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This vignette describes how the different functions from the SWATH2stats
package can be applied. The functions from the SWATH2stats package are in-
tended to be used on SWATH data that has been generated by the OpenSWATH
pipeline. The SWATH2stats package provides functions to annotate such SWATH
data with experimental meta-data, perform initial data analysis, perform a
false-discovery rate (FDR) estimation, perform filtering, and to convert the
SWATH data into a format readable by downstream statistical and quantifi-
cation software tools such as MSstats, aLFQ, mapDIA or imsbInfer. The
SWATH2stats package thus represents a link between the OpenSWATH pipeline
and the downstream analysis packages MSstats, aLFQ, mapDIA, or imsbInfer.
The SWATH2stats package was programmed and intended for use by researchers
in proteomics working with SWATH data without extensive programming skills,
but with basic R knowledge.
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1 Introduction

1.1 SWATH-MS data analysis via open source tools

SWATH-MS as an implementation of data-independent acquisition (DIA) mass
spectrometry is an emerging proteomic approach that allows systematic quantifi-
cation of peptides in complex samples (Gillet et al. 2012, Venable et al. 2004).
The acquired mass spectra can be queried for the presence and quantity of pep-
tide analytes using the open-source OpenSWATH pipeline. The OpenSWATH
pipeline consists of the OpenSWATH software (Roest et al. 2014) coupled to
statistical validation using the mProphet algorithm (Reiter et al. 2011), or its
re-implementation pyProphet (Teleman et al. 2015). OpenSWATH extracts
ion chromatograms of both the peptide precursor and the fragment ions and
quantifies peak groups. It then generates scores for how well a given candidate
peak group corresponds to an analyte from a spectral or assay library (Roest et
al. 2014). mProphet uses a machine learning algorithm to identify an optimal
linear combination of these scores (d-score) to discriminate targets from decoys.
In addition, it fits a function to the distribution of the d-scores for the decoy
peptides, that is used as the null distribution. This null distribution is then used
to calculate a q-value/m-score of each peakgroup (Storrey et al. 2003, Reiter et
al. 2011). Hence, filtering the results with an m-score of 0.01 results in an FDR
of 1% of the target assays within this run.
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1.2 The usage of SWATH2stats in the open-source SWATH-
MS data analysis workflow

This package creates a link between the OpenSWATH/mProphet .tsv output
table and popular downstream tools for statistical and advanced data analysis.
With very large assay libraries (Rosenberger et al. 2014) the SWATH results
can become too large to analyse and process via tools such as Microsoft Excel.
Therefore this package offers functionality to annotate the data with the study
design (such as condition, biological and unique MS run id), perform initial data
analysis, and offers substantial filtering capabilities. The data can be filtered
based on frequency of observation among the samples, number of sibling peptides
of a protein entry or directly on the FDR as estimated by the mProphet model
(m-score, equivalent to q-value; for details see previous section or Reiter et al.
2011). Furthermore the package features estimation of global false discovery
rates according to the target-decoy rationale (Elias and Gygi 2008, Kaell et al.
2008). The last step is the conversion to formats that can be read directly by
the downstream analysis tools MSstats (Choi et al. 2014), mapDIA (Teo et al.
unpublished), aLFQ (Rosenberger et al. 2014), and imsbInfer (Wolski et al.
unpublished).

