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Abstract

MineICA supplies a framework for the storage and the study of a decomposition resulting
from the application of independent component analysis (ICA) to transcriptomic data. It allows
to integrate additional data associated with the samples (other molecular data, as well as clinical
and pathological data) and data associated with the genes. It defines a new class IcaSet extend-
ing the class eSet of the package Biobase, which allows to store the inputs (genomic dataset and
sample information) and outputs (mixing and source matrix) of ICA. MineICA helps the bio-
logical interpretation of the components by studying their association with variables (e.g sample
annotations) and biological processes, and enables the comparison of components from differ-
ent datasets using correlation-based graph. In practice, by creating interactive summarization
of the results and comprehensive plots, MineICA makes much easier the interpretation of the
numerous data resulting from the application of ICA to transcriptomic data.

1 Introduction

Unlike ICA, clustering methods and PCA are routinely applied to perform unsupervised analysis of
genomic high-throughput data. Several studies highlighted the outperformance of ICA over PCA
and clustering-based methods in obtaining a more realistic decomposition of the expression data
into consistent patterns of coexpressed and coregulated genes ???? associated with the studied
phenotypes, like histological grade or estrogen receptor status in breast cancer ?. Unlike PCA, ICA
does not impose an orthogonality constraints between the independent components (ICs). The
less frequent use of ICA analysis in bioinformatics studies may be explained by the non-trivial
interpretation of its outputs. The aim of MineICA is to make the most of the ICA by making
available methods to make easier the interpretation of its results.

Several ICA algorithms exist and generally rely on random initializations and compute non-
unique solutions. The analysis of the reproducibility of the components across datasets is thus a
crucial point in the analysis by for example enabling the selection of components that do not arise
from a local minima. MineICA implements the study of the component reproducibility among
different data sets through correlation-based graphs.

ICA provides a decomposition of the expression matrix X = AS, where A, the mixing matrix,
contains the activity of the components on the samples (e.g tumor samples) and S, the source
matrix, provides the contribution of each feature (e.g genes) to the components. The source matrix
S is thus used to biologically interpret the components by studying their contributing genes, and the
matrix A is used to associate the component with sample features by studying the distribution of the
samples on the components according to their characteristics (e.g clinical or molecular variables).
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2 Software features

MineICA offers the following functionalities:

Storage of the ICA results MineICA implements the class IcaSet whose aim is to contain and
describe an ICA decomposition of high-throughput data.

Storage of analysis parameters MineICA implements the class MineICAParams which aims
at containing parameters required for the analysis of the ICA results.

Association with variables MineICA proposes functions to test whether qualitative and quan-
titative variables (e.g sample annotations) are differently distributed on the components or
differently distributed among clusters defined on the components.

Annotation of the features The package also provides functions to easily describe feature (e.g
gene) annotations using biomaRt . The resulting annotation being displayed in HTML files.

Association with gene sets MineICA provides functions to run enrichment analysis of the con-
tributing genes using package GOstats.

Visualization MineICA provides functions to visualize heatmaps of the contributing features,
distribution of the variables on the components, or correlation graph between different ICA.

3 Case study

Using microarray-based gene expression data of 200 breast cancer tumors stored in the package
breastCancerMAINZ ?, this vignette shows how MineICA can be used to study an ICA-based
decomposition.

3.1 Loading the library and the data

We first load some dependent libraries :

> library(Biobase)

> library(plyr)

> library(ggplot2)

> library(foreach)

> library(xtable)

> library(biomaRt)

> library(GOstats)

> library(cluster)

> library(marray)

> library(mclust)

> library(RColorBrewer)

> library(igraph)

> library(Rgraphviz)

> library(graph)

> library(colorspace)
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> library(annotate)

> library(scales)

> library(gtools)

We then load the MineICA package by typing or pasting the following codes in R command
line:

> library(MineICA)

3.2 Creation of an IcaSet object

Class IcaSet extends eSet class of package Biobase. The eSet class won’t be described here, please
refer to the documentation for details about the attributes of the class http://www.bioconductor.
org/packages/2.12/bioc/vignettes/Biobase/inst/doc/Qviews.pdf. Reading the documen-
tation of expressionSet class, another subclass of eSet , may also be very useful http://www.
bioconductor.org/packages/release/bioc/vignettes/Biobase/inst/doc/ExpressionSetIntroduction.

pdf.

Beside including slots of eSet class, IcaSet class includes additionnal slots in order to contain
the ICA outputs A and S (slots A, S, SByGene) and information regarding the components (slots
compNames, indComp, ...). You can get an overview of the structure and available methods by
reading the help page:

> help(IcaSet)

IcaSet class proposes two levels of storage for the data, the “feature” and “gene” levels. The
slots S (source matrix) and dat (original data) refer to the feature level, while the slots SByGene

(source matrix indexed by genes) and datByGene (data indexed by genes) refer to the gene level. It
allows to store at the same time the results of ICA applied to the original data indexed by features,
these features speaking generally not for themselves (eg, probe set IDs), and the data indexed by
annotations of these features into a more comprehensive ID (e.g gene ids).
By default, in MineICA, the second level of annotation is called the “gene” level but it may in fact
correspond to any other annotation (e.g, isoforms, exons, ...).

In addition to the demands of the eSet class for object validity, validity method for IcaSet
enforces that the sample, feature, and gene names of the slot elements are identical. For example,
the row names of the phenoData (the sample annotations) and mixing matrix A must be similar to
the column names of dat and datByGene. Similarly, row names of S and SByGene must be similar
to row names of dat and datByGene. The number of components must also be consistent between
A and S.

3.2.1 load an example of expression data

We load the eSet mainz included in the data package breastCancerMAINZ.

> ## load Mainz expression data and sample annotations.

