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Abstract

Many genomic assays lead to noisy observations of a biological quantity of interest varying along the
genome. This is the case for ChIP-Seq, for which read counts reflect local protein occupancy of the ChIP-
ed protein. The GenoGAM package allows statistical analysis of genome-wide data with smooth functions
using generalized additive models. It provides methods for the statistical analysis of ChIP-Seq data including
inference of protein occupancy, and pointwise and region-wise differential analysis as well as peak calling with
position-wise confidence bands. Estimation of dispersion and smoothing parameters is performed by cross-
validation. Scaling of generalized additive model fitting to whole chromosomes is achieved by parallelization
over overlapping genomic intervals. This vignette explains the use of the package for typical ChIP-Seq
analysis tasks.
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1 Standard ChIP-Seq analysis

Additional to the basic smoothing and point-wise significance computation this version of GenoGAM now also
supports differential analysis and peak calling with position-wise confidence intervals on ChIP-Seq data.

1.1 Goal of the analysis

A small dataset is provided to illustrate the ChIP-Seq functionalities. This is a subset of the data published by
Thornton et al[1], who assayed histone H3 Lysine 4 trimethylation (H3K4me3) by ChIP-Seq comparing wild
type yeast versus a mutant with a truncated form of Set1, the yeast H3 Lysine 4 methylase. The goal of this
analysis is the identification of genomic positions that are significantly differentially methylated in the mutant
compared to the wild type strain.

To this end, we will build a GenoGAM model that models the logarithm of the expected ChIP-seq fragment
counts y as sums of smooth functions of the genomic position x. Specifically, we write (with simplified
notations) that:

log(E(y)) = f(x) + genotype× fmutant/wt(x) (1)

where genotype is 1 for data from the mutant samples, and 0 for the wild type. Here the function f(x) is
the reference level, i.e. the log-rate in the wild type strain. The function fmutant/wt(x) is the log-ratio of the
mutant over wild-type. We will then statistically test the null hypothesis fmutant/wt(x) = 0 at each position x.
In the following we show how to build the dataset, perform the fitting of the model and perform the testing.

1.2 Registering a parallel backend

The parallel backend is registered using the BiocParallel package. See the documentation in BiocParallel for
the correct use. Also note, that BiocParallel is just an interface to multiple parallel packages. For example in
order to use GenoGAMon a cluster, the BatchJobs package might be required. The parallel backend can be
registered at anytime as GenoGAM will just call the current one.

IMPORTANT: According to this and this posts on the Bioconductor support page and R-devel mailing list,
the most important core feature of the multicore backend, shared memory, is compromised by Rs own garbage
collecto,r resulting in a replication of the entire workspace across all cores. Given that the amount of data in
memory is big it might crash the entire system. We highly advice to register the SnowParam backend to
avoid this if working on a multicore machine. This way the overhead is a little bigger, but only necessary
data is copied to the workers keeping memory consumption relatively low. We never experienced a higher load
than 4GB per core, usually it was around 2GB on human genome.

library(GenoGAM)

## On multicore machines by default the number of available cores - 2 are registered

BiocParallel::registered()[1]

## $SnowParam

## class: SnowParam

## bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB

http://bioconductor.org/packages/BiocParallel
http://cran.fhcrc.org/web/packages/BatchJobs/index.html
https://support.bioconductor.org/p/70196/
https://stat.ethz.ch/pipermail/r-devel/2015-July/071554.html
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## bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

## bptimeout: 2592000; bpprogressbar: FALSE

## bpRNGseed:

## bplogdir: NA

## bpresultdir: NA

## cluster type: SOCK

For this small example we would like to assign less workers.. Check BiocParallel for other possible backends
and more options for SnowParam

BiocParallel::register(BiocParallel::SnowParam(workers = 4, progressbar = TRUE))

If we check the current registered backend, we see that the number of workers has changed.

BiocParallel::registered()[1]

## $SnowParam

## class: SnowParam

## bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB

## bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

## bptimeout: 2592000; bpprogressbar: TRUE

## bpRNGseed:

## bplogdir: NA

## bpresultdir: NA

## cluster type: SOCK

1.3 Building a GenoGAM dataset

BAM files restricted to a region of chromosome XIV around the gene YNL176C are provided in the inst/extdata
folder of the GenoGAM package. This folder also contains a flat file describing the experimental design.