1.3 Implementation of a target-decoy strategy to estimate
false target discovery rates (FDR)

Mass-spectrometry-based proteomic experiments produce large amounts of data
that require statistical validation. In the SWATH2stats package a target-decoy
strategy was implemented to estimate the FDR (Elias and Gygi, 2007). The
target-decoy strategy relies on the assumption that the decoys have the same
characteristics (distribution of their scores) as the false targets. The FDR among
the targets is estimated as the ratio of decoy peptides passing a certain score
threshold divided by the total number of targets passing the same score thresh-
old (Choi and Nesvizhskii, 2008). The usage of the target-decoy strategy for
SWATH data and to estimate peptide and protein-level FDR has not been ex-
tensively tested yet. The target-decoy strategy has been tested to estimate
protein-level FDR in DDA data and has been shown to result in more conserva-
tive FDR estimates compared to a hypergeometric model-based approach (Re-
iter et al. 2009). A target-decoy approach was implemented in SWATH2stats
because it allows i.) estimation of an FDR over multiple runs and ii.) allows to
directly assess the selectivity of a given filter for likely true (target) over false
(decoy) data points.
In contrast to the naive target-decoy approach counting the number of decoys,
a correction factor can be supplied to many FDR estimation functions in the
SWATH2stats package. For example, a correction needs to be applied to cor-
rect for the fraction of false targets (FFT). Similar correction factors have been
used to adjust FDR estimation in DDA data (PIT: Kaell et al. 2008, p(-):
Keller et al. 2002). In the functions, the FFT defaults to 1 to perform a naive
target-decoy counting strategy without FFT correction, which will result in an
overestimation of the FDR. For a more accurate estimation of the FDR, a FFT
correction factor can be provided that corrects for the ratio of false targets to
decoys. The number of decoys counted is multiplied with the FFT correction
factor. The rationale is that for example if 50% of the samples are true targets,
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the number of true negative targets that are modeled by the decoy distribution
is around 50% lower than the decoy distribution. Therefore 2 decoy hits passing
a certain m-score threshold suggest only one false positive datapoint passing
the same threshold. The ratio of true negative (false) targets compared to all
targets (FFT) can for example be obtained from the mProphet model statistics
(Injection name] full stat.csv (column 1 line 2 corresponding to the maximal
q-value).
Alternatively, the FFT can conservatively be approximated by the fraction of
assays in the library that do not pass an m-score threshold of e.g. 0.01 (corre-
sponding to 1 % model FDR). For example, acquiring a full cell lysate and
searching the data using the combined assay library (200k assays, Rosenberger
et al. 2014), 50k assays are typically identified with m-score <= 0.01. Hence a
FFT of 0.75 can be estimated. If a full lysate is searched by a sample-specific
assay library (e.g. 70k assays) and 40k assays were identified with m-score
<=0.01, a FFT of 0.57 can be estimated.

2 Loading and annotating the data

2.1 Installing SWATH2stats

To install the SWATH2stats package the following commands can be executed
within R (after package has been accepted to Bioconductor).

> source("http://www.bioconductor.org/biocLite.R")

> biocLite("SWATH2stats")

The SWATH2stats package can now be loaded.

> library(SWATH2stats)

2.2 Loading the data

The example data, that is included in the package, consists of a reduced OpenSWATH
output file generated from Hela cells. To avoid making the file of the SWATH2stats
package too large, only a fraction of a typical SWATH data table is included as
example data. The example data contains data for 9 proteins, 5 decoy-proteins
and a set of peptides for retention time calibration (labelled as iRT protein).
In total the data contains 284 peptides for which quantitative data has been
extracted from 6 different samples measured on an ABSciex TripleTOF 5600
mass spectrometer and analyzed with the OpenSWATH + pyProphet workflow
(Roest et al. 2014, Teleman et al. 2015). These 6 samples consist of biological
triplicates of Hela cells grown under control condition and Hela cells that have
been perturbed by inhibiting cholesterol synthesis.
The experimental design is described in a table called Study design that is in-
cluded in the package. This file that contains the study design information needs
to be a table with the following columns: Filename, Condition, BioReplicate,
Run (see below). For correct assignment of identifiers into the Run, BioRepli-
cate and Condition column for MSstats, please consult their manual. The values
in the column Filename have to be unique for every injection file and will be

4



matched to the OpenSWATH output in the column align_origfilename (cau-
tion: this matching is case sensitive).
The example SWATH data and the study design table can be loaded from the
package with the function data().

> data('OpenSWATH_data', package='SWATH2stats')

> data <- OpenSWATH_data

> data('Study_design', package='SWATH2stats')

> head(Study_design)

Filename Condition BioReplicate Run

1 peterb_J131223_043 Hela_Control 1 1

2 peterb_J131223_054 Hela_Treatment 1 2

3 peterb_L150425_003b_SW Hela_Control 2 3

4 peterb_L150425_011_SW Hela_Treatment 2 4

5 peterb_L150514_001_SW Hela_Control 3 5

6 peterb_L150514_002_SW Hela_Treatment 3 6

The working directory of the analysis is defined and the file name of the
OpenSWATH results file and the study design file are indicated (in this example
they should be present in the same folder). Whereas the rest of the script can
be kept after having optimized the filtering options, this first part of the script
is changed for different data that will be analyzed.