> library(breastCancerMAINZ)

> data(mainz)

> show(mainz)

3

http://www.bioconductor.org/packages/2.12/bioc/vignettes/Biobase/inst/doc/Qviews.pdf
http://www.bioconductor.org/packages/2.12/bioc/vignettes/Biobase/inst/doc/Qviews.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/Biobase/inst/doc/ExpressionSetIntroduction.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/Biobase/inst/doc/ExpressionSetIntroduction.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/Biobase/inst/doc/ExpressionSetIntroduction.pdf


ExpressionSet (storageMode: lockedEnvironment)

assayData: 22283 features, 200 samples

element names: exprs

protocolData: none

phenoData

sampleNames: MAINZ_BC6001 MAINZ_BC6002 ... MAINZ_BC6232 (200 total)

varLabels: samplename dataset ... e.os (21 total)

varMetadata: labelDescription

featureData

featureNames: 1007_s_at 1053_at ... AFFX-TrpnX-M_at (22283 total)

fvarLabels: probe Gene.title ... GO.Component.1 (22 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
pubMedIds: 18593943

Annotation: hgu133a

> ## we restrict the data to the 10,000 probe sets with the highest IQR

> mainz <- selectFeatures_IQR(mainz,10000)

3.2.2 Run ICA

We now run the JADE algorithm to compute an ICA decomposition of the Mainz data.

> library(JADE)

> ## Features are mean-centered before ICA computation

> exprs(mainz) <- t(apply(exprs(mainz),1,scale,scale=FALSE))

> colnames(exprs(mainz)) <- sampleNames(mainz)

> ## run ICA-JADE

> resJade <- runICA(X=exprs(mainz), nbComp=5, method = "JADE", maxit=10000)

Another ICA algorithm, fastICA, is implemented in R and may be run with function runICA.
FastICA relies on random initializations and the estimated components may vary between iterations.
A way to alleviate this problem is to run fastICA several times, cluster the estimates, and use as
the final estimates the centrotypes of the clusters. This strategy is proposed in the matlab package
icasso ?. The function clusterFastICARuns implements this strategy and can be used to estimate
the components:

> library(fastICA)

> ## Random initializations are used for each iteration of FastICA

> ## Estimates are clustered using hierarchical clustering with average linkage

> res <- clusterFastICARuns(X=exprs(mainz), nbComp=5, alg.type="deflation", nbIt=10,

+ funClus="hclust", method="average")

The returned estimates are ranked according to their Iq indices which measure the compactness of
the clusters and are defined as the differences between the intra-cluster similarity and the extra-
cluster similiarity ?.
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3.2.3 Create a MineICAParams object, function buildMineICAParams

Before building an IcaSet instance, we need to create a MineICAParams instance that will contain
a few parameters used during the analysis of the ICA decomposition.
You need to specify the directory where you would like to put the outputs of the analysis (slot
resPath), the threshold applied to the projection values used to select the contributing elements
(slot selCutoff), and the threshold you would like to use for statistical significance (slot pvalCutoff):

> ## build params

> params <- buildMineICAParams(resPath="mainz/", selCutoff=3, pvalCutoff=0.05)

If the original data and the ICA outputs A and S were stored in files, the file names would have
been included in slots annotfile, Sfile, Afile, and datfile.

3.2.4 Create an IcaSet instance, function buildIcaSet

Mainz data and the corresponding ICA results have now to be stored in an IcaSet object. This
task is made easier thanks to the function buildIcaSet.

Before building the IcaSet object, several information (corresponding to IcaSet slots) regarding
the feature and gene ids remain to be defined.

annotation: This slot contains the name of an annotation package for the data, if available.
The Mainz data are from HG-U133A microarrays and are indexed by Affymetrix probe set ids.
The corresponding annotation package is hgu133a.db and must be loaded:

> ## load annotation package

> library(hgu133a.db)

attribute typeID: The slot typeID of an IcaSet object includes the types of ids to be used for
the annotation of the features, and the description of the feature and/or gene ids.
typeID encompasses three elements to be defined:

geneID_annotation: defines the object supported by the annotation package (if provided)
needed to annotate the features into genes. To see the list of the available objects in the given
package:

> ls("package:hgu133a.db")

[1] "hgu133a" "hgu133a.db" "hgu133aACCNUM"

[4] "hgu133aALIAS2PROBE" "hgu133aCHR" "hgu133aCHRLENGTHS"

[7] "hgu133aCHRLOC" "hgu133aCHRLOCEND" "hgu133aENSEMBL"

[10] "hgu133aENSEMBL2PROBE" "hgu133aENTREZID" "hgu133aENZYME"

[13] "hgu133aENZYME2PROBE" "hgu133aGENENAME" "hgu133aGO"

[16] "hgu133aGO2ALLPROBES" "hgu133aGO2PROBE" "hgu133aMAP"

[19] "hgu133aMAPCOUNTS" "hgu133aOMIM" "hgu133aORGANISM"
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[22] "hgu133aORGPKG" "hgu133aPATH" "hgu133aPATH2PROBE"

[25] "hgu133aPFAM" "hgu133aPMID" "hgu133aPMID2PROBE"

[28] "hgu133aPROSITE" "hgu133aREFSEQ" "hgu133aSYMBOL"

[31] "hgu133aUNIGENE" "hgu133aUNIPROT" "hgu133a_dbInfo"

[34] "hgu133a_dbconn" "hgu133a_dbfile" "hgu133a_dbschema"

Here we will use "SYMBOL" for Gene Symbols. If no annotation package is provided, this element is
not useful and biomaRt is used to perform the annotation if required.

The two following elements are the IDs used to query biomaRt . A database of interest first
needs to be specified. Here we use Ensembl for human.

