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1 MOGSA overview

Modern ”omics” technologies enable quantitative monitoring of the abundance of various biological molecules in a
high-throughput manner, accumulating an unprecedented amount of quantitative information on a genomic scale.
Gene set analysis is a particularly useful method in high throughput data analysis since it can summarize single
gene level information into the biological informative gene set levels. The mogsa provide a method doing gene set
analysis based on multiple omics data that describes the same set of observations/samples.

MOGSA algorithm consists of three steps. In the first step, multiple omics data are integrated using multi-table
multivariate analysis, such as multiple factorial analysis (MFA) [? ]. MFA projects the observations and variables
(genes) from each dataset onto a lower dimensional space, resulting in sample scores (or PCs) and variables
loadings respectively. Next, gene set annotations are projected as additional information onto the same space,
generating a set of scores for each gene set across samples [? ]. In the final step, MOGSA generates a gene set
score (GSS) matrix by reconstructing the sample scores and gene set scores. A high GSS indicates that gene
set and the variables in that gene set have measurement in one or more dataset that explain a large proportion of
the correlated information across data tables. Variables (genes) unique to individual datasets or common among
matrices may contribute to a high GSS. For example, in a gene set, a few genes may have high levels of gene
expression, others may have increased protein levels and a few may have amplifications in copy number.

In this document, we show with an example how to use MOGSA to integrate and annotate multiple omics data.

2 Run mogsa

2.1 Quick start

In this working example, we will analyze the NCI-60 transcriptomic data from 4 different microarray platforms. The
goal is to explore which functions (gene sets) are associated with (high or low expressed) which type of tumor.
First, load the library and data

# loading gene expression data and supplementary data
library(mogsa)
library(gplots) # used for visulizing heatmap
# loading gene expression data and supplementary data
data(NCI60_4array_supdata)
data(NCI60_4arrays)
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NCI60 4arrays is a list of data.frame. The list consists of microarray data for NCI-60 cell lines from different
platforms. In each of the data.frame, columns are the 60 cell lines and rows are genes. The data was downloaded
from [? ], but only a small subset of genes were selected. Therefore, the result in this vignette is not intended for
biological interpretation.

NCI60 4array supdata is a list of matrix, representing gene set annotation data. For each of the microarray
data, there is a corresponding annotation matrix. In the annotation data, the rows are genes (in the same order
as their original dataset) and columns are gene sets. An annotation matrix is a binary matrix, where 1 indicates a
gene is present in a gene set and 0 otherwise. See the ”Preparation of gene set data” section about how to create
the gene set annotation matrices as required by mogsa. To have an overview of the two datasets:

sapply(NCI60_4arrays, dim) # check dimensions of expression data

## agilent hgu133 hgu133p2 hgu95
## [1,] 300 298 268 288
## [2,] 60 60 60 60

sapply(NCI60_4array_supdata, dim) # check dimensions of supplementary data

## agilent hgu133 hgu133p2 hgu95
## [1,] 300 298 268 288
## [2,] 150 150 150 150

# check if the gene expression data and annotation data are mathced in the same order
identical(names(NCI60_4arrays), names(NCI60_4array_supdata))

## [1] TRUE

head(rownames(NCI60_4arrays$agilent)) # the type of gene IDs

## [1] "ST8SIA1" "YWHAQ" "EPHA4" "GTPBP5" "PVR" "ATP6V1H"

Also, we need to confirm the columns between the expression data and annotation data are mapped in the same
order. To verify this, we do
dataColNames <- lapply(NCI60_4arrays, colnames)
supColNames <- lapply(NCI60_4arrays, colnames)
identical(dataColNames, supColNames)

## [1] TRUE

Before applying MOGSA, we first define a factor describing the tissue of origin of cell lines and color code, which
will be used later.

