
Introduction to the TSSi package:
Identification of Transcription Start Sites

Julian Gehring, Clemens Kreutz

October 17, 2016

Along with the advances in high-throughput sequencing, the detection of
transcription start sites (TSS) using CAP-capture techniques has evolved re-
cently. While many experimental applications exist, the analysis of such data
is still non-trivial. Approaching this, the TSSi package offers a flexible sta-
tistical preprocessing for CAP-capture data and an automated identification
of start sites.

1 Introduction

High throughput sequencing has become an essential experimental approach to investi-
gate genomes and transcriptional processes. While cDNA sequencing (RNA-seq) using
random priming and/or fragmentation of cDNA will result in a shallow distribution of
reads typically biased towards the 3’ end, approaches like CAP-capture enrich 5’ ends
and yield more clearly distinguishable peaks around the transcription start sites.

Predicting the location of transcription start sites (TSS) is hampered by the existence
of alternative ones since their number within regions of transcription is unknown. In
addition, measurements contain false positive counts. Therefore, only the counts which
are significantly larger than an expected number of background reads are intended to be
predicted as TSS. The number of false positive reads increases in regions of transcrip-
tional activity and such reads obviously do not map to random positions. On the one
hand, these reads seem to occur sequence dependently and therefore cluster to certain
genomic positions, on the other hand, they are detected more frequently than being
originated from real TSS. Because currently, there is no error model available describing
such noise, the TSSi package implements an heuristic approach for an automated and
flexible prediction of TSS.

2 Data set

To demonstrate the functionality and usage of this package, experimental CAP-capture
data obtained with Solexa sequencing is used. The reads were mapped to the genome,

1

such that the number of sequenced 5’ ends and their positions in the genome are avail-
able1. The data frame physcoCounts contains information about the chromosome, the
strand, the 5’ position, and the total number of mapped reads. Additionally, regions
based on existing annotation are provided which are used here to divide the data into
independent subsets for analysis.

> library(TSSi)

> data(physcoCounts)

> head(physcoCounts)

chromosome region start strand counts

1 s1 1 82747 + 3

2 s1 1 82771 + 1

3 s1 1 82853 + 7

4 s1 1 82854 + 6

5 s1 1 82875 + 4

6 s1 1 82898 + 5

> table(physcoCounts$chromosome, physcoCounts$strand)

- +

s1 47 61

s2 43 68

3 Segment read data

As a first step in the analysis, the reads are passed to the segmentizeCounts method.
Here, the data is divided into segments, for which the following analysis is performed
independently. This is performed based on the information about the chromosomes, the
strands, and the regions of the reads. The segmented data is returned as an object of
the class TssData.

> attach(physcoCounts)

> x <- segmentizeCounts(counts=counts, start=start, chr=chromosome, region=region, strand=strand)

> detach(physcoCounts)

> x

* Object of class 'TssData' *

Data imported

1The sequencing workflow at the bioconductor website describes basic steps and tools for
the import and processing of sequcencing data (http://bioconductor.org/help/workflows/
high-throughput-sequencing/).

2

http://bioconductor.org/help/workflows/high-throughput-sequencing/
http://bioconductor.org/help/workflows/high-throughput-sequencing/

** Segments **

Segments (5): s1_+_1, s1_+_2, s1_-_3, s2_+_4, s2_-_5

Chromosomes (2): s1, s2

Strands (2): +, -

Regions (5): 1, 2, 3, 4, 5

nCounts (5): 978, 587, 848, 466, 690

The segments and the associated read data are accessible through several get methods.
Data from individual segments can be referred to by either its name or an index.

> segments(x)

chr strand region nPos nCounts start end

s1_+_1 s1 + 1 28 978 82747 82994

s1_+_2 s1 + 2 33 587 814741 815042

s1_-_3 s1 - 3 47 848 1435037 1435157

s2_+_4 s2 + 4 68 466 1454505 1455353

s2_-_5 s2 - 5 43 690 1574882 1575467

> names(x)

[1] "s1_+_1" "s1_+_2" "s1_-_3" "s2_+_4" "s2_-_5"

> head(reads(x, 3))

start end counts replicate

62 1435037 1435037 4 1

63 1435039 1435039 4 1

64 1435043 1435043 3 1

65 1435045 1435045 1 1

66 1435047 1435047 1 1

67 1435049 1435049 1 1

> head(start(x, 3))

[1] 1435037 1435039 1435043 1435045 1435047 1435049

> head(start(x, names(x)[3]))

[1] 1435037 1435039 1435043 1435045 1435047 1435049

4 Normalization

The normalization reduces the noise by shrinking the counts towards zero. This step is
intended to eliminate false positive counts as well as making further analyzes more robust

3

by reducing the impact of large counts. Such a shrinkage or regularization procedure
constitutes a well-established strategy in statistics to make predictions conservative, that
means to reduce the number of false positive predictions. To enhance the shrinkage of
isolated counts in comparison to counts in regions of strong transcriptional activity,
the information of consecutive genomic positions in the measurements is regarded by
evaluating differences between adjacent count estimates.

