
metaArray package for meta-analysis of microarray data

Debashis Ghosh and Hyungwon Choi

October 17, 2016

Introduction

metaArray is a collection of functions for large-scale meta-analysis of microarray data. The
implementation embodies the latent variable model approach described in ?. The package
is an ensemble of statistical tools from several research papers: 1) probability of expression
(POE) with two estimation methods (??), 2) integrative correlation (?), 3) posterior mean
differential expression (z-statistic) (?).

As the use of this package is for meta-analysis of microarray data, this documentation
will demonstrate the features of the pacakge with an example of meta-analysis in cancer
microarray data, the comparison of expression profiles in metastatic tumors and primary
tumors. We gathered three microarray data from public databases, and the reference of the
four related publications can be found in the bibliography.

The synopsis of the analysis is straightforward: we transform each data into the scale of
[−1, 1] by POE, filter genes based on integrative correlation, merge them into a single data,
and perform final downstream analysis.

Data preparation and POE transformation

The object mdata in metaArray contains the four datasets mentioned above. The main goal
of this analysis is to construct a signature of genes that distinguishes metastatic tumors from
primary tumors with no future development into other types of cancers.

The data included in the package went through some refinement. First of all, all three
datasets have been transformed to POE scale using MCMC method. For we selected only
the genes that appear in all three datasets, mdata contains 500 common and unique Unigene
Cluster IDs. In realistic situation, this is hardly the case, thus here we assume the four data
have non-overlapping genes. The package MergeMaid is particularly useful for merging such
datasets with partially overlapping gene sets, or it can be done manually with a few more
lines of command as shown below.

In the following, let us first find the common genes and reorder genes in the order of
appearance in the common geneset, transform each data to POE and store them into a
single object of class mergeExprs. It takes 15 minutes on average to transform each of the

1

three datasets (500 genes) to POE scale using MCMC on 32-bit dual-processor Xeon (Intel
x86) box.

> library(metaArray)

> library(Biobase)

> library(MergeMaid)

> data(mdata)

> common <- intersect(rownames(chen.poe),rownames(garber.poe))

> common <- intersect(common, rownames(lapointe.poe))

> chen.poe <- chen.poe[match(common, rownames(chen.poe)),]

> garber.poe <- garber.poe[match(common, rownames(garber.poe)),]

> lapointe.poe <- lapointe.poe[match(common, rownames(lapointe.poe)),]

> vars <- list("var1","var2")

> names(vars) <- names(chen.spl)

> pdata1 <- new("AnnotatedDataFrame")

> pData(pdata1) <- chen.spl

> varLabels(pdata1) <- vars

> sample1 <- new("ExpressionSet", exprs=chen.poe, phenoData = pdata1)

> names(vars) <- names(garber.spl)

> pdata2 <- new("AnnotatedDataFrame")

> pData(pdata2) <- garber.spl

> varLabels(pdata2) <- vars

> sample2 <- new("ExpressionSet", exprs=garber.poe, phenoData = pdata2)

> names(vars) <- names(lapointe.spl)

> pdata3 <- new("AnnotatedDataFrame")

> pData(pdata3) <- lapointe.spl

> varLabels(pdata3) <- vars

> sample3 <- new("ExpressionSet", exprs=lapointe.poe, phenoData = pdata3)

> merged <- mergeExprs(sample1,sample2,sample3)

Now the object merged contains four expression data with corresponding phenotype data.
If phenotypic label is either unknown or not of interest, one can skip specifying NN in the
poe.mcmc function. The POE transformation using MCMC algorithm runs fairly long time,
thus if fast computing is of concern, you may wish to use poe.em function instead of poe.mcmc
function. We will further elaborate on the usage of the two functions shortly. If you prefer
application of MCMC, we strongly encourage you to run this in batch mode (Linux/Unix).
An example syntax is

genome> R −−no-save < myscript.R &

where myscript.R file contains the portion of the R code for POE transformation with
save.image function attached at the end or inserted intermittently for safety.

2

Gene Filter and Downstream Analysis

The integrative correlation analysis (?) is a convenient tool to monitor the interstudy con-
cordance of within-study correlations of gene expression. The gene-specific reproducibility
score takes the correlation between each gene and all other genes within individual study
and calculate the average correlation of these correlations across all pairs of studies.

> merged.cor <- intcor(merged)$avg.cor

> mData <- exprs(intersection(merged)); mCl <- NULL

> mData <- mData[merged.cor > median(merged.cor),]

> for(i in 1:length(merged)) {

+ mCl <- c(mCl, pData(merged[i])$metastasis)

+ }

The function intcor is a modified version of intCor in MergeMaid . The original function
efficiently calculates gene specific reproducibility scores by calculating correlation matrix only
once so that it does not calculate correlation between two genes redundantly many times.
When there exists a large common geneset among studies, R cannot allocate enough storage
to the correlation matrix if it is of dimension higher than certain limit. Thus a brute-force
computation of within-study correlation is inevitable for a large dataset, roughly around
2,000 common genes or more. The modified function intcor does this job without running
into memory allocation problem regardless of size of common geneset.

The above script hence calculates the gene specific reproducibility scores and filters the
genes with higher score. The function intersection from MergeMaid merges all four data
into a single data.frame object mdata. The class labels, the indicator of metastasis in our
example, can also be saved into a single numeric vector as illustrated in the code above.