> mart <- useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl")

geneID_biomart: specifies the type of gene id, and is used for the description of the genes and
features if no annotation package is provided. It must be one of the IDs available in the filters of
the mart object:

> listFilters(mart)[120:125,]

name

120 ottg

121 ottt

122 ottp

123 wikigene_id

124 wikigene_name

125 with_affy_huex_1_0_st_v2

description

120 VEGA Gene ID(s) (OTTG) [e.g. OTTHUMG00000036159]

121 VEGA Transcript ID(s) (OTTT) [e.g. OTTHUMT00000088063]

122 VEGA Protein ID(s) (OTTP) [e.g. OTTHUMP00000277309]

123 WikiGene ID(s) [e.g. 115286]

124 WikiGene Name(s) [e.g. SLC25A26]

125 with Affymetrix Microarray huex 1 0 st v2 probeset ID(s)

Here we will use geneID_biomart='hgnc_symbol' for Gene Symbols.

featureID_biomart: specifies the type of feature ID, must be one of the attributes available
in mart:

> listAttributes(mart)[grep(x=listAttributes(mart)[,1],pattern="affy")[1:5],]
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name description page

107 affy_hc_g110 Affy HC G110 probeset feature_page

108 affy_hg_focus Affy HG FOCUS probeset feature_page

109 affy_hg_u133_plus_2 Affy HG U133-PLUS-2 probeset feature_page

110 affy_hg_u133a_2 Affy HG U133A_2 probeset feature_page

111 affy_hg_u133a Affy HG U133A probeset feature_page

HG-U133A probe sets correspond to affy_hg_u133a.

The function buildIcaSet encompasses the step of feature annotation. During the annotation
step (either performed using the annotation package or biomaRt) if several features are available
for a same gene, the median value across those features is attributed to the gene.

Data can also be provided at the final annotation level (e.g dat and S are already indexed
by gene ids), in that case please use alreadyAnnot=TRUE in the function buildIcaSet so that no
annotation will be performed.

We can now build the object icaSetMainz with help of function buildIcaSet:

> ## Define typeID, Mainz data originate from affymetrix HG-U133a microarray

> ## and are indexed by probe sets.

> ## The probe sets are annotated into Gene Symbols

> typeIDmainz <- c(geneID_annotation="SYMBOL", geneID_biomart="hgnc_symbol",

+ featureID_biomart="affy_hg_u133a")

> ## define the reference samples if any, here no normal sample is available

> refSamplesMainz <- character(0)

> resBuild <- buildIcaSet(params=params, A=data.frame(resJade$A), S=data.frame(resJade$S),

+ dat=exprs(mainz), pData=pData(mainz), refSamples=refSamplesMainz,

+ annotation="hgu133a.db", typeID= typeIDmainz,

+ chipManu = "affymetrix", mart=mart)

> icaSetMainz <- resBuild$icaSet

> params <- resBuild$params

3.2.5 IcaSet basics

An instance of IcaSet has been built, we now explore some of the basic operations.

When printed, a brief summary of the contents of the object, based on the one available in class
eSet , is displayed:

> icaSetMainz

Number of components: 5

Component labels: 1 2 3 4 5

IcaSet (storageMode: lockedEnvironment)

assayData: 10000 features, 200 samples

element names: dat

protocolData: none
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phenoData

sampleNames: MAINZ_BC6001 MAINZ_BC6002 ... MAINZ_BC6232 (200 total)

varLabels: samplename dataset ... e.os (21 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation: hgu133a.db

Accessing A number of accessor functions are available to extract data from an IcaSet instance.
We will describe the most common accessor functions, most of them being inherited from class
eSet .

You can access the phenotype data using pData:

> annot <- pData(icaSetMainz)

The columns of the phenotype data, are called the variables. The variable labels can be retrieved
using the function varLabels and one variable can be accessed using $:

> varLabels(icaSetMainz)[1:5]

[1] "samplename" "dataset" "series" "id" "filename"

> icaSetMainz$grade[1:5]

[1] 2 3 3 2 2

The feature names and their annotations (called “genes” by default), such as the sample names
can respectively be retrieved using the functions featureNames, geneNames, and sampleNames:

> featureNames(icaSetMainz)[1:5] # probe set ids

[1] "1255_g_at" "1320_at" "1405_i_at" "1431_at" "1438_at"

> geneNames(icaSetMainz)[1:5] #gene symbols

[1] "GUCA1A" "PTPN21" "CCL5" "CYP2E1" "EPHB3"

> sampleNames(icaSetMainz)[1:5]

[1] "MAINZ_BC6001" "MAINZ_BC6002" "MAINZ_BC6003" "MAINZ_BC6004" "MAINZ_BC6005"
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The data ICA was applied to and its annotation into genes (if available) can be accessed using
the functions dat and datByGene

> head(dat(icaSetMainz)) #probe set level

> head(datByGene(icaSetMainz)) #gene level

An ICA decomposition consists of two matrices, the mixing matrix A containing the sample
contributions and the source matrix S containing the feature projections. They can be retrieved
from an IcaSet object using the methods of the same name: A and S. The method S returns matrix S
at the feature level (e.g, containing projection of the features), while SByGene returns the projection
values at the gene level:

> A(icaSetMainz)

> S(icaSetMainz)

> SByGene(icaSetMainz)

The number of components computed by ICA, but also their labels and indices can be extracted
with nbComp, compNames, and indComp:

> nbComp(icaSetMainz)

> compNames(icaSetMainz)

> indComp(icaSetMainz)

For graphical purpose, an IcaSet object includes a slot witGenes containing either one gene id
per component (or whatever is refered as the level “gene”), or one feature id per component if the
IcaSet object has only one level of annotation. Each “witness” is a contributor of the component
and is used to denote the direction of the expression according to the direction of the component.
These witnesses can be automaticall selected with the function selectWitnessGenes and are au-
tomatically defined when an IcaSet object is created through buildIcaSet. By default, for a given
component, a witness gene corresponds to an individual having an absolute scaled projection value
larger than selCutoff in at most one IC. Its sign of contribution should be the same than the
majority of the selected contributing genes.

> witGenes(icaSetMainz)[1:5]

1 2 3 4 5

"IGHM" "GABRP" "CDCA8" "PICALM" "COL11A1"

> ## We can for example modify the second contributing gene

> witGenes(icaSetMainz)[2] <- "KRT16"

Accessing slots in different data formats Slots A, S, and SByGene are data.frame objects.
A common need is to extract these data.frame in the form of a list where row names are preserved.
It can be done using the functions Alist, Slist, and SlistByGene.
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Setting The names of the accession functions described above, can also be used for setting the
slots of an IcaSet object by adding operator <- and the new value. For example:

> compNames(icaSetMainz) <- paste("IC",1:nbComp(icaSetMainz),sep="")

Subsetting Subsetting an IcaSet is very similar to subsetting the expression matrix that is con-
tained within the IcaSet to a subset of features/genes (first argument) and samples (second argu-
ment), except for a third argument that allows to subsets the components.