The computation can be performed with a approximation based on the frequency of all
reads or fitted explicitly for each segment. On platforms supporting the parallel package,
the fitting can be spread over multiple processor cores in order to decrease computation
time.

> yRatio <- normalizeCounts(x)

> yFit <- normalizeCounts(x, fit=TRUE)

> yFit

* Object of class 'TssNorm' *

Data normalized

** Segments **

Segments (5): s1_+_1, s1_+_2, s1_-_3, s2_+_4, s2_-_5

Chromosomes (2): s1, s2

Strands (2): +, -

Regions (5): 1, 2, 3, 4, 5

nCounts (5): 978, 587, 848, 466, 690

** Parameters **

pattern: %1$s_%2$s_%3$s

offset: 10

basal: 1e-04

lambda: c(0.1, 0.1)

fit: TRUE

optimizer: all

> head(reads(yFit, 3))

start end counts ratio fit

1 1435037 1435037 4 3.478260 3.6515973

2 1435039 1435039 4 3.478260 3.6515964

3 1435043 1435043 3 2.608695 2.8192247

4 1435045 1435045 1 0.000100 0.9775118

5 1435047 1435047 1 0.000100 0.9775118

6 1435049 1435049 1 0.000100 0.9775120

> plot(yFit, 3)

4

1435040 1435080 1435120 1435160

0
20

40
60

80
10

0
12

0
14

0

s1_−_3

Position

R
ea

ds

● ● ●
● ● ● ●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●●

●

●

●

● ● ●
●●

● ●
●

●

●

●

●

●

●

●

●

●●●

●

●● ● ●
● ● ●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●●

●

●

●

● ● ●
●●

● ●
●

●

●

●

●

●

●

●

●

●●●

●

●● ● ●
● ● ● ●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●●

●

●

●

● ● ●
●●

● ● ●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

counts
ratio
fit

5 Identifying transcription start sites

After normalization of the count data, an iterative algorithm is applied for each segment
to identify the TSS. The expected number of false positive counts is initialized with a
default value given by the read frequency in the whole data set. The position with the
largest counts above is identified as a TSS, if the expected transcription level is at least
one read above the expected number of false positive reads. The transcription levels for
all TSS are calculated by adding all counts to their nearest neighbor TSS.

Then, the expected number of false positive reads is updated by convolution with
exponential kernels. The decay rates tau in 3’ direction and towards the 5’-end can be
chosen differently to account for the fact that false positive counts are preferably found
in 5’ direction of a TSS. This procedure is iterated as long as the set of TSS increases.

> z <- identifyStartSites(yFit)

> z

* Object of class 'TssResult' *

TSS in data identified

5

** Segments **

Segments (5): s1_+_1, s1_+_2, s1_-_3, s2_+_4, s2_-_5

Chromosomes (2): s1, s2

Strands (2): +, -

Regions (5): 1, 2, 3, 4, 5

nCounts (5): 978, 587, 848, 466, 690

nTSS (5): 2, 3, 1, 9, 6

** Parameters **

pattern: %1$s_%2$s_%3$s

offset: 10

basal: 1e-04

lambda: c(0.1, 0.1)

fit: TRUE

optimizer: all

tau: c(20, 20)

threshold: 1

fun: function (fg, bg, indTss, pos, basal, tau, extend = FALSE)

{

idx <- pos - pos[1] + 1

idxTss <- idx[indTss]

n <- pos[length(pos)] - pos[1] + 1

fak <- 1/.exppdf(1, tau)

win1 <- fak[1] * .exppdf(n:1, tau[1])

win2 <- fak[2] * .exppdf(1:n, tau[2])

win <- c(win1, 0, win2)

bgb <- rep(0, n)

bgb[idxTss] <- bg[indTss]

cums <- convolve(win, rev(bgb), type = "open")

expect <- cums[(n + 1):(length(cums) - n)]

if (!extend)

expect <- expect[idx]

expect[expect < basal] <- basal

delta <- fg - expect

delta[delta < 0] <- 0

res <- list(delta = delta, expect = expect)

return(res)

