
Creating annotated output with affycoretools and
ReportingTools

James W. MacDonald∗

February 27, 2017

Contents

∗jmacdon@u.washington.edu

1

http://bioconductor.org/packages/affycoretools

Creating annotated output with affycoretools and ReportingTools 2

1 Overview

The affycoretools package is intended to help people easily create useful output from various analyses. While
affycoretools was originally intended for those using Affymetrix microarrays, this is no longer the case. While
some functions remain Affy-centric, most are now much more general, and can be used for any microarray or
RNA-Seq experiment.

2 Introduction

This package has evolved from my work as a service core biostatistician. I routinely analyze very similar
experiments, and wanted to create a way to minimize all the cutting and pasting of code that I found myself
doing. In addition, I wanted to come up with a good way to make an analysis reproducible, in the sense that
I (or somebody else) could easily re-create the results.

In the past this package relied on the annaffy package, and was intended to be used in concert with
a ’Sweave’ document that contained both the code that was used to analyze the data, as well as explanatory
text that would end up in a pdf (or HTML page) that could be given to a client. In the intervening period,
people have developed other, better packages such as knitr and ReportingTools that make it much easier to
create the sort of output I like to present to my clients.

3 Using affycoretools

For this section we will be using the sample.ExpressionSet data set that comes with the Biobase package.
Remember that you can always run this code at home by doing this:

library(knitr)

purl(system.file("doc/RefactoredAffycoretools.Rnw", package="affycoretools"))

And then you will have a file called RefactoredAffycoretools.R in your working directory that you can
either source or open with RStudio or Emacs/ESS, and run by chunk or line by line.

We first load and rename the data:

suppressMessages(library(affycoretools))

data(sample.ExpressionSet)

eset <- sample.ExpressionSet

eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 26 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: A B ... Z (26 total)

varLabels: sex type score

varMetadata: labelDescription

featureData: none

http://bioconductor.org/packages/affycoretools
http://bioconductor.org/packages/affycoretools
http://bioconductor.org/packages/annaffy
http://cran.fhcrc.org/web/packages/knitr/index.html
http://bioconductor.org/packages/ReportingTools
http://bioconductor.org/packages/Biobase

Creating annotated output with affycoretools and ReportingTools 3

experimentData: use 'experimentData(object)'

Annotation: hgu95av2

This ExpressionSet object is a truncated data set, based on an Affymetrix HG-U95av2 array. There
are 26 samples and 500 probesets. We will use the phenoData to fit a linear model using limma. comment:
We will not cover any aspects of fitting a linear model here; the limma User’s Guide covers this topic in depth.
In addition, this analysis isn’t meant to be correct in any sense; we are just doing this to get some data to
annotate and output.

suppressMessages(library(limma))

pd <- pData(phenoData(eset))

design <- model.matrix(~0+type+sex, pd)

colnames(design) <- gsub("type|sex", "", colnames(design))

contrast <- matrix(c(1,-1,0))

colnames(contrast) <- "Case vs control"

fit <- lmFit(eset, design)

fit2 <- contrasts.fit(fit, contrast)

fit2 <- eBayes(fit)

topTable(fit2, 1)[,1:4]

logFC AveExpr t P.Value

31667_r_at 763.1646 735.1835 24.84768 1.429233e-18

AFFX-HSAC07_X00351_M_st 193.4776 197.6336 23.57778 4.770893e-18

31375_at 368.1255 395.6733 22.26916 1.761763e-17

31466_at 198.3558 195.4360 20.62148 1.011904e-16

31597_r_at 1590.9543 1634.2481 20.58837 1.049424e-16

31440_at 597.5251 659.0559 20.51108 1.142742e-16

31396_r_at 2344.2449 2504.3938 20.29175 1.457511e-16

AFFX-hum_alu_at 8005.2783 8681.4000 19.45532 3.768484e-16

31391_at 380.7353 401.1064 19.35000 4.258204e-16

AFFX-HSAC07_X00351_3_at 4771.0705 4869.6635 19.34299 4.293033e-16

At this point we can generate a data.frame, but this data.frame has no annotation, such as gene names
or symbols, etc, that say what each probeset is measuring. The MArrayLM object that we are calling ’fit2’, is
capable of containing these data, and will append those data to the topTable output.