We start by loading the experimental design from the tab-separated text file experimentDesign.txt into a
data frame:

folder <- system.file("extdata/Set1", package='GenoGAM')

expDesign <- read.delim(

file.path(folder, "experimentDesign.txt")

)

expDesign

## ID file paired genotype

## 1 wt_1 H3K4ME3_Full_length_Set1_Rep_1_YNL176C.bam FALSE 0

## 2 wt_2 H3K4ME3_Full_length_Set1_Rep_2_YNL176C.bam FALSE 0

## 3 mutant_1 H3K4ME3_aa762-1080_Set1_Rep_1_YNL176C.bam FALSE 1

## 4 mutant_2 H3K4ME3_aa762-1080_Set1_Rep_2_YNL176C.bam FALSE 1

Each row of the experiment design corresponds to the alignment files in BAM format of one ChIP sample. In
case of multiplexed sequencing, the BAM files must have been demultiplexed. The experiment design have

http://bioconductor.org/packages/BiocParallel
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named columns. Three column names have a fixed meaning for GenoGAM and must be provided: ID, file,
and paired. The field ID stores a unique identifier for each alignment file. It is recommended to use short
and easy to understand identifiers because they are subsequently used for labelling data and plots. The field
file stores the BAM file name. The field paired values TRUE for paired-end sequencing data, and FALSE

for single-end sequencing data. Further named columns can be added at wish without naming and data type
constraints. Here the important one is the genotype column. Note that it is an indicator variable (i.e. valuing
0 or 1). It will allow us modeling the differential occupancy or call peaks later on.

We will now count sequencing fragment centers per genomic position and sample and store these counts
into a GenoGAMDataSet. GenoGAM reduces ChIP-Seq data to fragment center counts rather than full base
coverage so that each fragment is counted only once. This reduces artificial correlation between adjacent
nucleotides. For single-end libraries, the fragment center is estimated by shifting the read end position by a
constant (Details in the help on the constructor function GenoGAMDataSet()). Additionally we filter the data
for enriched regions only. A threshold is estimated from the data as the median + 6*MAD (Median Absolute
Deviation) or can be supplied through the threshold argument. Especially on large genomes such as human
this can boost the computation time significantly.

bpk <- 20

chunkSize <- 1000

overhangSize <- 15*bpk

## build the GenoGAMDataSet

ggd <- GenoGAMDataSet(

expDesign, directory = folder,

chunkSize = chunkSize, overhangSize = overhangSize,

design = ~ s(x) + s(x, by = genotype)

)

## INFO [2016-10-21 03:25:40] Reading in data.

## INFO [2016-10-21 03:25:42] Check if tile settings match the data.

## INFO [2016-10-21 03:25:42] All checks passed.

## INFO [2016-10-21 03:25:42] DONE

ggd

## class: GenoGAMDataSet

## dimension: 784333 4

## assays(1):

## position variables(0):

## sample variables(1): genotype

## samples(4): wt_1 wt_2 mutant_1 mutant_2

## tiles size: 1.6kbp

## number of tiles: 785

## chromosomes: chrXIV

## data filtered for regions with zero counts

filtered_ggd <- filterData(ggd)

## INFO [2016-10-21 03:25:42] Filtering dataset for enriched regions

## INFO [2016-10-21 03:25:44] Threshold estimated at 0.859781495869741

## INFO [2016-10-21 03:25:44] DONE. A total of 781,030 positions were dropped, 3,303 are left.
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filtered_ggd

## class: GenoGAMDataSet

## dimension: 3303 4

## assays(1):

## position variables(0):

## sample variables(1): genotype

## samples(4): wt_1 wt_2 mutant_1 mutant_2

## tiles size: 1.6kbp

## number of tiles: 4

## chromosomes: chrXIV

## alternatively we can restricts the GenoGAM dataset to the positions of

## interest as we know them by design of this example

ggd <- subset(ggd, seqnames == "chrXIV" & pos >= 305000 & pos <= 308000)

## They are almost the same as found by the filter

range(getIndex(filtered_ggd))

