
Implementation of Bayesian mixture models for copy number
estimation

Jacob Carey, Steven Cristiano, and Robert Scharpf
October 17, 2016

Contents
1 Introduction 1

2 Implementation 1

3 Approximating the posterior of a mixture 2
3.1 MarginalModel . 2
3.2 BatchModel . 4

4 K unknown 6

5 Batch Estimation 8

References 10

1 Introduction

CNPBayes models multi-modal densities via a hierarchical Bayesian Gaussian mixture model. The major application of
this model is the estimation of copy number at copy number polymorphic loci (CNPs). Two versions of the mixture model
are implemented. A standard model, referred to as a marginal model, that has one mean and standard deviation for each
component, and a batch model with batch-specific means and standard deviations. Approximation of the posterior is by
Markov Chain Monte Carlo (MCMC) written in C++ using the Rcpp package (Eddelbuettel and François 2011).
For an EM-implementation of Gaussian mixture models for CNPs, see the Bioconductor package CNVtools (Barnes et
al. 2008). A Bayesian extension of this model by some of the same authors was developed to automate the analysis of
the Welcome Trust Case Control Consortium (WTCCC) genotype data (Cardin et al. 2011) and implemented in the R
package CNVCALL (http://niallcardin.com/CNVCALL).
library(CNPBayes)

2 Implementation

CNPBayes uses several S4 classes to encapsulate key parameters of the MCMC simulation, reducing the need for functions
with a large number of arguments and providing an explicit contract for the arguments passed to the C++ back-end. The
three core classes are

• McmcParams: parameters for the number of burnin simulations - the number of chains to initialize, the number of
simulations after burnin, and how often simulated values are to be saved.

• Hyperparameters: a virtual class extended by HyperparametersMarginal and HyperparametersBatch for the
marginal and batch mixture model implementations, respectively.

1

http://niallcardin.com/CNVCALL

Implementation of Bayesian mixture models for copy number estimation 2

• MixtureModel: a virtual class with slots for data and hyperparameters, as well as a slot for each parameter. The
class is extended by MarginalModel and BatchModel for the marginal and batch implementations, respectively.
S4 dispatch on these classes is used to handle MCMC updates that are specific to the marginal or batch models.

3 Approximating the posterior of a mixture

3.1 MarginalModel

3.1.1 McmcParams

The class McmcParams specifies several MCMC options, including the number of saved iterations (iter), length of burn-in
(burnin), and the thinning interval (thin). The following code indicates that we will run a burnin of 100 iterations
saving the first 1000 iterations after burnin, with no iterations discarded for thinning.
mp <- McmcParams(iter=1000, burnin=100, thin=1)

If we instead specified thin=10, we would need to run 10,000 MCMC iterations in order to have a chain of length 1000
(every 10th observation is saved).

3.1.2 Hyperparameters

Hyperparameters for the mixture model are specified as an instance of class Hyperparameters. Hyperparameters include:
• k the number of components (or copy number). Defaults to 2.
• mu.0 and tau2.0 priors for µ ∼ N(mu.0, tau2.0), the overall mean of components. Default to 0 and 100

respectively.
• eta.0 and m2.0 priors for τ2 ∼ Ga(shape=eta.0, rate=m2.0), the overall variance across components. Default to

1 and 0.1 respectively for marginal models and 1800 and 1/60 respectively for batch models.
• alpha the prior mixture probabilities. Does not have to sum to 1. By default, a noninformative prior of equal

mixtures is used.
• beta prior for ν0. Defaults to 0.1.
• a and b priors for σ2

0 ∼ Ga(shape=a, rate=b), the rate parameter for σ2, the variance for each batch and component.

Implementation of Bayesian mixture models for copy number estimation 3

yiyi

zi θh σh
2

πh µh τh
2 ν0 σ0

2

Constructing an instance of class Hyperparameters for a MarginalModel can be performed as follows.
hypp <- Hyperparameters(type="marginal", k=3)

3.1.3 simulateData

CNPBayes allows for the simulation of test data. The number of observations, mixture proportions, means for each
component, and standard deviations for each component must be specified.
sim.data <- simulateData(N=2500, p=rep(1/3, 3),

theta=c(-1, 0, 1),
sds=rep(0.1, 3))

3.1.4 posteriorSimulation

To simulate the posterior distribution, an instance of class MarginalModel must first be constructed. Note that
when initializing objects of this class, the parameters data, k (number of a priori components), hypp, (object of class
Hyperparameters) and mcmc.params (object of class McmcParams) should be specified. Default values for hypp and
mcmc.params will be used if not specified. The y method should be used to retrieve the data from an object. After
construction of a model, the posteriorSimulation method should be used.
model <- MarginalModel(data=y(sim.data), k=3,

hypp=hypp,
mcmc.params=mp)

model <- posteriorSimulation(model)