suppressMessages(library(hgu95av2.db))

gns <- select(hgu95av2.db, featureNames(eset), c("ENTREZID","SYMBOL","GENENAME"))

’select()’ returned 1:many mapping between keys and columns

There are one-to many mappings here, so we just

removed duplicates in a very naive way.

gns <- gns[!duplicated(gns[,1]),]

fit2$genes <- gns

topTable(fit2, 1)[,1:3]

PROBEID ENTREZID SYMBOL

31667_r_at 31667_r_at 10002 NR2E3

AFFX-HSAC07_X00351_M_st AFFX-HSAC07_X00351_M_st <NA> <NA>

31375_at 31375_at <NA> <NA>

http://bioconductor.org/packages/affycoretools
http://bioconductor.org/packages/limma

Creating annotated output with affycoretools and ReportingTools 4

31466_at 31466_at 3128 HLA-DRB6

31597_r_at 31597_r_at 1978 EIF4EBP1

31440_at 31440_at 6932 TCF7

31396_r_at 31396_r_at 4440 MSI1

AFFX-hum_alu_at AFFX-hum_alu_at <NA> <NA>

31391_at 31391_at 9001 HAP1

AFFX-HSAC07_X00351_3_at AFFX-HSAC07_X00351_3_at <NA> <NA>

After adding the annotation data to the MArrayLM object, the topTable output now contains the
appropriate annotation data for each probeset. At this point we can output an HTML table that contains
these data.

suppressMessages(library(ReportingTools))

htab <- HTMLReport("afile", "My cool results")

publish(topTable(fit2, 1), htab)

finish(htab)

[1] "./afile.html"

And now we have a HTML table called ’afile.html’ in our working directory, that contains the data
for our top 10 genes. This table is not particularly interesting, and the ReportingTools package already has
functionality to just do something like

htab <- HTMLReport("afile2", "My cool results, ReportingTools style")

publish(fit2, htab, eset, factor = pd$type, coef = 1, n = 10)

’select()’ returned 1:1 mapping between keys and columns

’select()’ returned 1:1 mapping between keys and columns

’select()’ returned 1:1 mapping between keys and columns

finish(htab)

[1] "./afile2.html"

and it will automatically generate an annotated table, with some extra plots that show the different
groups, and we didn’t even have to use topTable directly. However, the default plots in the HTML table are
a combination of dotplot and boxplot, which I find weird (see afile2.html if you are running this code yourself).
Since ReportingTools is easily extensible, we can make changes that are more pleasing.

d.f <- topTable(fit2, 2)

out <- makeImages(df = d.f, eset = eset, grp.factor = pd$type, design = design,

contrast = contrast, colind = 1, repdir = ".")

htab <- HTMLReport("afile3", "My cool results, affycoretools style")

publish(out$df, htab, .mofifyDF = list(entrezLinks, affyLinks))

finish(htab)

[1] "./afile3.html"

Note that there are two differences in the way we did things. First, we create a data.frame, and then
decorate it with the plots using the makeImages function. This will by default create dotplots (or you can
specify boxplots). For the plots to fit in an HTML table, there are no axis labels. However, each plot is also a
link, and if you click on it, a larger plot with axis labels will be presented. See ’afile3.html’, if you are running
this code yourself.

http://bioconductor.org/packages/affycoretools
http://bioconductor.org/packages/ReportingTools
http://bioconductor.org/packages/ReportingTools

Creating annotated output with affycoretools and ReportingTools 5

All the little files that get created can get pretty messy, so the default is to put everything into a
’reports’ subdirectory, so your working directory stays clean. For this example we over-ride the defaults so we
do not have to go searching in subdirectories for our tables.

