
CCREPE: Compositionality Corrected by PErmutation and

REnormalization

Emma Schwager, George Weingart, Craig Bielski, Curtis Huttenhower

October 17, 2016

Contents

1 Introduction

ccrepe is a package for analysis of sparse compositional data. Specifically, it determines the significance of association
between features in a composition, using any similarity measure (e.g. Pearson correlation, Spearman correlation, etc.) The
CCREPE methodology stands for Compositionality Corrected by Renormalization and Permutation, as detailed below.
The package also provides a novel similarity measure, the N-dimensional checkerboard score (NC-score), particularly
appropriate to compositions derived from microbial community sequencing data. This results in p-values and false
discovery rate q-values corrected for the effects of compositionality. The package contains two functions ccrepe and
nc.score and is maintained by the Huttenhower lab (ccrepe-users@googlegroups.com).

2 ccrepe

ccrepe is the main package function. It calculates compositionality-corrected p-values and q-values for a user-selected
similarity measure, operating on either one or two input matrices. If given one matrix, all features (columns) in the
matrix are compared to each other using the selected similarity measure. If given two matrices, each feature in the first
are compared against all features in the second.

2.1 General functionality

Compositional data induces spurious correlations between features due to the nonindependence of values that must sum
to a fixed total. CCREPE abrogates this when determining the significance of a similarity measure for each feature pair
using two main steps, permutation/renormalization and bootstrapping. First, given two features to compare, CCREPE
generates a null distribution of the similarity expected just due to compositionality by iteratively permuting one feature,
renormalizing all samples in the composition to their previous sum, and computing the resulting similarity measures.
Second, CCREPE bootstraps over sample subsets in order to assess confidence in the ”true” similarity measure. Finally,
the two resulting distributions are compared using a pooled-variance Z-test to give a compositionality-corrected p-value.
False discovery rate q-values are additionally calculated using the Benjamin-Hochberg-Yekutieli procedure. For greater
detail, see ? and ?.

CCREPE employs several filtering steps before the data are processed. It removes any missing subjects using na.omit:
in the two dataset case, any subjects missing in either dataset will be removed. Any subjects or features which are all
zero are removed as well: an all-zero subject cannot be normalized (its sum is 0) and an all-zero feature has standard
deviation 0 (in addition to being uninteresting biologically).

1

http://bioconductor.org/packages/ccrepe
mailto:ccrepe-users@googlegroups.com

CCREPE: Compositionality Corrected by PErmutation and REnormalization 2

2.2 Arguments

x First dataframe or matrix containing relative abundances. Columns are features, rows are samples. Rows should
therefore sum to a constant. Row names are used for identification if present.

y Second dataframe or matrix (optional) containing relative abundances. Columns are features, rows are samples. Rows
should therefore sum to a constant. If both x and y are specified, they will be merged by row names. If no row
names are specified for either or both datasets, the default is to merge by row number.

sim.score Similarity measure, such as cor or nc.score. This can be either an existing R function or user-defined.
If the latter, certain properties should be satisfied as detailed below (also see examples). The default similarity
measure is Spearman correlation.
A user-defined similarity measure should mimic the interface of cor:

1. Take either two vector inputs one matrix or dataframe input.
2. In the case of two inputs, return a single number.
3. In the case of one input, return a matrix in which the (i,j)th entry is the similarity score for column i and

column j in the original matrix.
4. The resulting matrix (in the case of one input) must be symmetric.
5. The inputs must be named x and y.

sim.score.args An optional list of arguments for the measurement function. When given, they are passed to the
sim.score function directly. For example, in the case of cor, the following would be acceptable:

sim.score.args = list(method="spearman", use="complete.obs")

min.subj Minimum number (count) of samples that must be non-missing in order to apply the similarity measure. This
is to ensure that there are sufficient samples to perform a bootstrap (default: 20).

iterations The number of iterations for both bootstrap and permutation calculations (default: 1000).

subset.cols.x A vector of column indices from x to indicate which features to compare

subset.cols.y A vector of column indices from y to indicate which features to compare

errthresh If feature has number of zeros greater than errthresh1/n , that feature is excluded

verbose If TRUE, print periodic progress of the algorithm through the dataset(s), as well as including more detailed
debugging output. (default: FALSE).

iterations.gap If verbose=TRUE, the number of iterations between issuing status messages (default: 100).

distributions Optional output file for detailed log (if given) of all intermediate permutation and renormalization
distributions.

compare.within.x A boolean value indicating whether to do comparisons given by taking all subsets of size 2 from
subset.cols.x or to do comparisons given by taking all possible combinations of subset.cols.x and subset.cols.y.
If TRUE but subset.cols.y=NA, returns all comparisons involving any features in subset.cols.x. This argument
is only used when y=NA.

concurrent.output Optional output file to which each comparison will be written as it is calculated.

make.output.table A boolean value indicating whether to include table-formatted output.