Implementation of Bayesian mixture models for copy number estimation 4

The results of a DensityModel call returns an object of class DensityModel. Use the data and a DensityModel for
plotting.
plot(DensityModel(model), y(sim.data),

main="Marginal Model posterior")

Marginal Model posterior

y

D
en

si
ty

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

3.2 BatchModel

In general, the construction and posterior simulation of a BatchModel is similar to that of a MarginalModel. The
BatchModel is hierarchical over the batches, and thus requires information about the batches. Instances of McmcParams
are equivalent between BatchModel and MarginalModel. However, an object of class Hyperparameters is constructed
with a type of “batch”. Additionally, simulated batch data is created using simulateBatchData which requires theta
and sds to be specifed as B × K matrices, for K components and B batches. simulateBatchData also requires a
batch parameter, labelling the batch of each observation. Finally, BatchModels are constructed using the function
BatchModel which operates similarly to MarginalModel but requires a batch parameter, similar to Hyperparameters.
plots of BatchModels include batch specific density estimates.
Create McmcParams for batch model
mp <- McmcParams(iter=2000, burnin=1000, thin=1)

Create Hyperparameters for batch model
hypp <- Hyperparameters(type="batch", k=3)

simulate batch data
k <- 3
nbatch <- 3

Implementation of Bayesian mixture models for copy number estimation 5

means <- matrix(c(-1.2, -1.0, -0.8,
-0.2, 0, 0.2,
0.8, 1, 1.2), nbatch, k, byrow=FALSE)

sds <- matrix(0.1, nbatch, k)
N <- 1500
sim.data <- simulateBatchData(N=N,

batch=rep(letters[1:3], length.out=N),
theta=means,
sds=sds,
p=c(1/5, 1/3, 1-1/3-1/5))

create BatchModel and run posteriorSimulation
model <- BatchModel(data=y(sim.data), k=3,

batch=batch(sim.data),
hypp=hypp,
mcmc.params=mp)

model <- posteriorSimulation(model)
plot(DensityModel(model), y(sim.data),

breaks=100)

Histogram of y

y

D
en

si
ty

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

While aspects of the BatchModel look somewhat Gaussian, there is some evidence of departure from a normal distribution.
Due to this skewness, a MarginalModel would not capture the distribution well. However, the BatchModel does a good
job of capturing the shape.

Implementation of Bayesian mixture models for copy number estimation 6

4 K unknown

Generally, the number of components is not known a priori. To estimate the number of components K, the
marginalLikelihood function is used. It is important to note that a list of models passed to this function must have
converged. For ease of use, one can specify k in the posteriorSimulation to use the same data, Hyperparameters, and
mcmc.params, but with a different number of components.
mp <- McmcParams(iter=2e3, burnin=1e3)
model <- MarginalModel(data=y(sim.data), k=2, mcmc.params=mp)

mlist <- list(posteriorSimulation(model),
posteriorSimulation(model, k=3))

x <- marginalLikelihood(mlist)
x
SB2 SB3
-1502.772 -1255.230

marginalLikelihood uses Chib’s Estimator (Chib 1995) to run a reduced Gibbs to estimate the marginal likelihood of
each component size. Additionally, marginalLikelihood can be used in a similar manner for BatchModels.
Alternative methods for selection of k are also included. As an example, the bic method can be used for calculating the
Bayesian Information Criterion.
simulate k=2 model
sim.data <- simulateData(N=2500, p=rep(1/3, 3),

theta=c(-1, 0, 1),
sds=rep(0.1, 3))

hypp1 <- Hyperparameters(k=2)
m1 <- MarginalModel(data=y(sim.data), k=2,

hypp=hypp1,
mcmc.params=mp)

m1 <- posteriorSimulation(m1)

simulate k=3 model
hypp2 <- Hyperparameters(k=3)
m2 <- MarginalModel(data=y(sim.data), k=3,

hypp=hypp2,
mcmc.params=mp)

m2 <- posteriorSimulation(m2)

bic(m1)
[1] 4231.972
bic(m2)
[1] 1278.851

As the data is simulated from a three component distribution, m2 should be chosen. Using the Bayesian Information
Criterion, the correct model is chosen in this simple example.
Finally, in an overfit model (one with too many components), merging components is supported.
mp <- McmcParams(iter=5000, burnin=1000, thin=1)
model <- MarginalModel(data=y(sim.data), k=4,

hypp=Hyperparameters(k=4),
mcmc.params=mp)

model <- posteriorSimulation(model)
dm <- DensityModel(model)

Implementation of Bayesian mixture models for copy number estimation 7

modes(dm)
[1] -1.0021964940 0.0002769548 1.0027504036
dm_merged <- DensityModel(model, merge=TRUE)
k(dm_merged)
[1] 3

par(mfrow=c(1,2), las=1)
plot(dm, y(sim.data))
plot(dm_merged, y(sim.data))