An alternative parameterization that probably makes more sense is to fit coefficients for each sex/treatment
combination.

grps <- factor(apply(pd[,1:2], 1, paste, collapse = "_"))

design <- model.matrix(~0+grps)

colnames(design) <- gsub("grps", "", colnames(design))

contrast <- matrix(c(1,-1,0,0,

0,0,1,-1,

1,-1,-1,1),

ncol = 3)

colnames(contrast) <- c("Female_Case vs Female_Control",

"Male_Case vs Male_Control",

"Interaction")

fit <- lmFit(eset, design)

fit2 <- contrasts.fit(fit, contrast)

fit2 <- eBayes(fit2)

fit2$genes <- gns

With this parameterization we can look at intra-sex differences, as well as the interaction (looking for
sex-specific changes). This now means that we have a total of three HTML tables to output, which makes
things a bit more complex to present. Luckily, this is pretty simple to accomplish. For this step we will now
use the default ’reports’ subdirectory to keep everything straight. In addition, we will trim down the output a
bit.

get a list containing the output for each comparison

out <- lapply(1:3, function(x) topTable(fit2, x))

process the output to add images

htab <- lapply(1:3, function(x){
tmp <- HTMLReport(gsub("_", " ", colnames(contrast)[x]), colnames(contrast)[x], "./reports")

tmp2 <- makeImages(out[[x]], eset, grps, design, contrast, x)

publish(tmp2$df, tmp, .modifyDF = list(affyLinks, entrezLinks))

finish(tmp)

return(tmp)

})

Now make an index.html file to contain links to the various comps

idx <- HTMLReport("index", "Links to our stuff")

publish(hwriter::hwrite("Univariate comparisons", br = TRUE, header = 2), idx)

publish(Link(htab), idx)

finish(idx)

[1] "./index.html"

Now there will be an index.html file in the current directory that has individual links to each of the
three comparisons we made. This is nice, as you only have to point a client or PI to a single link that they
can use to explore all the results.

http://bioconductor.org/packages/affycoretools

Creating annotated output with affycoretools and ReportingTools 6

We are often asked to create a Venn diagram showing overlap between groups. This is pretty simple
to do, but it would be nicer to have an HTML version with clickable links, so your PI or end user can see
what genes are in each cell of the Venn diagram. As an example, we can generate a Venn diagram comparing
overlapping genes between the male and female comparisons.

collist <- list(1:2)

venn <- makeVenn(fit2, contrast, design, collist = collist, adj.meth = "none")

vennlnk <- vennPage(venn, "venn_diagram", "Venn diagram")

The makeVenn function also returns a vennCounts object that we can use in our knitr document to
generate a Venn diagram there as well (??).

vennDiagram(venn[[1]]$venncounts, cex = 0.9)

And we can add a link to our index page quite easily.

idx <- HTMLReport("index","Links to our stuff")

publish(hwriter::hwrite("Univariate comparisons", br = TRUE, header = 2), idx)

publish(Link(htab), idx)

publish(hwriter::hwrite("Venn diagrams", br = TRUE, header = 2), idx)

publish(Link("Venn1", vennlnk), idx)

finish(idx)

[1] "./index.html"

There is similar functionality for presenting the results of a GO hypergeometric analysis (makeGoTable),
and GSEA analysis, based on the romer function in limma (runRomer and outputRomer).