2.3 Output

ccrepe returns a list containing both the calculation results and the parameters used:

CCREPE: Compositionality Corrected by PErmutation and REnormalization 3

sim.score matrix of simliarity scores for all requested comparisons. The (i,j)th element corresponds to the similarity
score of column i (or the ith column of subset.cols.1) and column j (or the jth column of subset.cols.1)
in one dataset, or to the similarity score of column i (or the ith column of subset.cols.1) in dataset x and
column j (or the jth column of subset.cols.2) in dataset y in the case of two datasets.

p.values matrix of the corrected p-values for all requested comparisons. The (i,j)th element corresponds to the p-value
of the (i,j)th element of sim.score.

q.values matrix of the Benjamini-Hochberg-Yekutieli corrected p-values. The (i,j)th element corresponds to the
p-value of the (i,j)th element of sim.score.

z.stat matrix of the z-statistics used in generating the p-values for all requested comparisons. The (i,j)th element
corresponds to the z-statistic generating the (i,j)th element of p.values.

2.4 Usage

ccrepe(

x = NA,

y = NA,

sim.score = cor,

sim.score.args = list(),

min.subj = 20,

iterations = 1000,

subset.cols.x = NULL,

subset.cols.y = NULL,

errthresh = 1e-04,

verbose = FALSE,

iterations.gap = 100,

distributions = NA,

compare.within.x = TRUE,

concurrent.output = NA,

make.output.table = FALSE)

2.5 Example 1

An example of how to use ccrepe with one dataset.

data <- matrix(rlnorm(40,meanlog=0,sdlog=1),nrow=10,ncol=4)

data[,1] = 2*data[,2] + rnorm(10,0,0.01)

data.rowsum <- apply(data,1,sum)

data.norm <- data/data.rowsum

apply(data.norm,1,sum) # The rows sum to 1, so the data are normalized

[1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

dimnames(test.input) <- list(c(

"Sample 1", "Sample 2","Sample 3","Sample 4","Sample 5",

"Sample 6","Sample 7","Sample 8","Sample 9","Sample 10"),

c("Feature 1", "Feature 2", "Feature 3","Feature 4"))

test.output <- ccrepe(x=test.input, iterations=20, min.subj=10)

CCREPE: Compositionality Corrected by PErmutation and REnormalization 4

par(mfrow=c(1,2))

plot(data[,1],data[,2],xlab="Feature 1",ylab="Feature 2",main="Non-normalized")

plot(data.norm[,1],data.norm[,2],xlab="Feature 1",ylab="Feature 2",

main="Normalized")

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6

0.
5

1.
5

2.
5

Non−normalized

Feature 1

F
ea

tu
re

 2

●

●

●

●●

●●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6
0.

05
0.

15
0.

25

Normalized

Feature 1

F
ea

tu
re

 2

Figure 1: Non-normalized and normalized associations between feature 1 and feature 2. In this case we would expect
feature 1 and feature 2 to be associated. In the output we see this by the positive sim.score value in the [1,2] element
of test.output$sim.score and the small q-value in the [1,2] element of test.output$q.values.

test.output

$p.values

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA 0.0003122595 0.06179406 0.16950791

Feature 2 0.0003122595 NA 0.02286776 0.02502931

Feature 3 0.0617940590 0.0228677573 NA 0.04319582

Feature 4 0.1695079118 0.0250293069 0.04319582 NA

##

$z.stat

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA 3.604911 -1.867771 -1.373787

Feature 2 3.604911 NA -2.275637 -2.240950

Feature 3 -1.867771 -2.275637 NA 2.021812

Feature 4 -1.373787 -2.240950 2.021812 NA

##

$sim.score

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA 0.9998430 -0.6750034 -0.7898646