Histogram of y

y

D
en

si
ty

−1.5 −0.5 0.5 1.5

0.0

0.5

1.0

1.5

Histogram of y

y

D
en

si
ty

−1.5 −0.5 0.5 1.5

0.0

0.5

1.0

1.5

This merging procedure also ensures that there is no underfitting. For example, merging a model with three true
components will yield a model with three components.
model <- MarginalModel(data=y(sim.data), k=3,

hypp=Hyperparameters(k=3),
mcmc.params=mp)

model <- posteriorSimulation(model)
dm <- DensityModel(model)
dm_merged <- DensityModel(model, merge=TRUE)
k(dm)
[1] 3
k(dm_merged)
[1] 3

Implementation of Bayesian mixture models for copy number estimation 8

5 Batch Estimation

Differences in the one-dimensional summaries between groups of samples can arise due to technical sources of variation
referred to as batch effects. For example, date, temperature, machine calibration, and lab technician are all potentially
important technical sources of variation (Leek et al. 2010). Batch effects can vary by locus, with some loci more
susceptible to technical factors that may affect measurement. The 96 well chemistry plate on which the samples were
processed is often a useful surrogate for batch effects since this tends to capture samples that were processed (e.g., PCR
amplification) and scanned at approximately the same time. However, in large studies involving potentially hundreds of
chemistry plates, it is not computationally feasible to fit fully Bayesian plate-specific mixture models. Because chemistry
plates are often processed at similar times and may be comparable in terms of the distribution of a statistic of interest, it
may be more useful (and computationally scalable) to batch the chemistry plates. Here, we implement a simple two-sample
Kolmogorov-Smirnov (KS) test for each pairwise combination of chemistry plates in the function collapseBatch. The
two-sample KS test is applied recursively until no two combinations of grouped plates can be combined. We illustrate
with a trivial example.
k <- 3
nbatch <- 3
means <- matrix(c(-1.2, -1.0, -1.0,

-0.2, 0, 0,
0.8, 1, 1), nbatch, k, byrow=FALSE)

sds <- matrix(0.1, nbatch, k)
N <- 1500
sim.data <- simulateBatchData(N=N,

batch=rep(letters[1:3], length.out=N),
theta=means,
sds=sds,
p=c(1/5, 1/3, 1-1/3-1/5))

plot(sim.data)

Implementation of Bayesian mixture models for copy number estimation 9

Histogram of y

y

D
en

si
ty

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

An object of class 'DensityBatchModel'
batch: list of 3 matrices
component densities: list of 3 vectors
overall density: vector of length 250
modes: -1.02, -0.01, 0.99

model <- BatchModel(data=y(sim.data), k=3,
batch=batch(sim.data))

model <- BatchModel(data=y(sim.data), k=3,
batch=collapseBatch(model))

.

model <- posteriorSimulation(model)
plot(model)

Implementation of Bayesian mixture models for copy number estimation 10

Histogram of y

y

D
en

si
ty

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

An object of class 'DensityBatchModel'
batch: list of 3 matrices
component densities: list of 3 vectors
overall density: vector of length 250
modes: -1.02, -0.01, 0.98

As is shown, the model correctly collapses batches two and three, since they are drawn from the same distribution.

References

Barnes, Chris, Vincent Plagnol, Tomas Fitzgerald, Richard Redon, Jonathan Marchini, David Clayton, and Matthew E
Hurles. 2008. “A Robust Statistical Method for Case-Control Association Testing with Copy Number Variation.” Nat
Genet 40 (10). Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.: 1245–52.
doi:10.1038/ng.206.
Cardin, Niall, Chris Holmes, Peter Donnelly, and Jonathan Marchini. 2011. “Bayesian Hierarchical Mixture Modeling to
Assign Copy Number from a Targeted Cnv Array.” Genet. Epidemiol. doi:10.1002/gepi.20604.
Chib, Siddhartha. 1995. “Marginal Likelihood from the Gibbs Output.” Journal of the American Statistical Association 90
(432): 1313. doi:10.2307/2291521.
Eddelbuettel, Dirk, and Romain François. 2011. “Rcpp: Seamless R and C++ Integration.” Journal of Statistical Software
40 (8): 1–18. http://www.jstatsoft.org/v40/i08/.
Leek, Jeffrey T., Robert B. Scharpf, Héctor Corrada Bravo, David Simcha, Benjamin Langmead, W. Evan Johnson,
Donald Geman, Keith Baggerly, and Rafael A. Irizarry. 2010. “Tackling the Widespread and Critical Impact of Batch
Effects in High-Throughput Data.” Nat Rev Genet 11 (10): 733–39. doi:10.1038/nrg2825.

https://doi.org/10.1038/ng.206
https://doi.org/10.1002/gepi.20604
https://doi.org/10.2307/2291521
http://www.jstatsoft.org/v40/i08/
https://doi.org/10.1038/nrg2825

	1 Introduction
	2 Implementation
	3 Approximating the posterior of a mixture
	3.1 MarginalModel
	3.2 BatchModel

	4 K unknown
	5 Batch Estimation
	References