> # set working directory

> setwd('~/Documents/MyWorkingDirectory/')

> # Input data file (openSWATH output)

> file.name <- 'OpenSWATH_output_file.txt'

> # File name for annotation file

> annotation.file <- 'Study_design_file.txt'

The SWATH data can be loaded from the previously indicated file into R
using the following command.

> # load data

> data <- data.frame(fread(file.name, sep='\t', header=TRUE))

If the file is in a different format the column names have to be renamed
accordingly. For this the function import_data can perform this. For the
requirements for each column please consult the manual page.

> # consult the manual page.

> help(import_data)

> # rename the columns

> data <- import_data(data)

The function reduce_openSWATH_output can be executed to reduce the
number of columns from the OpenSWATH result table. This function reduces
the number of columns to the ones necessary for MSstats, mapDIA, aLFQ.
However for other packages such as imsbInfer all the columns need to be kept
and this function should be omitted. The next command shows how specific
proteins or peptides can be removed from the data. As an example the iRT
peptides (peptides for retention time calibration) were removed.

> # reduce number of columns

> data <- reduce_OpenSWATH_output(data)

> # remove the iRT peptides (or other proteins)

> data <- data[grep('iRT', data$ProteinName, invert=TRUE),]
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2.3 Annotating the data

With the first two commands the number of files in the OpenSWATH data and
the names of these files can be printed. This can be helpful to generate the study
design table (The script can be executed until here and then the annotation file
generated with a text editor). See above for a description of the exact format
and column names required for the study design table.

> # list number and different Files present

> nlevels(factor(data$align_origfilename))

> levels(factor(data$align_origfilename))

> # load the study design table from the indicated file

> Study_design <- read.delim2(annotation.file,

+ dec='.', sep='\t', header=TRUE)

With the function sample_annotation the data is annotated with the meta-
data contained in the study design table. The next commands can be used to
shorten the protein names and remove repetitive and non-unique parts of the
Protein name as shown by the example removing some parts of the identifier
keeping only the unique SwissProt accession identifier (example see below).

> # annotate data

> data.annotated <- sample_annotation(data, Study_design)

> head(unique(data$ProteinName))

[1] 1/Protein6 1/Protein1 1/Protein7 1/Protein4 1/Protein8

[6] 10/Protein9

15 Levels: 1/Protein1 1/Protein2 1/Protein3 1/Protein4 ... DECOY_1/Protein6

> # OPTIONAL: for human, shorten Protein Name to remove non-unique information

> #(sp|Q9GZL7|WDR12_HUMAN --> Q9GZL7)

> data$ProteinName <- gsub('sp\\|([[:alnum:]]+)\\|[[:alnum:]]*_HUMAN',

+ '\\1', data$ProteinName)

> head(unique(data$ProteinName))

[1] "1/Protein6" "1/Protein1" "1/Protein7" "1/Protein4"

[5] "1/Protein8" "10/Protein9"

3 Analyze data

In order to analyze the data we provide different functions to assess the variation
or correlation between samples or to calculated the summed signal per peptide
and protein. This can be used to quickly assess the overall similarity of the
injections or see what the signal for a peptide or protein of interest is.

3.1 Count analytes

With the function count_analytes the number of transitions, peptides and
proteins can be counted across the different injections. This can be helpful for
assessing if a certain injection produced considerably less identifications and
what the mean number of identified transitions, peptides or proteins per sample
is.
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> count_analytes(data.annotated)

run_id transition_group_id FullPeptideName ProteinName

1 Hela_Control_1_1 354 250 9

2 Hela_Control_2_3 370 260 9

3 Hela_Control_3_5 373 262 9

4 Hela_Treatment_1_2 354 250 9

5 Hela_Treatment_2_4 369 259 9

6 Hela_Treatment_3_6 373 262 9

3.2 Plot correlation between samples

With the function plot_correlation_between_samples the Pearson and Spear-
man correlation is calculated between the different injections and plotted in a
heatmap. This can be used to spot injections that show very different signal or
also retention times.

