means to the data,
assuming that there are no major inconsistencies within the replicate pairs.

8



Figure 8: Difference calculation between the biotin mutant with and without
external biotin. The GGobi scatterplot compares the two conditions, and below
it is a histogram of the difference calculation.

To add the means to the data: choose the Average over the replicates option
from the Tools menu.

Figure 8 displays the results of calculating the simple difference between
the treated and untreated mutant means. Sorting by the difference column in
the metadata table allows the coloring of the selected extreme rows using the
exploRase brush button. Alternatively, one could also brush the outlying points
in the GGobi plots and then synchronize the metadata table with GGobi. The
genes at each extreme are grouped into entity lists. The pink genes are those
that have higher expression in the untreated plants compared to the treated,
while the blue are the opposite.

To color and group the entities with the most extreme differences between
treated and untreated mutant means, follow these steps:

1. Select bio1.no.mean and bio1.yes.mean in the sample list (use the CTRL

key for multiple selections).

2. Choose the Difference option from the Analysis/Find Interesting Entities
menu.

3. Once the column containing the differences appears in the entity table,
click on the column header (label) until the results are sorted in decreasing
order.

4. Select a range of rows at the top of the entity table (ie by holding down
the SHIFT key).

5. Click on the downward-pointing arrow on the right side of the Brush but-
ton in the toolbar and select the blue color.

9



6. Click the Brush button to color the selected rows blue.

7. Click the Create List button and enter “biotin-activated” into the entry
that appears in the entity list panel.

8. Click on the header of the difference column again to resort the rows of
the entity table so that the rows are in increasing order.

9. Repeat steps 4-7 but use pink rather than blue as the brush color and
enter “biotin-repressed” when creating the list.

10. To sort the rows in the entity table by their list membership, click on the
header of the “List” column.

The scatterplot at the top-right of Figure 8 compares the two means, showing
that the colored observations are indeed outliers. Below the scatterplot is a
histogram showing the distribution of the difference.

To create the GGobi plots:

1. Focusing on the GGobi control panel window, select the New Scatterplot
Display option from the Displays menu.

2. Select the two mean variables by clicking on the X button next to the
bio1.no.mean label and the Y button next to the bio1.yes.mean label.

3. Select the New Scatterplot Display option (again) from the Displays menu.

4. To change the scatterplot to an ASH plot (histogram), select the 1D Plot
from the View menu.

5. Click the X button next to the diff.bio1... variable, so that the histogram
shows the distribution of the differences.

One possible way to verify that those genes are indeed dependent on biotin
treatment would be to fit linear models using limma, including effects for the
genotype, biotin treatment, and their interaction.

To do this using the limma frontend in exploRase:

1. Choose the Linear modeling (limma) option from the Modeling menu.
This should open the dialog shown on the left in Figure 6.

2. In the list of factors, select the checkbox for the interaction of genotype
and biotin. Note that this automatically selects the individual factors.

3. Click Apply to run limma.

Figure 9 shows the F values for the interaction of biotin and genotype. The
table is sorted by the F value and filtered so that only the genes with the largest
values (> 95) are included in the table. As one might expect, several of the pink
and blue genes have extreme F values, indicating that biotin treatment has a
genotype-dependent effect on those genes.

To focus on the largest F values, as above:

10



Figure 9: Limma results for the biotin data. Only the entities with an F statistic
> 95 for the interaction of genotype and biotin are displayed.

1. Click on the Filter label above the entity table, so that the filter GUI is
shown.

2. Select F.genotype*biotin from the left-most combo box in the filter panel.

3. Change the second combo box to >.

4. Enter “95” into the text field to the right.

5. Click Apply to apply the filter rule (F.genotype*biotin > 95). Genes with
an F value less than 95 are now excluded from the entity table.

6. Click the header of the “F.genotype*biotin” column to sort by it.

One outlier is easy to recognize even from the table: 13212 s at. The anno-
tations in the table describe 13212 s at as a glycosyl hydrolase. The functions
of the other outlying genes, if known, may be found in the table, and if more
information is needed, clicking the AtGeneSearch button in the toolbar spawns
a web browser and queries the MetNetDB for additional details. This analysis
could continue along many paths. For example, one might search for genes that
are similar to the 13212 s at using the distance measures in exploRase (from
the Analysis menu), or one might continue to inspect the output of limma using
GGobi graphics. This example demonstrates only a fraction of the potential of
exploRase.