# define cancer type
cancerType <- as.factor(substr(colnames(NCI60_4arrays$agilent), 1, 2))
# define color code to distinguish cancer types
colcode <- cancerType
levels(colcode) <- c("black", "red", "green", "blue",

"cyan", "brown", "pink", "gray", "orange")
colcode <- as.character(colcode)

Then, we call the function mogsa to run MOGSA:
mgsa1 <- mogsa(x = NCI60_4arrays, sup=NCI60_4array_supdata, nf=3,

proc.row = "center_ssq1", w.data = "inertia", statis = TRUE)

In this function, the input argument proc.row stands for the preprocessing of rows and argument w.data indi-
cates the weight of datasets. The last argument statis is about which multiple table analysis method should be
used. Two multivariate methods are available at present, one is ”STATIS” (statis=TRUE) [? ], the other one is
multiple factorial analysis (MFA; statis=FALSE, the default setting) [? ].

http://bioconductor.org/packages/mogsa
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Figure 1: The variance of each principal components (PC), the contributions of different data are distinguished by
different colors

In this analysis, we arbitrarily selected top three PCs (nf=3). But in practice, the number of PCs need to be
determined before running the MOGSA. Therefore, it is also possible to run the multivariate analysis and projecting
annotation data separately. After running the multivariate analysis, a scree plot of eigenvalues for each PC could
be used to determine the proper number of PCs to be included in the annotation projection step (See the ”Perform
MOGSA in two steps” section).

2.2 Result analysis and interpretation

The function mogsa returns an object of class mgsa. This information could be extracted with function getmgsa.
First, we want to know the variance explained by each PC on different datasets (figure 1).

eigs <- getmgsa(mgsa1, "partial.eig") # get partial "eigenvalue" for separate data
barplot(as.matrix(eigs), legend.text = rownames(eigs))

The main result returned by mogsa is the gene set score (GSS) matrix. The value in the matrix indicates the overall
active level of a gene set in a sample. The matrix could be extracted and visualized by

# get the score matrix
scores <- getmgsa(mgsa1, "score")
heatmap.2(scores, trace = "n", scale = "r", Colv = NULL, dendrogram = "row",

margins = c(6, 10), ColSideColors=colcode)

Figure 2 shows the gene set score matrix returned by mogsa. The rows of the matrix are all the gene sets used
to annotate the data. But we are mostly interested in the gene sets with large number of significant gene sets,
because these gene sets describe the difference across cell lines. The corresponding p-value for each gene set
score could be extracted by getmgsa. Then, the most significant gene sets could be defined as gene sets that
contain highest number of significantly p-values. For example, if we want to select the top 20 most significant gene

http://bioconductor.org/packages/mogsa
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Figure 2: heatmap showing the gene set score (GSS) matrix

sets and plot them in heatmap, we do:

p.mat <- getmgsa(mgsa1, "p.val") # get p value matrix
# select gene sets with most signficant GSS scores.
top.gs <- sort(rowSums(p.mat < 0.01), decreasing = TRUE)[1:20]
top.gs.name <- names(top.gs)
top.gs.name

## [1] "PASINI_SUZ12_TARGETS_DN"
## [2] "CHARAFE_BREAST_CANCER_LUMINAL_VS_BASAL_DN"
## [3] "CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_DN"
## [4] "KOINUMA_TARGETS_OF_SMAD2_OR_SMAD3"
## [5] "DUTERTRE_ESTRADIOL_RESPONSE_24HR_DN"
## [6] "REN_ALVEOLAR_RHABDOMYOSARCOMA_DN"
## [7] "LIM_MAMMARY_STEM_CELL_UP"
## [8] "LIU_PROSTATE_CANCER_DN"
## [9] "CHICAS_RB1_TARGETS_CONFLUENT"
## [10] "NUYTTEN_EZH2_TARGETS_UP"
## [11] "DACOSTA_UV_RESPONSE_VIA_ERCC3_DN"
## [12] "PUJANA_ATM_PCC_NETWORK"
## [13] "KRIGE_RESPONSE_TO_TOSEDOSTAT_24HR_DN"
## [14] "WONG_ADULT_TISSUE_STEM_MODULE"
## [15] "KRIEG_HYPOXIA_NOT_VIA_KDM3A"
## [16] "MULTICELLULAR_ORGANISMAL_DEVELOPMENT"
## [17] "ANATOMICAL_STRUCTURE_DEVELOPMENT"
## [18] "FORTSCHEGGER_PHF8_TARGETS_DN"
## [19] "ZWANG_CLASS_1_TRANSIENTLY_INDUCED_BY_EGF"
## [20] "PLASMA_MEMBRANE_PART"

http://bioconductor.org/packages/mogsa
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Figure 3: heatmap showing the gene set score (GSS) matrix for top 20 significant gene sets

heatmap.2(scores[top.gs.name, ], trace = "n", scale = "r", Colv = NULL, dendrogram = "row",
margins = c(6, 10), ColSideColors=colcode)

The result is shown in figure 3. We can see that these gene sets reflect the difference between leukemia and other
tumors.