> ## select tumor samples of grade 3

> keepSamples <- sampleNames(icaSetMainz)[icaSetMainz$grade=="3"]

> ## Subset icaSetMainz to the grade-3 samples

> icaSetMainz[,keepSamples]

> ## Subset icaSetMainz to the grade-3 samples and the first five components

> icaSetMainz[,keepSamples,1:5]

> ## Subset icaSetMainz to the first 10 features

> icaSetMainz[featureNames(icaSetMainz)[1:10],keepSamples]

Useful basic functions Other functions which allow to extract data from an IcaSet object are
available.

Select the contributing features or genes: When applying ICA decomposition to genomic
data, for example here gene expression data, the distribution of the gene projections on the ICs
is expected to be super-Gaussian: a large portion of genes follows a (super-)Gaussian centered at
zero and a small portion belongs to an outgrowth located on the right and/or on the left of the
distribution. In order to select the elements belonging to this outgrowth, we used the conventional
way based on a threshold. The thresholds can typically be 3 or 4 standard deviations from the
mean. We refer to the resulting selected genes as the “contributing genes”.

Here is the histogram of the projection values for the first component.
The function selectContrib allows to select the contributing elements from a list of projection

values.

> ## Extract the contributing genes

> contrib <- selectContrib(icaSetMainz, cutoff=3, level="genes")

> ## Show the first contributing genes of the first and third components

> sort(abs(contrib[[1]]),decreasing=TRUE)[1:10]

IGHM NKG7 TNFRSF17 IGK GZMK IGKC CXCL9 CXCL13

6.659809 6.463074 6.363992 5.851299 5.533274 5.505683 5.475967 5.429822

JCHAIN IGLV1-44

5.223099 5.201415

> sort(abs(contrib[[3]]),decreasing=TRUE)[1:10]
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MMP1 CDCA8 OGN ELN SCGB1D2 MFAP4 CDC45 ACKR1

5.717376 5.477812 5.371826 5.225109 5.192641 5.162009 5.140146 5.041739

KRT14 CENPN

4.938156 4.613233

> ## One can also want to apply different cutoffs depending on the components

> ## for example using the first 4 components:

> contrib <- selectContrib(icaSetMainz[,,1:4], cutoff=c(4,4,4,3), level="genes")

Extract data of a specific component: The function getComp allows to extract the pro-
jection values and sample contribution of a specific component:

> ## extract sample contributions and gene projections of the second component

> comp2 <- getComp(icaSetMainz, level="genes", ind=2)

> ## access the sample contributions

> comp2$contrib[1:5]

MAINZ_BC6001 MAINZ_BC6002 MAINZ_BC6003 MAINZ_BC6004 MAINZ_BC6005

-0.14515901 0.32744737 -0.09054997 0.10447404 0.23829698

> ## access the gene projections

> comp2$proj[1:5]

GUCA1A PTPN21 CCL5 CYP2E1 EPHB3

0.25970790 -0.30932799 0.60651225 0.06477177 -2.51301758

3.3 Run global analysis

The function runAn enables to study an IcaSet object by calling all the functions dedicated to the
analysis of an ICA decomposition in the package MineICA. The outputs are written in the path
resPath(params), each sub-directory containing the outputs of a specific analysis.

We apply the function runAn to the object icaSetMainz:

> ## select the annotations of interest

> varLabels(icaSetMainz)

[1] "samplename" "dataset" "series" "id"

[5] "filename" "size" "age" "er"

[9] "grade" "pgr" "her2" "brca.mutation"

[13] "e.dmfs" "t.dmfs" "node" "t.rfs"

[17] "e.rfs" "treatment" "tissue" "t.os"

[21] "e.os"
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> # restrict the phenotype data to the variables of interest

> keepVar <- c("age","er","grade")

> # specify the variables that should be treated as character

> icaSetMainz$er <- c("0"="ER-","1"="ER+")[as.character(icaSetMainz$er)]

> icaSetMainz$grade <- as.character(icaSetMainz$grade)

> ## Run the analysis of the ICA decomposition

> # only enrichment in KEGG gene sets are tested

> runAn(params=params, icaSet=icaSetMainz, writeGenesByComp = TRUE,

+ keepVar=keepVar, dbGOstats = "KEGG")

The resulting plots and data are located in the main results path, which here is the “mainz/”
current directory:

> resPath(params)

[1] "mainz/"

The sub-directories automatically created by the function runAn are the following:

ProjByComp/: contains the annotations of the features or genes, one file per component;

varAnalysisOnA/: contains two directories: ’qual/’ and ’quant/’ which respectively contain the
results of the association between components and qualitative and/or quantitative variables;

Heatmaps/: contains the heatmaps (one pdf file per component) of the contributing genes by
component;

varOnSampleHist/: contains the histograms of the sample contributions superimposed with the
histograms of the groups of samples defined by the variables of interest (e.g tumor grade).

3.4 Run analysis by calling individual functions

The functions implicitely called by runAn can be run individually. In this section, we will provide
examples of each of these functions.

3.4.1 Write description of contributing genes or features, function writeProjByComp

Each component is a direction in the space where axis are the samples and points are genes whose
locations are defined by their expression profiles across samples. In matrix S, each component is
thus defined by a vector of gene projection values. When applying ICA to gene expression data,
each component is typically triggered by a group of genes co-expressed on a subset of samples.
These genes responsible for the existence of the component will typically have high projections, we
call them the contributing genes.

The first way to study a component is to look at its contributing genes. The function writeProjByComp

allows to describe genes with a projection value higher than a given threshold on each component.
As in PCA, the components computed by ICA are defined up to their sign. On a given com-

ponent, genes with opposite projection signs are elements whose expressions are anti-correlated on
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the samples distributed at both ends of the component. The function writeProjByComp therefore
orders genes by absolute projection values.