Feature 2 0.9998430 NA -0.6729488 -0.7914979

Feature 3 -0.6750034 -0.6729488 NA 0.0807105

Feature 4 -0.7898646 -0.7914979 0.0807105 NA

##

CCREPE: Compositionality Corrected by PErmutation and REnormalization 5

$q.values

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA 0.00443841 0.1756663 0.4015600

Feature 2 0.00443841 NA 0.1625194 0.1185876

Feature 3 0.17566631 0.16251945 NA 0.1534947

Feature 4 0.40156003 0.11858761 0.1534947 NA

2.6 Example 2

An example of how to use ccrepe with two datasets.

data <- matrix(rlnorm(40,meanlog=0,sdlog=1),nrow=10,ncol=4)

data[,1] = 2*data[,2] + rnorm(10,0,0.01)

data.rowsum <- apply(data,1,sum)

data.norm <- data/data.rowsum

apply(data.norm,1,sum) # The rows sum to 1, so the data are normalized

[1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

data2 <- matrix(rlnorm(105,meanlog=0,sdlog=1),nrow=15,ncol=7)

aligned.rows <- c(seq(1,4),seq(6,9),11,12) # The datasets dont need

to have subjects line up exactly

data2[aligned.rows,1] <- 2*data[,3] + rnorm(10,0,0.01)

data2.rowsum <- apply(data2,1,sum)

data2.norm <- data2/data2.rowsum

apply(data2.norm,1,sum) # The rows sum to 1, so the data are normalized

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

test.input.2 <- data2.norm

dimnames(test.input) <- list(paste("Sample",seq(1,10)),paste("Feature",seq(1,4)))

dimnames(test.input.2) <- list(paste("Sample",c(seq(1,4),11,seq(5,8),12,9,10,13,14,15)),paste("Feature",seq(1,7)))

test.output.two.datasets <- ccrepe(x=test.input, y=test.input.2, iterations=20, min.subj=10)

Warning in preprocess data(CA): Removing subjects Sample 11, Sample 12, Sample 13, Sample 14,

Sample 15 from dataset y because they are not in dataset x.

Please note that we receive a warning because the subjects don’t match - only paired observations.

par(mfrow=c(1,2))

plot(data2[aligned.rows,1],data[,3],xlab="dataset 2: Feature 1",ylab="dataset 1: Feature 3",main="Non-normalized")

plot(data2.norm[aligned.rows,1],data.norm[,3],xlab="dataset 2: Feature 1",ylab="dataset 1: Feature 3",

main="Normalized")

CCREPE: Compositionality Corrected by PErmutation and REnormalization 6

●

●

●

●●

●

●
●

●

●

0 2 4 6 8 10

0
1

2
3

4
5

Non−normalized

dataset 2: Feature 1

da
ta

se
t 1

: F
ea

tu
re

 3

●

●
●

●

● ●●

●

●

●

0.1 0.3 0.5

0.
0

0.
2

0.
4

0.
6

Normalized

dataset 2: Feature 1

da
ta

se
t 1

: F
ea

tu
re

 3

Figure 2: Non-normalized and normalized associations between feature 1 and feature 2. In this case we would expect
feature 1 and feature 2 to be associated. In the output we see this by the positive sim.score value in the [1,2] element
of test.output$sim.score and the small q-value in the [1,2] element of test.output$q.values.

test.output.two.datasets

$p.values

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Feature 1 0.039866816 0.12958024 0.6309143 0.0006548728 0.02550842