So far, we already had an integrative overview of gene sets active levels over the 60 cell lines. It is also interesting
to look into more detailed information for a specific gene set. For example, which dataset(s) contribute most to the
high or low gene set score of a gene set? And which genes are most important in defining the gene set score for a
gene set? The former question could be answered by the gene set score decomposition; the later question could
be solve by the gene influential score. These analysis can be done with decompose.gs.group and GIS.

In the first example, we explore the gene set that have most significant gene set scores. The gene set is

# gene set score decomposition
# we explore two gene sets, the first one
gs1 <- top.gs.name[1] # select the most significant gene set
gs1

## [1] "PASINI_SUZ12_TARGETS_DN"

The data-wise decomposition of this gene set over cancer types is
# decompose the gene set score over datasets
decompose.gs.group(mgsa1, gs1, group = cancerType)

Figure 4 shows leukemia cell lines have lowest GSS on this gene set. The contribution to the overall gene set score
by each dataset are separated in this plot. In general, there is a good concordance between different datasets.
But HGU133 platform contribute most and Agilent platform contributed least comparing with other datasets, repre-
sented as the longest or shortest bars.

http://bioconductor.org/packages/mogsa
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Figure 4: gene set score (GSS) decomposition. The GSS decomposition are grouped according to the tissue of
origin of cell lines. The vertical bar showing the 95% of confidence interval of the means.

Next, in order to know the most influential genes in this gene set. We call the function GIS:

gis1 <- GIS(mgsa1, gs1, barcol = gray.colors(4)) # gene influential score

head(gis1) # print top 6 influencers

## feature GIS data
## 1 LIMD2 1.007091 hgu133
## 2 ZNF266 1.006706 hgu133
## 3 LIMD2 1.006476 hgu95
## 4 GNG2 1.006327 agilent
## 5 SP5 1.006035 hgu95
## 6 SP5 1.005954 hgu133

In figure 5, the bars represent the gene influential scores for genes. Genes from different platforms are shown in
different colors. The expression of genes with high positive GIS more likely to have a good positive correlation with
the gene set score. In this example, the most important genes in the gene set ”PASIN SUZ12 TARGETS DN” are
TNFRSF12A (identified in two different platforms), CD151, ITGB1, etc.

In the next example, we use the same methods to explore the ”PUJANA ATM PCC NETWORK” gene set.

# the section gene set
gs2 <- "PUJANA_ATM_PCC_NETWORK"
decompose.gs.group(mgsa1, gs2, group = cancerType, x.legend = "topright")

gis2 <- GIS(mgsa1, "PUJANA_ATM_PCC_NETWORK", topN = 6, barcol = gray.colors(4))

gis2

## feature GIS data

http://bioconductor.org/packages/mogsa
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Figure 5: The gene influential score (GIS) plot. the GIS are represented as bars and the original data where the
gene is from is distingished by different colors.
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Figure 6: Data-wise decomposed GSS for gene set ’PUJANA ATM PCC NETWORK’

http://bioconductor.org/packages/mogsa


mogsa: gene set analysis on multiple omics data 8

0.0 0.2 0.4 0.6 0.8 1.0

agilent
hgu133
hgu133p2
hgu95

Figure 7: GIS plot for gene set ’PUJANA ATM PCC NETWORK’

## 1 PCBP4 1.007281 agilent
## 2 LIF 1.006737 hgu133
## 3 DKK3 1.006393 hgu133p2
## 4 ROBO1 1.006231 hgu95
## 5 GPD2 1.006213 hgu133
## 6 KCNMA1 1.006116 hgu133p2

Figure 6 shows that the the leukemia cell lines have highest GSSs for this gene set. And the HGU133 and HGU95
platform have relative high contribution to the overall gene set score. The GIS analysis (figure 7) indicates the
PIK4CG and GMFG are the most important genes in this gene set.