> # Plot correlation of intensity

> correlation <- plot_correlation_between_samples(data.annotated, column.values = "Intensity")

> head(correlation)

Var1 Var2 value method

1 Hela_Control_1 Hela_Control_1 1.0000000 pearson

7 Hela_Control_1 Hela_Control_2 0.9326233 pearson

8 Hela_Control_2 Hela_Control_2 1.0000000 pearson

13 Hela_Control_1 Hela_Control_3 0.9775615 pearson

14 Hela_Control_2 Hela_Control_3 0.9801443 pearson

15 Hela_Control_3 Hela_Control_3 1.0000000 pearson

> # Plot correlation of retention times

> correlation <- plot_correlation_between_samples(data.annotated, column.values = "RT")

>

3.3 Plot variation

With the function plot_variation the coefficient of variation of the signal for
the different transitions per condition across replicates is plotted. The coefficient
of variation is calculated as the standard deviation divided by the mean of the
signal. In order to do different comparisons, the optional parameters can be
altered from the default values. For example the coefficient of variation of the
summed signal for each peptide can be plotted as shown below. The function
uses the cast function from the reshape2 package and the comparison needs to
specified accordingly.

> # plot variation of transitions for each condition across replicates

> variation <- plot_variation(data.annotated)

> head(variation[[2]])

Condition mode_cv mean_cv median_cv

1 Hela_Control 0.7337451 0.7062701 0.7230614

2 Hela_Treatment 0.8300339 0.7792517 0.7999057

> # plot variation of summed signal for Peptides for each condition across replicates

> variation <- plot_variation(data.annotated,

+ Comparison = FullPeptideName + Condition ~ BioReplicate,

+ fun.aggregate = sum)

>
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3.4 Plot variation within replicates versus total variation

With the function plot_variation_vs_total the coefficient of variation of the
signal within replicates can be compared to the variation across all samples.
This can serve as an assessment if the variation within technical or biological
replicates is indeed smaller than the overall variation. Also for this function the
signal for which the variation is plotted and the comparison can be changed by
altering the default input options.

> # plot variation of transitions for each condition within replicates

> # compared to total variation

> variation <- plot_variation_vs_total(data.annotated)

> head(variation[[2]])

scope mode_cv mean_cv median_cv

1 replicate 0.8062472 0.7426103 0.7620005

2 total 0.7599820 0.7040560 0.7233862

3.5 Results on protein level

SWATH2stats can write a protein-level summary matrix showing the summed
signals of protein (unique ProteinName identifiers) over the MS runs (unique
run_id) using the function write_matrix_proteins. It calculates the sum of
all transition intensities per assay, all charge states per peptide, and all peptides
for the different protein groups. Note that this function does not select consis-
tently quantified peptides, or a certain number of highest intense peptides, and
therefore the summed signal should be used with caution as a measure of protein
abundance or to compare protein abundance between runs. For other quantita-
tive protein inference strategies, the R package aLFQ can be used (Rosenberger
et al. 2014, see below). For testing differential expression we recommend the
downstream tools MSstats and mapDIA (Choi et al. 2014, Teo et al. 2015).

Writing the overview matrix of summed intensities per protein entry per MS
run:

> protein_matrix <- write_matrix_proteins(data,

+ filename = "SWATH2stats_overview_matrix_proteinlevel",

+ rm.decoy = FALSE)

3.6 Results on peptide level

SWATH2stats can also write a peptide-level summary matrix showing the summed
signals of peptide (unique FullPeptideName identifiers) over the MS runs (unique
run_id) using the function write_matrix_peptides. It calculates the sum of
all transition intensities per assay and all charge states per peptide.

> peptide_matrix <- write_matrix_peptides(data,

+ filename = "SWATH2stats_overview_matrix_peptidelevel",

+ rm.decoy = FALSE)
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4 FDR estimation

Mass-spectrometry-based proteomic experiments produce large amounts of data,
requiring statistical validation of the obtained results. Large multi-run pro-
teomics studies are prone to the accumulation of false positive identifications
and the statistical significance scores must therefore be normalized accord-
ingly(Benjamini and Hochberg, 1995).
This chapter describes first the functionality of SWATH2stats to estimate and
visualize the global false discovery rate in OpenSWATH/mProphet result ta-
bles and second the functionality to obtain m-score thresholds (peak group level
mProphet-estimated FDR quality) to control FDR on a global level.