Feature 2 0.019892497 0.27280051 0.3940475 0.0006578505 0.03709575

Feature 3 0.001424648 0.07351813 0.7087950 0.8005278858 0.06954173

Feature 4 0.166200673 0.71338006 0.2210095 0.0018622684 0.76952263

Feature 6 Feature 7

Feature 1 0.351753443 0.2324777

Feature 2 0.052083504 0.3368708

Feature 3 0.007118084 0.8313674

Feature 4 0.466264411 0.1864921

##

$z.stat

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

Feature 1 -2.055126 1.5157592 -0.4804403 -3.407807 2.2336150 0.9311936

Feature 2 -2.328369 1.0966361 -0.8523003 -3.406568 2.0847087 1.9424429

Feature 3 3.189610 -1.7896007 -0.3734749 0.252664 -1.8148841 -2.6912687

Feature 4 -1.384515 0.3673204 1.2238481 3.111361 -0.2929994 0.7285705

Feature 7

Feature 1 1.1940006

Feature 2 0.9603665

Feature 3 0.2129482

Feature 4 -1.3210277

##

$sim.score

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

CCREPE: Compositionality Corrected by PErmutation and REnormalization 7

Feature 1 -0.4881629 0.34580477 -0.03330490 -0.7746690 0.6413812 0.2606145

Feature 2 -0.4834303 0.34511601 -0.02535875 -0.7719433 0.6454455 0.2531986

Feature 3 0.8471776 -0.39170681 -0.14931372 0.2117759 -0.4772947 -0.4998803

Feature 4 -0.3381670 0.01290513 0.19808319 0.6911959 -0.2479405 0.2339966

Feature 7

Feature 1 0.13966483

Feature 2 0.13869927

Feature 3 0.09928687

Feature 4 -0.27322203

##

$q.values

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

Feature 1 0.48488575 1.0911032 3.002707 0.07168484 0.3988925 1.9252128

Feature 2 0.36291794 1.6589873 2.053996 0.03600540 0.5075801 0.5701256

Feature 3 0.05198246 0.6706309 3.232807 3.24551097 0.6920272 0.1558345

Feature 4 1.29949652 3.1235707 1.512033 0.05096273 3.2398017 2.3199572

Feature 7

Feature 1 1.496935

Feature 2 1.940797

Feature 3 3.250164

Feature 4 1.360942

2.7 Example 3

An example of how to use ccrepe with nc.score as the similarity score.

data <- matrix(rlnorm(40,meanlog=0,sdlog=1),nrow=10,ncol=4)

data[,1] = 2*data[,2] + rnorm(10,0,0.01)

data.rowsum <- apply(data,1,sum)

data.norm <- data/data.rowsum

apply(data.norm,1,sum) # The rows sum to 1, so the data are normalized

[1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample",seq(1,10)),paste("Feature",seq(1,4)))

test.output.nc.score <- ccrepe(x=test.input, sim.score=nc.score, iterations=20, min.subj=10)

par(mfrow=c(1,2))

plot(data[,1],data[,2],xlab="Feature 1",ylab="Feature 2",main="Non-normalized")

plot(data.norm[,1],data.norm[,2],xlab="Feature 1",ylab="Feature 2",

main="Normalized")

CCREPE: Compositionality Corrected by PErmutation and REnormalization 8

●

●

●
●●●

●

●

●
●

0 5 10 15 20 25

0
2

4
6

8
12

Non−normalized

Feature 1

F
ea

tu
re

 2

●

●

●

●

●●

●

●

●

●

0.2 0.3 0.4 0.5 0.6

0.
10

0.
20

0.
30

Normalized

Feature 1

F
ea

tu
re

 2

Figure 3: Non-normalized and normalized associations between feature 1 and feature 2. In this case we would expect
feature 1 and feature 2 to be associated. In the output we see this by the positive sim.score value in the [1,2] element
of test.output$sim.score and the small q-value in the [1,2] element of test.output$q.values. In this case, however, the
sim.score represents the NC-Score between two features rather than the Spearman correlation.

test.output.nc.score

$p.values

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA 1.139354e-07 0.7262203 0.3553658

Feature 2 1.139354e-07 NA 0.5347310 0.1758518

Feature 3 7.262203e-01 5.347310e-01 NA 0.3538820

Feature 4 3.553658e-01 1.758518e-01 0.3538820 NA

##

$z.stat

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA 5.3029672 -0.3501577 -0.9242315

Feature 2 5.3029672 NA -0.6208004 -1.3536382

Feature 3 -0.3501577 -0.6208004 NA 0.9270858

Feature 4 -0.9242315 -1.3536382 0.9270858 NA

##

$sim.score

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA 1.00000 -0.4375 -0.59375

Feature 2 1.00000 NA -0.4375 -0.59375

Feature 3 -0.43750 -0.43750 NA 0.12500

Feature 4 -0.59375 -0.59375 0.1250 NA

##

$q.values

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA 1.619461e-06 1.720398 1.262779

Feature 2 1.619461e-06 NA 1.520117 1.249766

CCREPE: Compositionality Corrected by PErmutation and REnormalization 9

Feature 3 1.720398e+00 1.520117e+00 NA 1.676675

Feature 4 1.262779e+00 1.249766e+00 1.676675 NA

2.8 Example 4

An example of how to use ccrepe with a user-defined sim.score function.