2.3 Plot gene sets in projected space

We can also see how the gene set are presented in the lower dimension space. Here we show the projection of
gene set annotations on first two dimensions. Then, the label the two gene sets we analyzed before.

fs <- getmgsa(mgsa1, "fac.scr") # extract the factor scores for cell lines (cell line space)
layout(matrix(1:2, 1, 2))
plot(fs[, 1:2], pch=20, col=colcode, axes = FALSE)
abline(v=0, h=0)
legend("topright", col=unique(colcode), pch=20, legend=unique(cancerType), bty = "n")
plotGS(mgsa1, label.cex = 0.8, center.only = TRUE, topN = 0, label = c(gs1, gs2))

http://bioconductor.org/packages/mogsa
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Figure 8: cell line and gene sets projected on the PC1 and PC2

2.4 Perform MOGSA in two steps

mogsa perform MOGSA in one step. But in practice, one need to determine how many PCs should be retained in
the step of reconstructing gene set score matrix. A scree plot of the eigenvalues, which result from the multivariate
analysis, could be used for this purpose. Therefore, we can perform the multivariate data analysis and gene set
annotation projection in two steps. To do the multivariate analysis, we call the moa:

# perform multivariate analysis
ana <- moa(NCI60_4arrays, proc.row = "center_ssq1", w.data = "inertia", statis = TRUE)
slot(ana, "partial.eig")[, 1:6] # extract the eigenvalue

## PC1 PC2 PC3 PC4 PC5 PC6
## agilent 0.0005406833 0.0004119778 0.0002410063 0.0004038087 0.0001317894 0.0001783712
## hgu133 0.0007410830 0.0005850680 0.0003507538 0.0001448788 0.0001685482 0.0001042850
## hgu133p2 0.0007716595 0.0005146566 0.0003742008 0.0001281515 0.0001487516 0.0001203610
## hgu95 0.0008042677 0.0006210049 0.0003942394 0.0001506287 0.0001752495 0.0001102364

# show the eigenvalues in scree plot:
layout(matrix(1:2, 1, 2))
plot(ana, value="eig", type = 2, n=20, main="variance of PCs") # use '?"moa-class"' to check the help manu
plot(ana, value="tau", type = 2, n=20, main="Scaled variance of PCs")

The multivariate analysis (moa) returns an object of class moa-class. The scree plot shows the top 3 PC is the
most significant since they explain much more variance than others. Several other methods, such as the informal
”elbow test” or more formal test could be used to determine the number of retained PCs [? ]. In order to be
consistent with previous example, we use top 3 PCs in the analysis:
mgsa2 <- mogsa(x = ana, sup=NCI60_4array_supdata, nf=3)

## x is an object of "moa", statis is not used

identical(mgsa1, mgsa2) # check if the two methods give the same results

## [1] FALSE
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Figure 9: cell line and gene sets projected on the PC1 and PC2

3 Preparation of gene set data

Package GSEABase provides several methods to create a gene set list [? ]. In mogsa there are two meth-
ods to create gene set list. The first one is generating gene set list from package graphite [? ] using function
prepGraphite.

library(graphite)
keggdb <- prepGraphite(db = pathways("hsapiens", "kegg")[1:50], id = "symbol")

## converting identifiers!
## converting identifiers done!

keggdb[1:2]