Once the final data is formed, it is at the user’s discretion to determine what downstream
analysis is to be done. For instance, a simple two-sample t-statistic can be calculated easily
(multtest). The risk-index approach in ? is another option, and the R script for this method
can be found in http://www.umich.edu/~hwchoi/metaArray.html

Estimation of POE: MCMC versus EM

The detailed account of estimation with Gibbs sampling can be found in ? and ?. The
estimation with EM algorithm is also explained in the latter.

The POE with Gibbs sampling was initially implemented in Bioconductor package POE .
Despite its novel structure, the functions poe.fit and poe.one.iteration in POE were
written purely in R, and thus the order of computation for MCMC with large number of
parameters becomes unmanageable quickly as the size of dataset grows. Under such context,
we rewrote the poe.one.iteration in C language to boost the speed of posterior sampling,
while directly importing the main skeleton of poe.fit function without modification. Hence
all credits for the implementation remain to the authors of POE package, and the users
interested in the function poe.mcmc should be referred to the vignette included in POE .

3

http://www.umich.edu/~hwchoi/metaArray.html

Meanwhile, the poe.em is a new function. This function is faster than poe.mcmc, but has
the defect that it fits the probability model for each gene separately. One of the novel features
of MCMC method is that the estimation for every single gene borrows information across all
genes through posterior sampling of sample specific means and other hyperparameters.

Another feature of the method using EM algorithm is that one can graphically inspect
the fit for individual genes. See Figure 1 for an example. The upper left panel shows the
fitted POE values plotted against the raw expression. The upper right panel shows the fitted
mixture distribution for that gene. The lower left panel is the histogram of raw expression,
and finally the lower right panel shows the trajectory of likelihood during the course of
estimation.

> em.draw(as.numeric(chen[1,]), cl=ncol(chen))

−1.5 −0.5 0.0 0.5

−
1.

0
0.

0
0.

5
1.

0

estimated poe

raw expression

pr
ob

ab
ili

ty

−1.5 −0.5 0.0 0.5

0.
0

0.
4

0.
8

1.
2

mixture density

expression

de
ns

ity

raw expression

raw

F
re

qu
en

cy

−2.0 −1.0 0.0 1.0

0
2

4
6

8
10

0 5 10 15 20

−
32

.9
0

−
32

.7
5

log likelihood

iteration

lik
el

ih
oo

d

The computation burden is much lighter for EM algorithm than MCMC. Run time is conse-
quently shorter. Only a few minutes or less is required for very large datasets, for instance,
ten thousand genes and one hundred samples.

4

Posterior Mean Differential Expression

The last tool in this package is an implementation of the method illustrated in ?. The
main idea is that one can use data from one study to construct a prior distribution of
differential expression and thus utilize the posterior mean differential expression, weighted
by variances, whose distribution is standard normal distribution due to classic Bayesian
probability calculation. To apply this method,

> z.stat <- Zscore(merged)

where merged is a mergeExprSet object created the same way earlier, but without the POE
transformation. The resulting vector of z-scores may be compared to other downstream
analysis based on POE transformation. If one wishes to generate permutation distribution
to determine significance of the observed statistic, replacing permute=0 with permute=10000

will generate permutation distribution of z-statistic by permuting class labels within all
studies 10,000 times..

Discussion

We have implemented an ensemble of statistical techniques that assist certain aspects of
meta-analysis of microarray data. The main thrust of this package is the set of two estimation
methods for the data transformation into probability of expression (POE).

There are other methods and software packages that implement meta-analytic methods
from other research papers. For example, a model based effect-size approach from ? was em-
bodied in Bioconductor package GeneMeta by ?. We recommend users to compare sensitivity
of the analyses by using a variety of approaches as they become available.

The strengths of our implementation are the following. 1) it allows us to combine multiple
data with denoising effect and enables us to apply final downstream analysis of any sort with
ease, 2) scale-free expression enhances sensitivity of differential expression when the overall
variation of expression is relatively ignorable on its raw scale.

References

Choi H, Shen R, Chinnaiyan A, Ghosh D. Latent variable modelling for combining genomic
data from multiple studies Unpublished manuscript (2005).

Lusa L, Gentleman R, Ruschhaupt M. GeneMeta A collection of meta-analysis tools for
analysing high throughput experimental data A bioconductor package

Choi J.K, Yu U, Kim S, Yoo O.J. Combining multiple microarray studies and modeling
interstudy variation Bioinformatics 19:84–90 (2003).

Parmigiani G, Garrett E.S, Anbazhagan R., Gabrielson E. A statistical framework for
expression-based molecular classification in cancer. JRSS B 64, 717 – 736 (2002).

5

Parmigiani G, Garrett-Mayer E.S, Anbazhagan R, Gabrielson E. A cross-study comparison
of gene expression studies for the molecular classification of lung cancer. Clinical Cancer
Research 10: 2922–2927 (2004).

Wang J, Coombes K.R, Highsmith W.E, Keating M.J, Abruzzo L.V. Differences in gene
expression between B-cell chronic lymphocytic leukemia and normal B cells: a meta-
analysis of three micorarray studies. Bioinformatics 20(17): 3166–3178 (2004).

Chen X et al. Gene expression patterns in human liver cancers. Mol. Biol. Cell 13(6):
1929–1939

Garber M et al. Diversity of gene expression in adenocarcinoma of the lung PNAS 98(24):
13784–13789

Lapointe J et al. Gene expression profiling identifies clinically relevant subtypes of prostate
cancer PNAS 101(3): 811–816

6