This function creates a HTML file per component containing the description of the contributing
features or genes, and a file containing the projection values of each feature or gene across all
components.

The needed information are queried through biomaRt . By default, the descriptors used to
annotate the gene ids are their Gene Symbols, Ensembl IDs, biological description and genomic
locations. If you would like to add descriptors, please fill argument typeRetrieved. Here we will
content ourselves with the defaults ones. You can change the threshold used to select the genes to
be described using the argument selCutoffWrite.

Here we are interested in the description of the projection values at the gene level (level= genes ).

> resW <- writeProjByComp(icaSet=icaSetMainz, params=params, mart=mart,

+ level='genes', selCutoffWrite=2.5)

> ## the description of the contributing genes of each component is contained

> ## in res$listAnnotComp which contains the gene id, its projection value, the number and

> ## the indices of the components on which it exceeds the threshold, and its description.

> head(resW$listAnnotComp[[1]])

hgnc_symbol scaled_proj nbOcc_forThreshold:3 comp_forThreshold:3

153 IGHM 6.66 1 1

154 IGHM 6.66 1 1

226 NKG7 6.463 1 1

277 TNFRSF17 6.364 1 1

155 IGK 5.851 1 1

102 GZMK 5.533 1 1

description

153 immunoglobulin heavy constant mu [Source:HGNC Symbol;Acc:HGNC:5541]

154 immunoglobulin heavy constant mu [Source:HGNC Symbol;Acc:HGNC:5541]

226 natural killer cell granule protein 7 [Source:HGNC Symbol;Acc:HGNC:7830]

277 TNF receptor superfamily member 17 [Source:HGNC Symbol;Acc:HGNC:11913]

155 <NA>

102 granzyme K [Source:HGNC Symbol;Acc:HGNC:4711]

chromosome_name start_position end_position band strand

153 CHR_HSCHR14_3_CTG1 105854991 105865024 -1

154 14 105851708 105856218 q32.33 -1

226 19 51371606 51372715 q13.41 -1

277 16 11965107 11968068 p13.13 1

155 <NA> NA NA <NA> NA

102 5 55024253 55034570 q11.2 1

ensembl_gene_id

153 ENSG00000282657

154 ENSG00000211899

226 ENSG00000105374

277 ENSG00000048462
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155 <NA>

102 ENSG00000113088

> ## The number of components a gene contributes to is available

> ## in res$nbOccInComp

> head(resW$nbOccInComp)

gene nbOcc components sd_expr 1 2 3 4 5

S100A7 S100A7 2 2,4 3.86750 0.2359 -4.897 0.961 -3.699 -1.394

SCGB1D2 SCGB1D2 1 3 3.43860 -1.283 2.066 -5.184 0.4333 -0.4833

CPB1 CPB1 1 1 2.77680 -3.644 2.674 -0.8729 -1.339 0.9012

GRIA2 GRIA2 2 1,2 2.76040 -2.948 3.552 -0.2685 -0.166 -0.8901

MMP1 MMP1 2 3,5 2.64700 2.705 -0.9315 5.79 -0.3799 3.053

CYP4F8 CYP4F8 2 4,5 2.60910 -1.109 0.4198 -1.945 2.95 3.158

> ## The output HTML files are located in the path:

> genesPath(params)

[1] "mainz/ProjByComp/"

3.4.2 Plot heatmaps of the contributing elements, function plot_heatmapsOnSel

A way to visualize the pattern captured by a component is to draw the heatmap of its contributing
features/genes. The function plot_heatmapsOnSel enables to plot the heatmaps of the contributing
genes for each component. On those heatmap, features and samples are either ranked by their
contribution value to the component, or clustered with hierarchical clustering.

Here we choose to study the data at the gene level (level="genes"), and a threshold of 3 is
used for the selection of the contributing genes.

> ## selection of the variables we want to display on the heatmap

> keepVar <- c("er","grade")

> ## For the second component, select contributing genes using a threshold of 3

> ## on the absolute projection values,

> ## heatmap with dendrogram

> resH <- plot_heatmapsOnSel(icaSet = icaSetMainz, selCutoff = 3, level = "genes",

+ keepVar = keepVar,

+ doSamplesDendro = TRUE, doGenesDendro = TRUE, keepComp = 2,

+ heatmapCol = maPalette(low = "blue", high = "red", mid = "yellow", k=44),

+ file = "heatmapWithDendro", annot2col=annot2col(params))

> ## heatmap where genes and samples are ordered by contribution values

> resH <- plot_heatmapsOnSel(icaSet = icaSetMainz, selCutoff = 3, level = "genes",

+ keepVar = keepVar,

+ doSamplesDendro = FALSE, doGenesDendro = FALSE, keepComp = 2,
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+ heatmapCol = maPalette(low = "blue", high = "red", mid = "yellow", k=44),

+ file = "heatmapWithoutDendro", annot2col=annot2col(params))

>

The heatmap where samples are ranked by sample contributions shows a group of tumors
distributed at the left/negative end of the IC that strongly under-express and over-express sone of
the contributing genes of the component, and whose pattern of expression is strongly anticorrelated
with the tumors distributed at the opposite end of the component (Figure ??). According to the
second row of the top panel displaying the tumor annotations, these tumors are preferentially ER
negative.

3.4.3 Gene enrichment analysis, function runEnrich

To obtain a biological interpretation of the component, it can be useful to study the association
of its contributing genes with gene sets grouping genes involved in a same biological processes or
sharing a same factor of regulation. In order to identify the gene sets which are enriched in the list
of selected (contributing) genes, the function runEnrich uses R GOstats package ? which makes
use of a hypergeometric distribution to test the over-representation of a gene set in a given list of
genes.

> ## run enrichment analysis on the first three components of icaSetMainz,

> ## using gene sets from the ontology 'Biological Process' (BP) of Gene Ontology (GO)

> resEnrich <- runEnrich(params=params,icaSet=icaSetMainz[,,1:3],

+ dbs=c("GO"), ontos="BP")

The output resEnrich is a list whose each element contains results obtained on each database
for every component tested. For each component, three enrichment results are available, depending
on how contributing genes are selected: on the absolute projection values (“both”), on the positive
projection (“pos”), and on the negative projection (“neg”).