11



5 Related work

exploRase is unique among open-source tools in its integration of interactive
graphics with R statistical analysis beneath a GUI designed especially for the
systems biologist. The commercial microarray analysis program GeneSpring
links to R and Bioconductor and offers some interactive graphics. The free
program Cytoscape (Shannon et al., 2003) is designed for viewing and analyzing
experimental data in the context of biological networks and is integrated with
R via plugins. However, it lacks interactive graphics outside of its network
diagrams.

There are many examples of controlling R with a GUI, including several
in Bioconductor. The limmaGUI package (Smyth, 2005) provides a GUI that
leads the user from preprocessing microarray data to modeling it with limma
and producing reports. Unfortunately, limmaGUI lacks the interactive graphics
and breadth of analysis features of exploRase. The Bioconductor iSPlot package
provides general interactive graphics using the R graphics engine but offers only
a small subset of GGobi’s functionality. Rattle (Williams, 2006) is an RGtk2-
based GUI that leverages R as it guides the user through a wide range of data
mining tasks.

6 Technical Design Considerations

exploRase is written purely in R, permitting easy integration with R analysis
packages. This also enables other R packages to integrate with exploRase via
its public API.

The primary design consideration for the GUI is simplicity. There is no
attempt to completely map the features of Bioconductor packages and GGobi
to the exploRase front-end. Rather, the GUI supports only a subset of the
features provided by the underlying packages, while augmenting the subset with
shortcuts and conveniences. In order to provide its GUI, exploRase relies on the
RGtk2 package (Lawrence, 2007a), a bridge from R to the GTK+ 2.0 cross-
platform widget library (GTK+, 2007). RGtk2 allows exploRase to present,
completely from within R, a visually pleasing, feature-rich GUI that is identical
across all major computing platforms.

The rggobi package (Wickham and Lawrence, 2006) links R with GGobi.
With rggobi, R packages are able to load data from R into GGobi, retrieve
GGobi datasets into R, get and set the color of observations, create and configure
displays, and more. exploRase uses rggobi to load high-throughput datasets
and synchronize the color of observations in GGobi plots with the colors in the
biological metadata table in the exploRase GUI. This provides the key visual
link between the GUI of exploRase and the visualizations of GGobi.

12



7 Acknowledgements

We thank Eve Wurtele, Heather Babka, Suh-yeon Choi, and others in the Met-
Net group at Iowa State University for their helpful feedback in the development
of exploRase. We also acknowledge our funding sources, NSF Arabidopsis 2010
DB10209809 and DB10520267.

References

GTK+. The Gimp Tool Kit, 2007. URL http://www.gtk.org/.

M. Lawrence. RGtk2, 2007a. URL http://www.ggobi.org/rgtk2.

M. Lawrence. Explorase website, 2007b. URL http://www.metnetdb.org/

MetNet_exploRase.htm.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ram-
age, N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: A Software
Environment for Integrated Models of Biomolecular Interaction Networks.
Genome Res., 13(11):2498–2504, 2003. doi: 10.1101/gr.1239303. URL
http://www.genome.org/cgi/content/abstract/13/11/2498.

G. K. Smyth. Limma: linear models for microarray data. In R. Gentleman,
V. Carey, S. Dudoit, R. Irizarry, and W. Huber, editors, Bioinformatics and
Computational Biology Solutions using R and Bioconductor, pages 397–420.
Springer, 2005.

H. Wickham and M. Lawrence. rggobi, 2006. URL http://www.ggobi.org/

rggobi.

G. Williams. Rattle: gnome R data mining, 2006. URL http://rattle.

togaware.com/.

E. Wurtele, J. Li, L. Diao, H. Zhang, C. Foster, B. Fatland, J. Dickerson,
A. Brown, Z. Cox, D. Cook, E. Lee, and H. Hofmann. Metnet: Software to
build and model the biogenetic lattice of arabidopsis. Comp. Funct. Genom.,
4:239–245, 2003.

13

http://www.gtk.org/
http://www.ggobi.org/rgtk2
http://www.metnetdb.org/MetNet_exploRase.htm
http://www.metnetdb.org/MetNet_exploRase.htm
http://www.genome.org/cgi/content/abstract/13/11/2498
http://www.ggobi.org/rggobi
http://www.ggobi.org/rggobi
http://rattle.togaware.com/
http://rattle.togaware.com/

	Overview of exploRase
	exploRase in detail
	Getting started with exploRase
	exploRase in action
	Related work
	Technical Design Considerations
	Acknowledgements