## $`Acute myeloid leukemia`
## [1] "AKT3" "CHUK" "AKT1" "AKT2" "FLT3" "PIK3R5" "MTOR"
## [8] "GRB2" "HRAS" "IKBKB" "ARAF" "JUP" "KIT" "KRAS"
## [15] "NRAS" "PIK3CA" "PIK3CB" "PIK3CD" "PIK3CG" "PIK3R1" "PIK3R2"
## [22] "PML" "MAP2K1" "MAP2K2" "RAF1" "RARA" "SOS1" "SOS2"
## [29] "BRAF" "STAT3" "STAT5A" "STAT5B" "ZBTB16" "PIK3R3" "IKBKG"
## [36] "RUNX1" "RUNX1T1" "BAD" "NFKB1" "RELA" "CEBPA" "SPI1"
## [43] "EIF4EBP1" "RPS6KB1" "RPS6KB2" "MYC" "LEF1" "PPARD" "CCND1"
## [50] "TCF7" "TCF7L2" "TCF7L1" "CCNA1" "MAPK1" "MAPK3" "PIM2"
## [57] "PIM1"
##
## $`Adherens junction`
## [1] "WASF2" "BAIAP2" "SORBS1" "WASF3" "SSX2IP" "CSNK2A1" "CSNK2A2" "CSNK2B"
## [9] "CTNNA1" "CTNNA2" "CTNND1" "EGFR" "ERBB2" "FER" "FGFR1" "FYN"
## [17] "NECTIN3" "CSNK2A3" "CTNNA3" "IGF1R" "RHOA" "LMO7" "SMAD2" "SMAD3"

http://bioconductor.org/packages/mogsa
http://bioconductor.org/packages/GSEABase
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## [25] "MET" "AFDN" "LEF1" "ACP1" "MAPK1" "MAPK3" "PTPN1" "PTPN6"
## [33] "PTPRB" "PTPRF" "PTPRJ" "PTPRM" "NECTIN1" "NECTIN2" "RAC1" "RAC2"
## [41] "RAC3" "ACTB" "SRC" "MAP3K7" "TCF7" "TCF7L2" "TGFBR1" "TGFBR2"
## [49] "ACTG1" "VCL" "WAS" "YES1" "ACTN4" "NECTIN4" "TCF7L1" "ACTN1"
## [57] "ACTN2" "IQGAP1" "ACTN3" "WASF1" "WASL" "FARP2" "CDC42" "CDH1"
## [65] "CTNNB1" "TJP1" "SNAI1" "PARD3" "SMAD4" "SNAI2" "NLK"

The second method is to create a gene set list from ”gmt” files, which could be downloaded from MSigDB [? ] after
obtaining a proper license. In our working example, we will work on a toy example from this database containing
only three datasets.

dir <- system.file(package = "mogsa")
preGS <- prepMsigDB(file=paste(dir, "/extdata/example_msigdb_data.gmt.gz", sep = ""))

In order to use the gene set information in mogsa, we have to convert the list of gene sets to a list of annotation
matrix. This can be done with prepSupMoa. This function requires two obligatory inputs, first is the multiple
omics datasets and the second input could be a gene set list, GeneSet or GeneSetCollection. The output of
prepSupMoa could be directly passed into the mogsa.
# the prepare
sup_data1 <- prepSupMoa(NCI60_4arrays, geneSets=keggdb)
mgsa3 <- mogsa(x = NCI60_4arrays, sup=sup_data1, nf=3,

proc.row = "center_ssq1", w.data = "inertia", statis = TRUE)

4 Session info

toLatex(sessionInfo())

• R version 3.3.1 (2016-06-21), x86_64-apple-darwin13.4.0
• Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
• Base packages: base, datasets, grDevices, graphics, methods, stats, utils
• Other packages: knitr 1.14, mogsa 1.8.0
• Loaded via a namespace (and not attached): AnnotationDbi 1.36.0, Biobase 2.34.0, BiocGenerics 0.20.0,

BiocStyle 2.2.0, DBI 0.5-1, GSEABase 1.36.0, IRanges 2.8.0, KernSmooth 2.23-15, Matrix 1.2-7.1,
RCurl 1.95-4.8, RSQLite 1.0.0, S4Vectors 0.12.0, XML 3.98-1.4, annotate 1.52.0, bitops 1.0-6,
caTools 1.17.1, cluster 2.0.5, codetools 0.2-15, corpcor 1.6.8, digest 0.6.10, evaluate 0.10, formatR 1.4,
gdata 2.17.0, genefilter 1.56.0, gplots 3.0.1, graph 1.52.0, graphite 1.20.0, grid 3.3.1, gtools 3.5.0, highr 0.6,
lattice 0.20-34, magrittr 1.5, parallel 3.3.1, rappdirs 0.3.1, splines 3.3.1, stats4 3.3.1, stringi 1.1.2,
stringr 1.1.0, survival 2.39-5, svd 0.4, tools 3.3.1, xtable 1.8-2
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