## GRanges object with 1 range and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chrXIV [304849, 308151] *

## -------

## seqinfo: 1 sequence from an unspecified genome

A GenoGAMDataSet stores this count data into a structure that index genomic positions over tiles, defined
by chunkSize and overhangSize. A bit of background is required to understand these parameters. The
smoothing in GenoGAM is based on splines (Figure 1), which are piecewise polynomials. The knots are
the positions where the polynomials connect. In our experience, one knot every 20 to 50 bp is required for
enough resolution of the smooth fits in typical applications. The fitting of generalized additive models involves
steps demanding a number of operations proportional to the square of the number of knots, preventing fits
along whole chromosomes. To make the fitting of GAMs genome-wide, GenoGAM performs fitting on small
overlapping intervals (tiles), and join the fit at the midpoint of the overlap of consecutive tiles. The parameters
chunkSize and overhangSize defines the tiles, where the chunk is the core part of a tile that does not overlap
other tiles, and the overhangs are the two overlapping parts. Overhangs of about 10 times the knot spacing
gives reasonable results.

The design parameter is explained in the next section.

Finally, the last line of code calls the function subset() to restrict the GenoGAMDataset to the positions
of interest. This line is necessary for running this small example but would not be present in a standard
genome-wide run of GenoGAM.

Note: genogam have a settings-class available but not open to the user, as it is not yet fully developed. The
GenoGAMDataSet function however can take an argument settings that would take such an object as input.
The argument is there to allow for some specific workarounds if necessary. The most common one would be
to load only a subset of the data from a BAM file for example defined by chromosome names or supplying a
ScanBamParam object from the GenomicAlignments package. The examples are not run.
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Figure 1: Left: An example spline without coefficients. Displayed are seven cubic B-spline basis functions
which together make up the complete spline (pink). The knots are depicted as dark-grey dots at the bottom-
center of each basis function. Right: The same spline as on the left side, but with basis functions multiplied
by their respective coefficient.

## specify specific chromosomes

settings <- GenoGAM:::GenoGAMSettings(chromosomeList = c('chrI', 'chrII'))

## specify parameters through ScanBamParam

gr <- GRanges("chrI", IRanges(1,100000))

params <- ScanBamParam(which = gr)

settings <- GenoGAM:::GenoGAMSettings(bamParams = params)

1.4 Modeling with smooth functions: the design parameters

GenoGAM models the logarithm of the rate of the count data as sums of smooth functions of the genomic
position, denoted x. The design parameter is an R formula which allows encoding how the smooth functions
depend on the experimental design. GenoGAMfollows formula convention of the R package mgcv. A smooth
function is denoted s(). For now, GenoGAM only supports smooth function that are cubic splines of the
genomic position x. The by variable allows selecting to which samples the smooth contributes to (see also
the documentation of gam.models in the mgcv). For now, GenoGAM only allows by variables to be of
value 0 or 1 (hence binary dummy encoding). Here by setting ’s(x, by=genotype)’ we encode the term
”genotype× fmutant/wt(x)” in Equation 1.

Note: As for other generalized additive models packages (mgcv, gam), GenoGAM use the natural logarithm
as link function. This is different than other packages of the bioinformatics files such as DESeq2 which works
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in base 2 logarithm.

1.5 Size factor estimation

Sequencing libraries typically vary in sequencing depth. Such variations is controlled for in GenoGAM by adding
a sample-specific constant to the right term of Equation 1. The estimation of these constants is performed
by the function computeSizeFactor() as follows:

ggd <- computeSizeFactors(ggd)

## INFO [2016-10-21 03:25:45] Computing size factors

## INFO [2016-10-21 03:25:45] DONE

sizeFactors(ggd)

## wt_1 wt_2 mutant_1 mutant_2

## 0.0429 0.2595 -0.5295 0.2901

Note: The size factors in GenoGAMare in the natural logarithm scale. Also factor groups are identified
automatically from the design. Given more complex design, this might fail. Or, maybe different factor groups
are desired. In this case the groups can be provided separatelly through the factorGroups argument.