data <- matrix(rlnorm(40,meanlog=0,sdlog=1),nrow=10,ncol=4)

data[,1] = 2*data[,2] + rnorm(10,0,0.01)

data.rowsum <- apply(data,1,sum)

data.norm <- data/data.rowsum

apply(data.norm,1,sum) # The rows sum to 1, so the data are normalized

[1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample",seq(1,10)),paste("Feature",seq(1,4)))

my.test.sim.score <- function(x,y=NA,constant=0.5){
if(is.vector(x) && is.vector(y)) return(constant)

if(is.matrix(x) && is.na(y)) return(matrix(rep(constant,ncol(x)^2),ncol=ncol(x)))

if(is.data.frame(x) && is.na(y)) return(matrix(rep(constant,ncol(x)^2),ncol=ncol(x)))

else stop('ERROR')

}

test.output.sim.score <- ccrepe(x=test.input, sim.score=my.test.sim.score, iterations=20, min.subj=10, sim.score.args = list(constant = 0.6))

par(mfrow=c(1,2))

plot(data[,1],data[,2],xlab="Feature 1",ylab="Feature 2",main="Non-normalized")

plot(data.norm[,1],data.norm[,2],xlab="Feature 1",ylab="Feature 2",

main="Normalized")

CCREPE: Compositionality Corrected by PErmutation and REnormalization 10

●

●

●

●

●

●
●

●

●

●

1 2 3 4 5 6

0.
5

1.
5

2.
5

Non−normalized

Feature 1

F
ea

tu
re

 2

●

●

●

●

●

●

●

●●●

0.2 0.3 0.4 0.5

0.
10

0.
20

Normalized

Feature 1

F
ea

tu
re

 2

Figure 4: Non-normalized and normalized associations between feature 1 and feature 2. In this case we would expect
feature 1 and feature 2 to be associated. Note that the values of sim.score are all 0.6 and none of the p-values are very
small because of the arbitrary definition of the similarity score.

test.output.sim.score

$p.values

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA NaN NaN NaN

Feature 2 NaN NA NaN NaN

Feature 3 NaN NaN NA NaN

Feature 4 NaN NaN NaN NA

##

$z.stat

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA NaN NaN NaN

Feature 2 NaN NA NaN NaN

Feature 3 NaN NaN NA NaN

Feature 4 NaN NaN NaN NA

##

$sim.score

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA 0.6 0.6 0.6

Feature 2 0.6 NA 0.6 0.6

Feature 3 0.6 0.6 NA 0.6

Feature 4 0.6 0.6 0.6 NA

##

$q.values

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA NaN NaN NaN

Feature 2 NaN NA NaN NaN

Feature 3 NaN NaN NA NaN

CCREPE: Compositionality Corrected by PErmutation and REnormalization 11

Feature 4 NaN NaN NaN NA

2.9 Example 5

An example of how to use ccrepe when specifying column subsets.

data <- matrix(rlnorm(40,meanlog=0,sdlog=1),nrow=10,ncol=4)

data.rowsum <- apply(data,1,sum)

data.norm <- data/data.rowsum

apply(data.norm,1,sum) # The rows sum to 1, so the data are normalized

[1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample",seq(1,10)),paste("Feature",seq(1,4)))

test.output.1.3 <- ccrepe(x=test.input, iterations=20, min.subj=10, subset.cols.x=c(1,3))

test.output.1 <- ccrepe(x=test.input, iterations=20, min.subj=10, subset.cols.x=c(1), compare.within.x=FALSE)

test.output.12.3 <- ccrepe(x=test.input, iterations=20, min.subj=10, subset.cols.x=c(1,2),subset.cols.y=c(3), compare.within.x=FALSE)

test.output.1.3$sim.score

Feature 1 Feature 3

Feature 1 NA 0.02813437

Feature 3 0.02813437 NA

test.output.1$sim.score

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA -0.100738 0.02813437 -0.3554634

Feature 2 -0.10073797 NA NA NA

Feature 3 0.02813437 NA NA NA

Feature 4 -0.35546341 NA NA NA

test.output.12.3$sim.score

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 NA NA 0.02813437 NA

Feature 2 NA NA -0.72783447 NA

Feature 3 0.02813437 -0.7278345 NA NA

Feature 4 NA NA NA NA

3 nc.score

The nc.score similarity measure is an N-dimensional extension of the checkerboard score particularly suited to similarity
score calculations between compositions derived from ecological relative abundance measurements. In such cases, features
typically represent species abundances, and the NC-score discretizes these continuous values into one of N bins before
computing a normalized similarity of co-occurrence or co-exclusion. This can be used as a standalone function or with
ccrepe as above to obtain compositionality-corrected p-values.