}

readCol: fit

neighbor: TRUE

> head(segments(z))

6

chr strand region nPos nCounts start end nTss

s1_+_1 s1 + 1 28 978 82747 82994 2

s1_+_2 s1 + 2 33 587 814741 815042 3

s1_-_3 s1 - 3 47 848 1435037 1435157 1

s2_+_4 s2 + 4 68 466 1454505 1455353 9

s2_-_5 s2 - 5 43 690 1574882 1575467 6

> head(tss(z, 3))

pos reads

1 1435104 125.9111

> head(reads(z, 3))

start end counts ratio fit delta expect

1 1435037 1435037 4 3.478260 3.6515973 0 18.54737

2 1435039 1435039 4 3.478260 3.6515964 0 20.49801

3 1435043 1435043 3 2.608695 2.8192247 0 25.03633

4 1435045 1435045 1 0.000100 0.9775118 0 27.66943

5 1435047 1435047 1 0.000100 0.9775118 0 30.57944

6 1435049 1435049 1 0.000100 0.9775120 0 33.79551

> plot(z, 3)

7

1435040 1435080 1435120 1435160

0
20

40
60

80
10

0
12

0
14

0

s1_−_3

Position

R
ea

ds

●

● ● ●
● ● ● ●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●●

●

●

●

● ● ●
●●

● ●
●

●

●

●

●

●

●

●

●

●●●

●

●● ● ●
● ● ●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●●

●

●

●

● ● ●
●●

● ●
●

●

●

●

●

●

●

●

●

●●●

●

●● ● ●
● ● ● ●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●●

●

●

●

● ● ●
●●

● ● ●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

counts
ratio
fit
tss

6 Visualizing and customizing figures

The plot method allows for a simple, but powerful visualization and customization of
the produced figures. For each element of the figure, all graphical parameters can be set,
supplying them in the form of named lists. In the following, plotting of the threshold
and the ratio estimates are omitted, as well as the representation of some components
is adapted. For a detailed description on the individual settings, please refer to the plot
documentation of this package.

> plot(z, 4,

+ ratio=FALSE,

+ threshold=FALSE,

+ baseline=FALSE,

+ expect=TRUE, expectArgs=list(type="l"), extend=TRUE,

+ countsArgs=list(type="h", col="darkgray", pch=NA),

+ plotArgs=list(xlab="Genomic position", main="TSS for segment 's1_-_155'"))

8

1454600 1454800 1455000 1455200

0
20

40
60

80

TSS for segment 's1_−_155'

Genomic position

R
ea

ds

● ● ●

●

●

●

●

●

●
●●

●

●
●●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

expect
counts
fit
tss

7 Converting and exporting results

While the get methods reads, segments, and tss provide a simple access to relevant
results, such data can also be represented with the framework provided by the IRanges
package. Converting the data to an object of class RangedData allows for a standard
representation and interface to other formats, for example using the rtracklayer package.

> readsRd <- readsAsRangedData(z)

> segmentsRd <- segmentsAsRangedData(z)

> tssRd <- tssAsRangedData(z)

> #library(rtracklayer)

> #tmpFile <- tempfile()

> #export.gff3(readsRd, paste(tmpFile, "gff", sep="."))

> #export.bed(segmentsRd, paste(tmpFile, "bed", sep="."))

> #export.bed(tssRd, paste(tmpFile, "bed", sep="."))

9

Session info

� R version 3.3.1 (2016-06-21), x86_64-w64-mingw32

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: TSSi 1.20.0

� Loaded via a namespace (and not attached): Biobase 2.34.0, BiocGenerics 0.20.0,
Formula 1.2-1, Hmisc 3.17-4, IRanges 2.8.0, Matrix 1.2-7.1, RColorBrewer 1.1-2,
Rcpp 0.12.7, S4Vectors 0.12.0, acepack 1.3-3.3, chron 2.3-47, cluster 2.0.5,
colorspace 1.2-7, data.table 1.9.6, foreign 0.8-67, ggplot2 2.1.0, grid 3.3.1,
gridExtra 2.2.1, gtable 0.2.0, lattice 0.20-34, latticeExtra 0.6-28, minqa 1.2.4,
munsell 0.4.3, nnet 7.3-12, parallel 3.3.1, plyr 1.8.4, rpart 4.1-10, scales 0.4.0,
splines 3.3.1, stats4 3.3.1, survival 2.39-5, tools 3.3.1

10

	Introduction
	Data set
	Segment read data
	Normalization
	Identifying transcription start sites
	Visualizing and customizing figures
	Converting and exporting results