Assays are identified by unique identifiers in the column transition_group_id

of the SWATH data table, peptides by unique identifiers in the column FullPep-

tideName and protein(group)s by unique identifiers in the column ProteinName.
Different MS injections (also termed runs) are identified based on a unique entry
in the column run id.

4.1 FDR: Overview and visualization

SWATH2stats supplies three functions to assess and visualize the false discovery
rate in multi-run SWATH data. These functions are useful to get an overview on
the relationship between false discovery rate and m-score thresholds. A suitable
m-score threshold can subsequently be used to filter the data with the filtering
functions described in the next chapter.
The FDR within the results passing a given score cutoff is evaluated as explained
in the introduction:

FDR = (number of decoys * FFT)/(number of targets)

Application of the decoy-counting-based FDR assessment functions in inter-
play with the meta-data filters can help the researcher in selecting an efficient
strategy to establish highest possible data quality for downstream analyses. By
counting the decoys before and after application of a filter, the selectivity of a
given filter for likely true (target) over false (decoy) data can be estimated.
With a first basic function assess_decoy_rate the overall number of decoy
peptides can be counted in the data:

> assess_decoy_rate(data)

The function assess_fdr_overall creates a global assessment of decoy rates
(and estimated FDR) on assay, peptide and protein level. Results are reported
by default as .csv table and visualized in a .pdf report. Setting the output
option to ”Rconsole” reports the results back to R. Included in the pdf report
are plots showing the estimated global FDR in relation to the m-score threshold.
Because false-positive hits accumulate over different runs, the false discovery
rate estimated by this function will be higher than if assessed within each run
individually.

> # count decoys and targets on assay, peptide and protein level

> # and report FDR at a range of m_score cutoffs
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> assess_fdr_overall(data, FFT = 0.7, output = "pdf_csv", plot = TRUE,

+ filename='assess_fdr_overall_testrun')

> # The results can be reported back to R for further calculations

> overall_fdr_table <- assess_fdr_overall(data, FFT = 0.7,

+ output = "Rconsole")

The function plot.fdr_table allows to create the report plots from this
overall fdr table.

> # create plots from fdr_table

> plot(overall_fdr_table, output = "Rconsole",

+ filename = "FDR_report_overall")

The function assess_fdr_byrun investigates the decoy rate or FDR in indi-
vidual runs and by default reports the results in a .csv table and .pdf file. Setting
the output option to ”Rconsole” reports back the results to R. This function is
used if the FDR for different injections should be estimated separately.

> # count decoys and targets on assay, peptide and protein level per run

> # and report FDR at a range of m_score cutoffs

> assess_fdr_byrun(data, FFT = 0.7, output = "pdf_csv", plot = TRUE,

+ filename='assess_fdr_byrun_testrun')

> # The results can be reported back to R for further calculations

> byrun_fdr_cube <- assess_fdr_byrun(data, FFT = 0.7,

+ output = "Rconsole")

The function plot._fdr_cube allows to create the report plots from this
by-run fdr cube.

> # create plots from fdr_table

> plot(byrun_fdr_cube, output = "Rconsole",

+ filename = "FDR_report_overall")

4.2 Identification of useful m-score cutoffs to satisfy de-
sired FDR criteria

SWATH2stats supplies three functions for the identification of useful m-score
cutoffs to satisfy FDR criteria on assay, peptide and protein level over many
different runs. These functions return an m-score value, which can be used to
filter the data of these different runs in order to obtain a desired overall FDR.
The following functions report an m-score cutoff to achieve a strict global FDR
target.
The function mscore4assayfdr reports an m-score cutoff to achieve a desired
overall (global) assay FDR:

> # select and return a useful m_score cutoff in order

> # to achieve the desired FDR quality for the entire table

> mscore4assayfdr(data, FFT = 0.7, fdr_target=0.01)

[1] 0.01

The function mscore4pepfdr reports an m-score cutoff to achieve a desired
overall (global) peptide FDR:
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> # select and return a useful m_score cutoff

> # in order to achieve the desired FDR quality for the entire table

> mscore4pepfdr(data, FFT = 0.7, fdr_target=0.02)

[1] 0.01

The function mscore4protfdr reports an m-score cutoff to achieve a desired
overall (global) protein FDR. Protein FDR control on peak group quality level is
a very strict filter and should be handled with caution. Alternatively, a function
filter_mscore_fdr is described below applying a two-tiered filtering approach.