We can see that the first component is associated with immune reaction, the second component
with epiderm development, and the third component with cell cycle:

> ## Access results obtained for GO/BP for the first three components

> # First component, when gene selection was based on the negative projection values

> head(resEnrich$GO$BP[[1]]$left)

GOBPID Pvalue OddsRatio ExpCount Count Size

1 GO:0006955 4.133986e-16 16.11393 2.180819 21 185

2 GO:0002694 3.535657e-14 10.23999 3.246918 23 199

3 GO:0050867 1.059836e-11 10.34766 2.382161 18 146

4 GO:0002429 2.104749e-11 13.19753 1.566352 15 96

5 GO:0050863 2.964082e-11 14.54225 1.337114 14 85

6 GO:0051251 3.414818e-11 14.36465 1.350438 14 85

Term

1 immune response

2 regulation of leukocyte activation
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Figure 1: Heatmap of component 2. The expression matrix is restricted to the contributing genes
with an absolute scaled projection exceeding 3, and each gene expression profile is centered. In
heatmap (a), genes and samples are ranked by their contribution to the IC.
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3 positive regulation of cell activation

4 immune response-activating cell surface receptor signaling pathway

5 regulation of T cell activation

6 positive regulation of lymphocyte activation

In_geneSymbols

1 CD7,MS4A1,CD27,CTSW,GZMA,HLA-DOB,IGHD,IGHM,IGJ,IL2RG,CXCL10,LTB,LY9,CXCL9,CCL18,CXCL11,CST7,FCGR2C,IL32,ADAMDEC1,ICOS

2 AIF1,CD2,CD3D,CD3G,CD247,CD27,CD37,CD38,HLA-DQB1,LCK,PTPRC,CCL5,CCL19,XCL1,EBI3,LILRB1,PTPN22,SIT1,TRBC1,TRAC,ICOS,MZB1,SLAMF7

3 AIF1,CD2,CD3D,CD3G,CD247,CD27,CD38,HLA-DQB1,LCK,PTPRC,CCL5,CCL19,XCL1,EBI3,LILRB1,TRBC1,TRAC,ICOS

4 CD3D,CD3G,CD247,CD38,HLA-DQB1,IGHG1,IGKC,IGLC1,LCK,PRKCB,PTPRC,PTPN22,TRBC1,TRAC,TRAT1

5 AIF1,CD3D,CD3G,CD247,HLA-DQB1,PTPRC,CCL5,XCL1,EBI3,PTPN22,SIT1,TRBC1,TRAC,ICOS

6 AIF1,CD3D,CD3G,CD247,CD38,HLA-DQB1,PTPRC,CCL5,XCL1,EBI3,LILRB1,TRBC1,TRAC,ICOS

> # Second component

> head(resEnrich$GO$BP[[2]]$both, n=5)

GOBPID Pvalue OddsRatio ExpCount Count Size

1 GO:0045104 2.160448e-05 19.682018 0.36675127 5 17

2 GO:0031581 6.046162e-05 26.782609 0.23730964 4 11

3 GO:0030318 3.943872e-04 14.405351 0.36675127 4 17

4 GO:0070488 4.615930e-04 Inf 0.04314721 2 2

5 GO:0072602 4.615930e-04 Inf 0.04314721 2 2

6 GO:0034329 1.079591e-03 4.298411 2.09263959 8 97

Term

1 intermediate filament cytoskeleton organization

2 hemidesmosome assembly

3 melanocyte differentiation

4 neutrophil aggregation

5 interleukin-4 secretion

6 cell junction assembly

In_geneSymbols

1 DST,KRT14,KRT16,PKP1,SYNM

2 DST,COL17A1,KRT5,KRT14

3 EDN3,KIT,SOX10,MLPH

4 S100A8,S100A9

5 GATA3,VTCN1

6 DST,CDH3,COL17A1,GPM6B,KRT5,KRT14,SFRP1,UGT8

> # Third component, when gene selection was based on the absolute projection values

> head(resEnrich$GO$BP[[3]]$both)

GOBPID Pvalue OddsRatio ExpCount Count Size

1 GO:0048285 2.180659e-24 16.848654 3.18165337 32 150

2 GO:0051301 7.647658e-16 14.529070 2.14748665 21 107
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3 GO:0007067 4.855310e-12 17.087428 1.18268701 14 65

4 GO:0007076 9.304760e-06 Inf 0.06363307 3 3

5 GO:0000086 1.957014e-05 8.181957 1.18781726 8 56

6 GO:0006271 5.656494e-05 27.266751 0.23332125 4 11

Term

1 organelle fission

2 cell division

3 mitosis

4 mitotic chromosome condensation

5 G2/M transition of mitotic cell cycle

6 DNA strand elongation involved in DNA replication

In_geneSymbols

1 BIRC5,BUB1,CCNA2,CDK1,CDC20,CDC25A,CENPE,IGF1,KIFC1,MYBL2,NEK2,AURKA,CCNB2,KIF23,DLGAP5,NDC80,UBE2C,TPX2,NCAPH,UBE2S,NUSAP1,ERCC6L,CDCA8,CEP55,CENPN,PBK,NCAPG,DSCC1,CDCA3,KIF18B,SKA1,ASPM

2 BUB1,CCNA2,CDK1,CDC20,CDC25A,CENPE,KIFC1,NEK2,AURKA,TOP2A,CCNB2,NDC80,UBE2C,TPX2,NCAPH,UBE2S,ERCC6L,CDCA8,NCAPG,CDCA3,SKA1

3 CCNA2,CDK1,CDC25A,CCNB2,TPX2,ERCC6L,CDCA8,CEP55,CENPN,PBK,CDCA3,KIF18B,SKA1,ASPM

4 NCAPH,NUSAP1,NCAPG

5 BIRC5,CCNA2,CDK1,CDC25A,FOXM1,NEK2,CCNB2,MELK

6 MCM5,CDC45,GINS1,GINS2

The function runEnrich also writes these enrichment results in HTML files located in the
sub-directory ”GOstatsEnrichAnalysis” of the result path.