The additional function qualityCheck will perform a simple quality check of the data and plot the results
into the folder qc, which is created in the working directory if not present. So far it’s only applicable to the
GenoGAMDataSet object and creates two plots: One showing the distribution of counts over all tiles and the
second showing multiple scatterplots of the counts from different samples against each other before and after
size factor normalization

## the function is not run as it creates new plots each time,

## which are not very meaningful for such a small example

qualityCheck(ggd)

1.6 Model fitting

A GenoGAM model requires two further parameters to be fitted: the regularization parameter, λ, and the
dispersion parameter θ. The regularization parameters λ controls the amount of smoothing. The larger λ is,
the smoother the smooth functions are. The dispersion parameter θ controls how much the observed counts
deviate from their expected value modeled by Equation 1. The dispersion captures biological and technical
variation which one typically sees across replicate samples, but also errors of the model. In GenoGAM, the
dispersion is modeled by assuming the counts to follow a negative binomial distribution with mean µ = E(y)
whose logarithm is modeled by Equation 1 and with variance v = µ+ µ2/θ.

If not provided, the parameters λ and θ are obtained by cross-validation. This step is a bit time-consuming.
For sake of going through this example quickly, we provide the values manually:

## fit model without parameters estimation

fit <- genogam(ggd,

lambda = 40954.1,

family = mgcv::nb(theta = 6.927986),

bpknots = bpk

)
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## INFO [2016-10-21 03:25:45] Check if tile settings match the data.

## INFO [2016-10-21 03:25:45] All checks passed.

## INFO [2016-10-21 03:25:45] Process data

## INFO [2016-10-21 03:25:46] Fitting model

##

|

| | 0%

|

|======================= | 33%

|

|=============================================== | 67%

|

|======================================================================| 100%

##

## INFO [2016-10-21 03:26:10] DONE

fit

##

## Family: negative binomial

## Link function: log

##

## Formula:

## value ~ offset(offset) + s(x, bs = "ps", k = 80, m = 2) + s(x,

## by = genotype, bs = "ps", k = 80, m = 2)

## <environment: 0x000000001c5e1460>

##

## Experiment Design:

## genotype

## wt_1 0

## wt_2 0

## mutant_1 1

## mutant_2 1

##

## Global Estimates:

## Lambda: 40954

## Theta: 6.93

## Coefficient of Variation: 0.38

##

## Cross Validation: Not performed

## K-folds: 10

## Number of tiles: 3

## Interval size: 20

##

## Tile settings:

## chunk size: 1000

## tile size: 1600

## overhang size: 300
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## number of tiles: 3

Remark on parameter estimation: To estimate the parameters λ and θ by cross-validation, call genogam()
without setting their values. This will perform 10 fold cross-validation on each tile with initial parameter values
and iterate until convergence, often for about 50 iterations. We recommend to do it for 20 to 40 different
regions representative of your data (of 1.5kb each). This means that estimation of the parameters will require
the equivalent of a GenoGAM fit with fixed λ and θ on 30 Mb (1.5kb x10x40x50). For a genome like yeast
(12Mb) the cross-validation thus can take more time than a genome-wide fit.

fit_CV <- genogam(ggd,bpknots = bpk)

Remark on parallel computing: GenoGAM run parallel computations on multicore architecture (using the
BiocParallel package). Computing time reduces almost linearly with the number of cores of the machine.

1.7 Plotting results

Count data and fits for a region of interest can be extracted using the function view(). Following the mgcv
and gam convention the names of the fit for the smooth function defined by the by variable follow the pattern
s(x):{by-variable}. Here, the smooth function of interest fmutant/wt(x) is thus named s(x):genotype.

# extract count data into a data frame

df_data <- view(ggd)

head(df_data)

## seqnames pos strand wt_1 wt_2 mutant_1 mutant_2

## 1 chrXIV 305000 * 0 0 0 0

## 2 chrXIV 305001 * 0 0 0 0

## 3 chrXIV 305002 * 0 1 0 0

## 4 chrXIV 305003 * 0 0 0 0

## 5 chrXIV 305004 * 0 0 0 0

## 6 chrXIV 305005 * 0 1 0 0

# extract fit into a data frame

df_fit <- view(fit)

head(df_fit)