> # select and return a useful m_score cutoff in order

> # to achieve the desired FDR quality for the entire table

> mscore4protfdr(data, FFT = 0.7, fdr_target=0.02)

[1] 0.0001778279

5 Filtering the data

In this chapter the SWATH data is filtered based on the study design or desired
global FDR criteria to be achieved. By setting the option rm.decoy=FALSE,
the decoy peptides can be kept in the data in order to evaluate the selectivity
of a given filter for likely true (target) over false (decoy) data by decoy counting
with the functions described in the previous chapter.

Before converting the data for statistical analysis the rm.decoy option is set
to ’TRUE’ in order to remove any decoy peptides and proteins from the data.

5.1 Filter on m-score

The function filter_mscore removes all measured peak groups that are above a
certain m-score value. The number of rows removed by the function is indicated.

> data.filtered.mscore <- filter_mscore(data.annotated, 0.01)

The function filter_mscore_freqobs takes into account how many times
in the different injection runs a peak group has been confidently (as defined
by the m-score threshold) identified. This is useful in large data of many dif-
ferent replicates. For example the data for a certain precursor that has been
confidently identified in most of the replicates but does not pass the threshold
in one replicate still should be kept for statistical analysis. The function fil-

ter_mscore_freqobs can be used to filter for precursors that were observed
with a certain m-score threshold and frequency across the samples. In the fol-
lowing example, precursors passing an m-score threshold of 0.01 in 80 % of the
replicates are selected. The option rm.decoy is set to FALSE to keep the decoys
for subsequent FDR assessment.

> data.filtered.mscore <- filter_mscore_freqobs(data.annotated, 0.01, 0.8,

+ rm.decoy=FALSE)
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The function filter_mscore_condition selects only precursors that have
passed a certain m-score threshold in a minimum number of replicates for the
same condition (as defined by the study design table). In contrast to the previous
function, this selects precursors that are confidently identified a certain number
of times within a condition as opposed to being identified a certain number of
times across all samples.

> data.filtered.mscore <- filter_mscore_condition(data.annotated, 0.01, 3)

In order to reach a compromise between a very stringent m-score filter con-
trolling the global protein FDR, and keeping valid peptide quantifications in the
data, we introduce here a two-tiered filtering approach with the function fil-

ter_mscore_fdr. This uses a similar approach as implemented for extracting
quantitative data from multi-run DDA data sets (Fermin et al. 2011). In the
first step, an m-score cutoff is identified to reach a desired protein-level FDR.
All proteins for which one peakgroup passes this strict m-score cutoff criterion
are collected in a protein master list. The original data is then filtered i.) for the
proteins present in the master list and ii.) filtered for all peptide quantifications
passing an m-score cutoff to achieve a desired global peptide-level FDR. Note
that the m-score cutoff to filter the protein list will typically be more stringent
than the second m-score cutoff to filter the peptides.

> data.filtered.fdr <- filter_mscore_fdr(data, FFT=0.7,

+ overall_protein_fdr_target = 0.03,

+ upper_overall_peptide_fdr_limit = 0.05)

5.2 Filter on proteotypic peptides

The function filter_proteotypic_peptides selects only data that is based
on proteotypic peptides (peptides only contained in one protein and marked by
”1/” in the beginning of the protein identifier). These functions also remove the
’1’ in front of the protein identifier from proteotypic peptides.

> data <- filter_proteotypic_peptides(data.filtered.mscore)

> data.all <- filter_all_peptides(data.filtered.mscore)

5.3 Filter on number of peptides per protein

With the function filter_on_max_peptides the peptides showing the strongest
signal over the entire table can be selected (top n approach). Removing the
lower intense peptides for a protein can make the statistical analysis faster or
result in more accurate quantification of proteins under the assumption that
quantification of more intense peptides is more robust.