3.4.4 Association with sample variables

Recall that a component is a direction in the gene space whose axis are defined by the samples.
The mixing matrix A contains the coordinates of the components on the sample axis, we call these
values the sample contributions.

The association of qualitative variables (e.g sample characteristics like tumor grade) with the
components can be studied by comparing the contributions of the groups of samples they define.
Depending on the number of groups formed by a given variable, their distribution can be compared
either using a Wilcoxon (two groups) or a Kruskall-Wallis test (at least three groups). The function
qualVarAnalysis tests whether the groups of samples formed by the qualitative variables are
differently distributed on the components in terms of contribution value and plots the corresponding
densities or boxplots using ggplot2 .

If the levels of some variables in the phenoData of your IcaSet object are ordered (e.g, increasing
tumor stage T1 T2 T3...), we advise you to declare these variables as factors whose levels are
correctly ordered.

> ### Qualitative variables

> ## Compute Wilcoxon and Kruskall-Wallis tests to compare the distribution

> ## of the samples according to their grade and ER status on all components.

> resQual <- qualVarAnalysis(params=params, icaSet=icaSetMainz,

+ keepVar=c("er","grade"),

+ adjustBy="none", typePlot="boxplot",

+ path="qualVarAnalysis/", filename="qualVar")
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[1] "Plot distribution of samples on components according to variable er"

[1] "Comp 1"

[1] "Comp 2"

[1] "Comp 3"

[1] "Comp 5"

[1] "Plot distribution of samples on components according to variable grade"

[1] "Comp 1"

[1] "Comp 2"

[1] "Comp 3"

[1] "Comp 5"

The function creates an HTML file ”qualVarAnalysis/qualVar.htm”, containing p-values and links
toward boxplots. If you would like to plot densities rather than boxplots, please use 'typePlot=density'.

An example of boxplot is represented below for the second component and the ER status. As
suggested by the heatmap, the distribution of the samples on this component is strongly associated
with their ER status, the latter coming up at the positive end of the component.

When a variable is quantitative, its association with a component can be studied by computing
its correlation with the sample contributions. The function quantVarAnalysis allows to compute
the correlation tests and to draw the corresponding scatter plots using ggplot2 .

> ### Quantitative variables

> ## Compute pearson correlations between variable 'age' and the sample contributions

> ## on all components.

> ## We are interested in correlations exceeding 0.3 in absolute value, and plots will only be drawn

> ## for correlations exceeding this threshold.

> resQuant <- quantVarAnalysis(params=params, icaSet=icaSetMainz, keepVar="age",

+ typeCor="pearson", cutoffOn="cor",

+ cutoff=0.3, adjustBy="none",

+ path="quantVarAnalysis/", filename="quantVar")

[1] "Scatter plot of samples contributions vs variable age"

[1] "Comp 2"

The absolute correlation between age and sample contributions exceeds 0.3 only for the second
component.

> resQuant$cor[2]

[1] 0.3670033

The corresponding scatter plot is available in Figure ??. A tendency of the women whose tumors
are located at the positive end of the component to be younger indeed appears.

The function creates a HTML file ”quantVar.htm” containing correlations values, p-values, and
links toward scatter plots.
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Figure 2: Example of boxplot representing the distribution of ER status on the third component.
The Wilcoxon test p-value is available in the title of the plot. The legend indicates that the ER+
tumors are represented in beige while ER- are represented in light pink. The number of tumors
in each group is given between brackets. The witness gene is KRT16. Each tumor sample is
represented as a square point in the vertical line at the left end of the boxplots whose color denotes
its amount of expression of the KRT16 gene. The scale of these colors is denoted by a legend at
the upper right of the graph.
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Figure 3: Scatter plot of AGE vs sample contributions. The witness gene is KRT16. At the bottom
of the plot, each sample is represented by a square point whose colour denotes the expression value
of the KRT16 gene. The scale of these colors is denoted by a legend at the upper right of the graph.
Note that the gene expression profiles were centered to have mean zero.
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3.4.5 Clustering of the samples according to each component

Selection of samples associated with a component The selection of the samples associated
with a component may be needed for experimental needs. ICA provides a continuous signal describ-
ing the activity of the components on the samples through the mixing matrix A. Genes which are
contributors on the components can also be selected through their projections in matrix S (using
an arbitrary threshold). Since the signal is continuous the selection of the samples contributing to
a component rely on some arbitrary choices regarding:

• the data on which the clustering has to be applied on: clustering in one dimension on columns
of A, or clustering on the expression matrix restricted to the contributing genes of the com-
ponents?

• the number of clusters to use: two clusters if it is considered as a strictly bimodal signal, or
three clusters if we assume the existence of a group of samples with an average behavior?

• the method of clustering to use: k-means, clustering based on mixture Gaussian modelling,
hierarchical clustering, ...

We recommend to cluster the samples by using their contributions to the component.
If you would like to perform the clustering on the original data restricted to the contributing genes,
please remind that they won’t necessarily represent the whole pattern of expression captured by
the component, the latter having been defined on all the features and not on a subset of them.

Study the bimodality of sample contributions in matrix A The distribution of the sample
contributions on a component (contained in matrix A) is often bimodal, each mode corresponding
to samples that over- or under-express the contributing genes of the component. The sample
contributions can be visualized with histograms, overlaid by Gaussian mixtures computed, in this
package, using package mclust ??. When a strong bimodal distribution is observed, the intersection
of the two Gaussian infered by function Mclust may be used to cluster the tumors. Here is an
example by imposing two Gaussian on every vector of sample contributions:

> resmix <- plotAllMix(A=A(icaSetMainz), nbMix=2, nbBreaks=50)

The position of sub-groups of samples can be plotted in this histogram, in order to see if they
are located at a specific end of the components. The function plotPosAnnotInComp allows to
do so. The samples distributed at one end of component generally have either a strong over- or
under-expression of its contributing genes.

Here is the example of the distribution of the tumors according to their ER status on the second
component.