4 Session information

The version of R and packages loaded when creating this vignette were:

toLatex(sessionInfo())

• R version 3.3.2 (2016-10-31), x86_64-apple-darwin13.4.0
• Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils
• Other packages: AnnotationDbi 1.36.2, Biobase 2.34.0, BiocGenerics 0.20.0, IRanges 2.8.1,

ReportingTools 2.14.0, S4Vectors 0.12.1, affycoretools 1.46.5, hgu95av2.db 3.2.3, knitr 1.15.1,
limma 3.30.11, org.Hs.eg.db 3.4.0
• Loaded via a namespace (and not attached): AnnotationForge 1.16.1, AnnotationHub 2.6.4,

BSgenome 1.42.0, BiocInstaller 1.24.0, BiocParallel 1.8.1, BiocStyle 2.2.1, Biostrings 2.42.1,
Category 2.40.0, DBI 0.5-1, DESeq2 1.14.1, Formula 1.2-1, GGally 1.3.0, GO.db 3.4.0, GOstats 2.40.0,
GSEABase 1.36.0, GenomeInfoDb 1.10.3, GenomicAlignments 1.10.0, GenomicFeatures 1.26.3,
GenomicRanges 1.26.3, Hmisc 4.0-2, KernSmooth 2.23-15, Matrix 1.2-8, OrganismDbi 1.16.0,
PFAM.db 3.4.0, R.methodsS3 1.7.1, R.oo 1.21.0, R.utils 2.5.0, R6 2.2.0, RBGL 1.50.0,
RColorBrewer 1.1-2, RCurl 1.95-4.8, RSQLite 1.1-2, Rcpp 0.12.9, Rsamtools 1.26.1,
SummarizedExperiment 1.4.0, VariantAnnotation 1.20.2, XML 3.98-1.5, XVector 0.14.0, acepack 1.4.1,
affy 1.52.0, affyio 1.44.0, annotate 1.52.1, assertthat 0.1, backports 1.0.5, base64enc 0.1-3,
biomaRt 2.30.0, biovizBase 1.22.0, bit 1.1-12, bitops 1.0-6, caTools 1.17.1, checkmate 1.8.2,

http://bioconductor.org/packages/affycoretools
http://cran.fhcrc.org/web/packages/knitr/index.html
http://bioconductor.org/packages/limma

Creating annotated output with affycoretools and ReportingTools 7

Female_Case vs Female_ControlMale_Case vs Male_Control

452

3610 2

Figure 1: Venn diagram

cluster 2.0.5, codetools 0.2-15, colorspace 1.3-2, data.table 1.10.4, dichromat 2.0-0, digest 0.6.12,
edgeR 3.16.5, ensembldb 1.6.2, evaluate 0.10, ff 2.2-13, foreach 1.4.3, foreign 0.8-67, gcrma 2.46.0,
gdata 2.17.0, genefilter 1.56.0, geneplotter 1.52.0, ggbio 1.22.3, ggplot2 2.2.1, gplots 3.0.1,
graph 1.52.0, grid 3.3.2, gridExtra 2.2.1, gtable 0.2.0, gtools 3.5.0, highr 0.6, htmlTable 1.9,
htmltools 0.3.5, htmlwidgets 0.8, httpuv 1.3.3, httr 1.2.1, hwriter 1.3.2, interactiveDisplayBase 1.12.0,
iterators 1.0.8, lattice 0.20-34, latticeExtra 0.6-28, lazyeval 0.2.0, locfit 1.5-9.1, magrittr 1.5,
memoise 1.0.0, mime 0.5, munsell 0.4.3, nnet 7.3-12, oligoClasses 1.36.0, plyr 1.8.4,
preprocessCore 1.36.0, reshape 0.8.6, reshape2 1.4.2, rpart 4.1-10, rtracklayer 1.34.2, scales 0.4.1,

http://bioconductor.org/packages/affycoretools

Creating annotated output with affycoretools and ReportingTools 8

shiny 1.0.0, splines 3.3.2, stringi 1.1.2, stringr 1.2.0, survival 2.40-1, tibble 1.2, tools 3.3.2,
xtable 1.8-2, yaml 2.1.14, zlibbioc 1.20.0

http://bioconductor.org/packages/affycoretools