> data.filtered.max <- filter_on_max_peptides(data.filtered.mscore, 5)

Conversely maybe only data for proteins with a minimum number of support-
ing peptides should be selected. With the function filter_on_min_peptides

only the proteins for which at least a certain number of peptides have been
measured are selected. This filter can also be powerful to remove false positive
hits from the data as these are enriched in the fraction of single hits. FDR as-
sessment based on decoy counting may still be valid after such filtering (Reiter
et al. 2009).

> data.filtered.max.min <- filter_on_min_peptides(data.filtered.max, 2)
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6 Conversion of data for other tools

In order to use the filtered and annotated data in other programs and packages
the data has to be converted into the required format. This chapter describes
the different functions within SWATH2stats that can be used to convert the
filtered SWATH data into the desired format.

6.1 Results on transition level

With the function disaggregate the SWATH data is changed from a table
where one row corresponds to one quantified peak group to a table where one
row corresponds to one measured transition.

> data.transition <- disaggregate(data)

> write.csv(data.transition, file='transition_level_output.csv',

+ row.names=FALSE, quote=FALSE)

6.1.1 Conversion using a python script

For very large SWATH data it is faster to use a custom-made python script
to transform the data from a peptide-level format to a transition-level format.
With the function convert4pythonscript the necessary columns are selected
and the nomenclature for modified peptides is changed. Subsequently the data
is written to disk.

> data <- convert4pythonscript(data)

> head(data)

ProteinName FullPeptideName Charge

1 Protein6 AAVDLIIAVK 2

2 Protein6 AAVDLIIAVK 2

3 Protein6 AAVDLIIAVK 2

4 Protein6 AAVDLIIAVK 2

5 Protein6 AAVDLIIAVK 2

6 Protein6 AAVDLIIAVK 2

aggr_Fragment_Annotation

1 2914841_AAVDLIIAVK_2;2914836_AAVDLIIAVK_2;2914839_AAVDLIIAVK_2;2914843_AAVDLIIAVK_2;2914835_AAVDLIIAVK_2;2914834_AAVDLIIAVK_2

2 2914841_AAVDLIIAVK_2;2914836_AAVDLIIAVK_2;2914839_AAVDLIIAVK_2;2914843_AAVDLIIAVK_2;2914835_AAVDLIIAVK_2;2914834_AAVDLIIAVK_2

3 2914841_AAVDLIIAVK_2;2914836_AAVDLIIAVK_2;2914839_AAVDLIIAVK_2;2914843_AAVDLIIAVK_2;2914835_AAVDLIIAVK_2;2914834_AAVDLIIAVK_2

4 2914841_AAVDLIIAVK_2;2914836_AAVDLIIAVK_2;2914839_AAVDLIIAVK_2;2914843_AAVDLIIAVK_2;2914835_AAVDLIIAVK_2;2914834_AAVDLIIAVK_2

5 2914841_AAVDLIIAVK_2;2914836_AAVDLIIAVK_2;2914839_AAVDLIIAVK_2;2914843_AAVDLIIAVK_2;2914835_AAVDLIIAVK_2;2914834_AAVDLIIAVK_2

6 2914841_AAVDLIIAVK_2;2914836_AAVDLIIAVK_2;2914839_AAVDLIIAVK_2;2914843_AAVDLIIAVK_2;2914835_AAVDLIIAVK_2;2914834_AAVDLIIAVK_2

aggr_Peak_Area

1 17918.000000;15407.000000;7447.000000;4427.000000;5364.000000;2688.000000

2 1863.000000;922.000000;923.000000;294.000000;588.000000;294.000000

3 1631.000000;588.000000;504.000000;315.000000;441.000000;105.000000

4 24520.000000;35672.000000;9529.000000;5832.000000;7103.000000;3548.000000

5 3665.000000;1596.000000;1636.000000;840.000000;1029.000000;420.000000

6 11878.000000;5607.000000;4646.000000;2951.000000;5255.000000;1259.000000

RT BioReplicate Condition align_origfilename

1 3904.151 2 Hela_Control 3

2 3778.492 3 Hela_Treatment 6

3 4450.159 1 Hela_Treatment 2
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4 3991.374 2 Hela_Treatment 4

5 3726.064 3 Hela_Control 5

6 4352.417 1 Hela_Control 1

> write.table(data, file="input.tsv", sep="\t", row.names=FALSE, quote=FALSE)

The .tsv table can be transformed into a transition level table using a python
script (as example featurealigner2msstats withRT.py from msproteomicstools
which is available in the scripts folder of the package).

python ./featurealigner2msstats.py input.csv output.csv

Afterwards the generated .csv table is loaded again into R.