CCREPE: Compositionality Corrected by PErmutation and REnormalization 12

3.1 General Functionality

The NC-score is an extension to Diamond’s checkerboard score (see ?) to ordinal data, and simplifies to a calculation of
Kendall’s τ on binned data instead of ranked data. Let two features in a dataset with n subjects be denoted by[

x1 x2 . . . xn
y1 y2 . . . yn

]
.

The binning function maps from the original data to b numbered bins in {1, ..., b}. Let the binning function be denoted
by B(·). The co-variation and co-exclusion patterns are the same as concordant and discordant pairs in Kendall’s τ .
Considering a 2× 2 submatrix of the form [

B(xi) B(xj)
B(yi) B(yj)

]
,

a co-variation pattern is counted when (B(xi) − B(xj))(B(yi) − B(yj)) > 0 and a co-exclusion pattern, conversely,
when (B(xi)−B(xj))(B(yi)−B(yj)) < 0. The NC-score statistic for features x and y is then defined as

(number of co-variation patterns)− (number of co-exclusion patterns),

normalized by the Kendall’s τ normalization factor accounting for ties described in ?.

3.2 Arguments

x First numerical vector, or single dataframe or matrix, containing relative abundances. If the latter, columns are features,
rows are samples. Rows should therefore sum to a constant.

y If provided, second numerical vector containing relative abundances. If given, x must be a vector as well.

nbins A non-negative integer of the number of bins to generate (cutoffs will be generated by the discretize function
from the infotheo package).

bin.cutoffs A list of values demarcating the bin cutoffs. The binning is performed using the findInterval function.

use An optional character string givinga method for computing covariances in the presence of missing values. This
must be (an abbreviaion of) on of the strings ”everything”, ”all.obs”, ”complete.obs”,”na.or.complete”, or ”pair-
wise.complete.obs”.

3.3 Output

nc.score returns either a single number (if called with two vectors) or a matrix of all pairwise scores (if called with a
matrix) of normalized scores. This behaviour is precisely analogous to the cor function in R

3.4 Usage

nc.score(

x,

y = NULL,

use = "everything",

nbins = NULL,

bin.cutoffs=NULL)

CCREPE: Compositionality Corrected by PErmutation and REnormalization 13

3.5 Example 1

An example of using nc.score to get a single similarity score or a matrix.

data <- matrix(rlnorm(40,meanlog=0,sdlog=1),nrow=10,ncol=4)

data.rowsum <- apply(data,1,sum)

data[,1] = 2*data[,2] + rnorm(10,0,0.01)

data.norm <- data/data.rowsum

apply(data.norm,1,sum) # The rows sum to 1, so the data are normalized

[1] 1.0896588 1.0440283 1.2870221 1.6689112 1.1577008 2.5517373 1.0199120

[8] 1.5506045 0.9364886 1.4984053

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample",seq(1,10)),paste("Feature",seq(1,4)))

test.output.matrix <- nc.score(x=test.input)

test.output.num <- nc.score(x=test.input[,1],y=test.input[,2])

par(mfrow=c(1, 2))

plot(data[,1],data[,2],xlab="Feature 1",ylab="Feature 2",main="Non-normalized")

plot(data.norm[,1],data.norm[,2],xlab="Feature 1",ylab="Feature 2",

main="Normalized")

●

●

●
●

●

●

●

●

●

●

2 4 6 8

1
2

3
4

Non−normalized

Feature 1

F
ea

tu
re

 2

●●
●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

Normalized

Feature 1

F
ea

tu
re

 2

Figure 5: Non-normalized and normalized associations between feature 1 and feature 2 of the second example. Again, we
expect to observe a positive association between feature 1 and feature 2. In terms of generalized checkerboard scores, we
would expect to see more co-variation patterns than co-exclusion patterns. This is shown by the positive and relatively
high value of the [1,2] element of test.output.matrix (which is identical to test.output.num)

test.output.matrix

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 1.0000 1.0000 -0.1250 -0.4375

Feature 2 1.0000 1.0000 -0.1250 -0.4375

Feature 3 -0.1250 -0.1250 1.0000 -0.4375

Feature 4 -0.4375 -0.4375 -0.4375 1.0000

CCREPE: Compositionality Corrected by PErmutation and REnormalization 14

test.output.num

[1] 1

3.6 Example 2

An example of using nc.score with an aribitrary bin number.