## seqnames pos strand s(x) s(x):genotype se.s(x) se.s(x):genotype

## 1 chrXIV 305000 * -3.10 0.163 0.309 0.402

## 2 chrXIV 305001 * -3.10 0.165 0.307 0.400

## 3 chrXIV 305002 * -3.10 0.168 0.305 0.398

## 4 chrXIV 305003 * -3.09 0.170 0.304 0.396

## 5 chrXIV 305004 * -3.09 0.173 0.302 0.394

## 6 chrXIV 305005 * -3.09 0.175 0.300 0.392

If only a subset of the data supposed to be viewed it is best to use a GRanges object and supply it to the
emphranges argument.

gr <- GRanges("chrXIV", IRanges(306000, 308000))

head(view(ggd, ranges = gr))

## seqnames pos strand wt_1 wt_2 mutant_1 mutant_2 assay
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## 1 chrXIV 306000 * 0 0 0 0 V1

## 2 chrXIV 306001 * 0 0 0 0 V1

## 3 chrXIV 306002 * 1 0 0 0 V1

## 4 chrXIV 306003 * 0 0 0 0 V1

## 5 chrXIV 306004 * 0 0 0 0 V1

## 6 chrXIV 306005 * 0 1 0 0 V1

The GenoGAM specific plot function will make use of the ggplot2 framework if available or fall back to base
R otherwise. Note, that without any restrictions on positions or chromosomes it will attempt to plot all the
data and throw an error if it is too big.

In the count data, the peak of methylation in the two replicates of the wild type (first two panels) in the
region 306,500-307,000 seems attenuated in the two replicates of the mutant (3rd and 4th panel). There are
relatively more counts for the mutant in the region 305,500-306,500. The GenoGAM fit of the log-ratio (last
panel, confidence band dotted) indicates that that these differences are significant. This redistribution of the
methylation mark from the promoter (wild type) into the gene body (mutant) was reported by the authors of
the study [1]. Additionally a smooth for the input is shown (second to last). Both smooths added together
give the log-fit of the mutant data (not shown).

plot(fit, ggd, scale = FALSE)



GenoGAM: Genome-wide generalized additive models 12

chrXIV:305000−308000

0

2

4

6

305000 306000 307000 308000

w
t_

1

0

2

4

6

305000 306000 307000 308000

w
t_

2

0

2

4

6

305000 306000 307000 308000

m
ut

an
t_

1

0

2

4

6

305000 306000 307000 308000

m
ut

an
t_

2

−3
−2
−1

0

305000 306000 307000 308000

s(
x)

−0.5
0.0
0.5
1.0
1.5

305000 306000 307000 308000
genomic position

s(
x)

:g
en

ot
yp

e



GenoGAM: Genome-wide generalized additive models 13

1.8 Statistical testing

We test for each smooth and at each position x the null hypothesis that it values 0 by a call to computeSignificance().
This gives us pointwise p-values.

fit <- computeSignificance(fit)

df_fit <- view(fit)

head(df_fit)

## seqnames pos strand s(x) s(x):genotype se.s(x) se.s(x):genotype

## 1 chrXIV 305000 * -3.10 0.163 0.309 0.402

## 2 chrXIV 305001 * -3.10 0.165 0.307 0.400

## 3 chrXIV 305002 * -3.10 0.168 0.305 0.398

## 4 chrXIV 305003 * -3.09 0.170 0.304 0.396

## 5 chrXIV 305004 * -3.09 0.173 0.302 0.394

## 6 chrXIV 305005 * -3.09 0.175 0.300 0.392

## pvalue.s(x) pvalue.s(x):genotype

## 1 0.0617 0.686

## 2 0.0608 0.680

## 3 0.0599 0.674

## 4 0.0590 0.668

## 5 0.0582 0.662

## 6 0.0573 0.655

1.9 Differential binding

If region-wise significance is needed, as in the case of differential binding, then we call computeRegionSignificance().
This returns the provided GRanges regions object updated by a p-value and FRD column.

gr

## GRanges object with 1 range and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chrXIV [306000, 308000] *

## -------

## seqinfo: 1 sequence from an unspecified genome; no seqlengths

gr <- computeRegionSignificance(fit, regions = gr, what = 'genotype')