> data.transition <- data.frame(fread('output.csv',

+ sep=',', header=TRUE))

6.2 MSstats

In order to use the data in the R Bioconductor package MSstats, the transition-
level data needs to be converted using the function convert4MSstats. After-
wards the data can directly be processed using the MSstats package as shown
here by application of the function dataProcess from the MSstats package.

> MSstats.input <- convert4MSstats(data.transition)

> library(MSstats)

> quantData <- dataProcess(MSstats.input)

6.3 aLFQ

The package aLFQ can read the original OpenSWATH output. Alternatively
the aLFQ package can also be applied to the filtered and annotated data from
the SWATH2stats package. To convert the data after filtering to the format for
aLFQ, the function convert4aLFQ is applied to the transition-level data.

> aLFQ.input <- convert4aLFQ(data.transition)

> library(aLFQ)

> prots <- ProteinInference(aLFQ.input, peptide_method = 'top',

+ peptide_topx = 3,

+ peptide_strictness = 'loose',

+ peptide_summary = 'mean',

+ transition_topx = 3,

+ transition_strictness = 'loose',

+ transition_summary = 'sum',

+ fasta = NA, model = NA,

+ combine_precursors = FALSE)

6.4 mapDIA

In order to convert the data into the format for the mapDIA program, the
function convert4mapDIA is used. Technical replicates included in the data are
not taken into account by mapDIA. Therefore the function convert4mapDIA

averages the SWATH data from technical replicates if contained.

> mapDIA.input <- convert4mapDIA(data.transition, RT =TRUE)

> head(mapDIA.input)

14



ProteinName PeptideSequence FragmentIon Hela_Control_1

1 Protein2 TVVVAFLGR 1000686_TVVVAFLGR_2 1930

2 Protein2 TVVVAFLGR 1000688_TVVVAFLGR_2 924

3 Protein2 TVVVAFLGR 1000689_TVVVAFLGR_2 3264

4 Protein2 TVVVAFLGR 1000693_TVVVAFLGR_2 5681

5 Protein2 TVVVAFLGR 1000695_TVVVAFLGR_2 1386

6 Protein2 TVVVAFLGR 1000697_TVVVAFLGR_2 924

Hela_Control_2 Hela_Control_3 Hela_Treatment_1 Hela_Treatment_2

1 5973 2792 378 14198

2 3192 1785 84 6535

3 10092 4130 483 28929

4 16316 6745 1025 45055

5 4573 1995 294 12174

6 3856 1512 147 11405

Hela_Treatment_3 RT

1 6494 68.68395

2 3401 68.68395

3 12443 68.68395

4 20683 68.68395

5 4945 68.68395

6 5165 68.68395

> write.table(mapDIA.input, file='mapDIA.txt', quote=FALSE,

+ row.names=FALSE, sep='\t')

6.5 imsbInfer

The package imsbInfer needs all the columns from the OpenSWATH output,
therefore the function reduce_OpenSWATH_output needs to be omitted in the
workflow (see above). If the package imsbInfer should be used after SWATH2stats,
a decoy column needs to be added as exemplified below if it has been removed
by the filtering functions.

> data.annotated.full <- sample_annotation(OpenSWATH_data, Study_design)

> data.annotated.full <- filter_mscore(data.annotated.full,

+ mscore4assayfdr(data.annotated.full, 0.01))

> data.annotated.full$decoy <- 0 ### imsbInfer needs the decoy column

> library(imsbInfer)

> specLib <- loadTransitonsMSExperiment(data.annotated.full)
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8 Software and tools

OpenSWATH: http://www.openswath.org
MSstats: MSstats is available on Bioconductor (www.bioconductor.org) or on

15



www.mssstats.org
aLFQ: aLFQ is available on CRAN (https://cran.r-project.org)
mapDIA: mapDIA is available on Sourceforge (http://sourceforge.net/projects/mapdia/)
imsbInfer: imsbInfer is available on Github (https://github.com/wolski/imsbInfer)
msproteomicstools: https://github.com/msproteomicstools
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