data <- matrix(rlnorm(40,meanlog=0,sdlog=1),nrow=10,ncol=4)

data.rowsum <- apply(data,1,sum)

data[,1] = 2*data[,2] + rnorm(10,0,0.01)

data.norm <- data/data.rowsum

apply(data.norm,1,sum) # The rows sum to 1, so the data are normalized

[1] 0.9720867 0.5830673 1.9672578 1.1388803 1.5971381 0.2765898 0.7620822

[8] 2.6019295 0.6039915 2.1383006

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample",seq(1,10)),paste("Feature",seq(1,4)))

test.output <- nc.score(x=test.input,nbins=4)

par(mfrow=c(1, 2))

plot(data[,1],data[,2],xlab="Feature 1",ylab="Feature 2",main="Non-normalized")

plot(data.norm[,1],data.norm[,2],xlab="Feature 1",ylab="Feature 2",

main="Normalized")

●
●

●

●

●

●
●

●

●

●

0 2 4 6 8 10 14

0
2

4
6

Non−normalized

Feature 1

F
ea

tu
re

 2

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5

0.
2

0.
6

Normalized

Feature 1

F
ea

tu
re

 2

Figure 6: Non-normalized and normalized associations between feature 1 and feature 2 of the second example. Again, we
expect to observe a positive association between feature 1 and feature 2. In terms of generalized checkerboard scores, we
would expect to see more co-variation patterns than co-exclusion patterns. This is shown by the positive and relatively
high value in the [1,2] element of test.output. In this case, the smaller bin number yields a smaller NC-score because of
the coarser partitioning of the data.

CCREPE: Compositionality Corrected by PErmutation and REnormalization 15

test.output

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 1.00000000 1.00000000 -0.05714286 0.1714286

Feature 2 1.00000000 1.00000000 -0.05714286 0.1714286

Feature 3 -0.05714286 -0.05714286 1.00000000 0.3428571

Feature 4 0.17142857 0.17142857 0.34285714 1.0000000

3.7 Example 3

An example of using nc.score with user-defined bin edges.

data <- matrix(rlnorm(40,meanlog=0,sdlog=1),nrow=10,ncol=4)

data.rowsum <- apply(data,1,sum)

data[,1] = 2*data[,2] + rnorm(10,0,0.01)

data.norm <- data/data.rowsum

apply(data.norm,1,sum) # The rows sum to 1, so the data are normalized

[1] 0.3657150 1.8622377 0.8293367 1.1328525 1.0204142 1.6119142 2.1404941

[8] 0.5855094 0.8835372 1.5077897

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample",seq(1,10)),paste("Feature",seq(1,4)))

test.output <- nc.score(x=test.input,bin.cutoffs=c(0.1,0.2,0.3))

par(mfrow=c(1, 2))

plot(data[,1],data[,2],xlab="Feature 1",ylab="Feature 2",main="Non-normalized")

plot(data.norm[,1],data.norm[,2],xlab="Feature 1",ylab="Feature 2",

main="Normalized")

CCREPE: Compositionality Corrected by PErmutation and REnormalization 16

●

●

●●●

●

●

●
●●

0 5 10 15

0
2

4
6

8
Non−normalized

Feature 1

F
ea

tu
re

 2

●

●

●

●

●

●

●

●

●

●

0.2 0.6 1.0 1.4

0.
1

0.
4

0.
7

Normalized

Feature 1

F
ea

tu
re

 2
Figure 7: Non-normalized and normalized associations between feature 1 and feature 2 of the second example. Again, we
expect to observe a positive association between feature 1 and feature 2. In terms of generalized checkerboard scores, we
would expect to see more co-variation patterns than co-exclusion patterns. This is shown by the positive and relatively
high value in the [1,2] element of test.output. The bin edges specified here represent almost absent ([0,0.001)), low
abundance ([0.001,0.1)), medium abundance ([0.1,0.25)), and high abundance ([0.6,1)).

test.output

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 1.00000000 0.8366600 -0.2091650 -0.03175003

Feature 2 0.83666003 1.0000000 -0.2000000 -0.24287070

Feature 3 -0.20916501 -0.2000000 1.0000000 -0.15179419

Feature 4 -0.03175003 -0.2428707 -0.1517942 1.00000000

4 References