## INFO [2016-10-21 03:26:13] Estimating region p-values and FDR

## INFO [2016-10-21 03:26:13] Done

gr

## GRanges object with 1 range and 2 metadata columns:

## seqnames ranges strand | pvalue

## <Rle> <IRanges> <Rle> | <numeric>

## [1] chrXIV [306000, 308000] * | 3.32546842648596e-10

## FDR

## <numeric>
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## [1] 3.32546842648596e-10

## -------

## seqinfo: 1 sequence from an unspecified genome; no seqlengths

1.10 Peak calling

The computed fit allows for easy peak calling of narrow and broad peaks via the callPeaks(). The resulting
data.table provides a similar structure as the ENCODE narrowPeak and broadPeak format. Note, the score
is given as the negative natural logarithm of the p-values. Also peak borders are different from the usually
computed peak borders of other methods. The borders are in fact a 95-% confidence interval around the peak
position. As this is not peak calling data, we use a high threshold do demonstrate the functionality.

peaks <- callPeaks(fit, smooth = "genotype", threshold = 1)

## INFO [2016-10-21 03:26:13] Calling narrow peaks

## INFO [2016-10-21 03:26:13] DONE

peaks

## seqnames position summit zscore score fdr start end

## 1: chrXIV 305364 2.02 -0.2449 0.516 0.667 305080 305648

## 2: chrXIV 306077 3.03 0.3716 1.035 1.000 305835 306319

## 3: chrXIV 307622 2.54 0.0999 0.776 1.000 307492 307752

peaks <- callPeaks(fit, smooth = "genotype", threshold = 1,

peakType = "broad", cutoff = 0.75)

## INFO [2016-10-21 03:26:13] Calling broad peaks

## INFO [2016-10-21 03:26:14] DONE

peaks

## seqnames start end width strand score meanSignal fdr

## 1: chrXIV 305102 306523 1422 * 0.288 2.30 0.75

## 2: chrXIV 307388 307863 476 * 0.289 2.15 0.75

The function writeToBEDFile provides an easy way to write the peaks data.table to a narrowPeaks or
broadPeaks file. The suffix will be determined automatically

writeToBEDFile(peaks, file = 'myPeaks')

2 Computation statistics

At the moment the computation time for genome-wide analysis ranges from a couple of hours on yeast to a
2-3 days on human. The memory usage never exceeded 4GByte per core. Usually it was around 2-3 GByte
per core. We are also currently implementing an optimized model fitting procedure, that reduces computation
time significantly. Unfortunately we were not able to include it into the package for this Bioconductor release,
but are confident to be able to do it into the next release. Interested users should therefore check the developer
version of GenoGAM for updates.

http://bioconductor.org/packages/GenoGAM
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DBI 0.5-1, DESeq2 1.14.0, Formula 1.2-1, GenomicAlignments 1.10.0, Hmisc 3.17-4, Matrix 1.2-7.1,
RColorBrewer 1.1-2, RCurl 1.95-4.8, RSQLite 1.0.0, Rcpp 0.12.7, ShortRead 1.32.0, XML 3.98-1.4,
acepack 1.3-3.3, annotate 1.52.0, bitops 1.0-6, chipseq 1.24.0, chron 2.3-47, cluster 2.0.5,
codetools 0.2-15, colorspace 1.2-7, data.table 1.9.6, digest 0.6.10, evaluate 0.10, foreign 0.8-67,
formatR 1.4, futile.logger 1.4.3, futile.options 1.0.0, genefilter 1.56.0, geneplotter 1.52.0, ggplot2 2.1.0,
grid 3.3.1, gridExtra 2.2.1, gtable 0.2.0, highr 0.6, hwriter 1.3.2, labeling 0.3, lambda.r 1.1.9,
lattice 0.20-34, latticeExtra 0.6-28, locfit 1.5-9.1, magrittr 1.5, mgcv 1.8-15, munsell 0.4.3,
nlme 3.1-128, nnet 7.3-12, plyr 1.8.4, reshape2 1.4.1, rpart 4.1-10, scales 0.4.0, snow 0.4-2,
splines 3.3.1, stringi 1.1.2, stringr 1.1.0, survival 2.39-5, tools 3.3.1, xtable 1.8-2, zlibbioc 1.20.0
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