> ## plot the positions of the samples on the second component according to their ER status

> ## (in a file "er.pdf")

> plotPosAnnotInComp(icaSet=icaSetMainz, params=params, keepVar=c("er"), keepComp=2,

+ funClus="Mclust")

Again, we can see that the negative end of the IC defines a cluster of tumors almost exclusively
constituted of ER- tumors, while the ER+ tumors are primarily located on its right side. The
expression profile of the gene witness, KRT16, indicates that the negative side corresponds to the
over-expression of this gene and its counterparts compared to the positive side.
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Figure 4: Distribution of ER status on the second component.. The histogram of each group is
superimposed on the global histogram including contributions of all tumor samples. Two Gaussians
were fitted on the distribution by mixture modeling using package mclust . The p-value at the top
of the histogram provides the result of a chi-square test of association between each group and the
clusters of samples formed by the two Gaussians.

Cluster samples, function clusterSamplesByComp The function clusterSamplesByComp al-
lows to cluster the samples using either the mixing matrix A or the original data matrix restricted
to the contributing individuals. The clustering can be performed using centroid-based clustering
(function kmeans), hierarchical clustering (through functions hclust and agnes), Gaussian mix-
ture models (using function Mclust or package mclust), or Partitioning Around Medoids (PAM)
(functions pam and pamk).

The second component displays a bimodal distribution, we cluster the samples using the vector
of sample contributions:

> ## clustering of the samples in 1-dim using the vector

> ## of sample contributions of the two first components

> ## and Gaussian mixture modeling (Mclust)

> clus1 <- clusterSamplesByComp(params=params, icaSet=icaSetMainz[,,,1:2],

+ funClus="Mclust", clusterOn="A", nbClus=2, filename="comp1Mclust")

> ## The obtained clusters are written in the file "comp1Mclus.txt" of the result path.

> clus1$clus[[2]][1:5]

MAINZ_BC6001 MAINZ_BC6002 MAINZ_BC6003 MAINZ_BC6004 MAINZ_BC6005

2 2 2 2 2

It is also possible to perform several clusterings, using different algorithms or levels, with func-
tion clusterSamplesOnComp_multiple. We can for example compare the clustering performed
with k-means applied to the vector of sample contributions and to the expression matrix restricted
to the contributing genes:

> clus2 <- clusterSamplesByComp_multiple(params=params, icaSet=icaSetMainz[,,1:2],

+ funClus="kmeans", clusterOn=c("A","S"), level="features",

+ nbClus=2, filename="comparKmeans")

> ## The obtained clusters and their comparison with adjusted Rand indices are written
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> ## in file "comparKmeans.txt" of the result path.

>

> ## Both clustering results are stored in a common data.frame

> head(clus2$clus)

1_kmeans_onA 2_kmeans_onA 1_kmeans_onS 2_kmeans_onS

MAINZ_BC6001 1 1 1 1

MAINZ_BC6002 1 2 1 2

MAINZ_BC6003 1 2 2 1

MAINZ_BC6004 1 2 1 2

MAINZ_BC6005 1 2 1 2

MAINZ_BC6006 2 2 1 2

> ## Access Rand index

> clus2$comparClus

kmeans_onA kmeans_onS

1_kmeans_onA 1.000 0.531

1_kmeans_onS 0.531 1.000

2_kmeans_onA 1.000 0.779

2_kmeans_onS 0.779 1.000

Once a sample clustering has been computed, one can be interested in its association with
the qualitative variables. Function clusVarAnalysis enables to perform the chi-square tests of
independence to study the association between the clustering obtained on each component and the
qualitative variables. It also draws the barplot to show the distribution of the variable levels across
the clusters:

> ## Test the association between the clustering obtained by Mclust for the first

> ## component and the variables:

> clus2var <- clusVarAnalysis(icaSet=icaSetMainz[,,1:2], params=params,

+ keepVar=c("er","grade"),

+ resClus=clus1$clus, funClus="Mclust", adjustBy="none",

+ doPlot=TRUE, path="clus2var/", filename="resChitests-Mcluscomp1")

> ## Look at the filename which contains p-values and links to the barplots

> ## p-values are also contained in the ouput of the function:

> clus2var

>

>

3.4.6 Comparison of IcaSet objects, function runCompareIcaSets

Visualization of the correspondence between independent components with correlation-
based graphs We can study the association between ICs computed on n different datasets using
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correlation graphs. In these graphs, each IC is represented as a node whose color indicates the
dataset, and the edge thickness is proportional to the amount of correlation between the two ICs
it links.
Hereafter we will denote by CM,n the nth component from dataset M .

The relationship between the components is restricted to correlation maximum: an edge con-
necting a component CA,i to a component CB,j means that component CA,i is the most correlated
component to CB,j among all the components CA,i′(i′ 6=i) from the dataset A. The reciprocity of the
link (i.e. the presence of an edge binding CB,j to CA,i) reinforces the association between the two
components.

In R, the graph can be visualized with function tkplot, using the “fruchterman.reingold” layout
which attends to attribute the length of the edge according to one of its attribute, here the absolute
correlation coefficient between the two components it links.
The edge thickness is also attributed according to the absolute correlation value (the higher the
absolute correlation value is, the thicker the edge thickness is).
Highly reproducible components appear in the graph as a subset of n interconnected nodes of
different colors (quasi-cliques). A way to highlight these quasi-cliques is obtained by coloring in
black only edges linking reciprocal node pairs (a node pair is said to be reciprocal if there are edges
between them in both directions). Non-reciprocal edges appear in grey. It allows to highlight the
components with a high level of reproducibility.

Example: Comparison of four IcaSet objects As an example we will compare four ICA
decompositions obtained on four different gene expression datasets of breast tumors (including the
Mainz data used above).
We build an instance of IcaSet for each of the three datasets:

> ## load three other breast cancer datasets also based on Affymetrix HG-U133a microarray

> library(breastCancerUPP)

> library(breastCancerTRANSBIG)

> library(breastCancerVDX)

> data(upp)

> data(transbig)

> data(vdx)

> ## function to build IcaSet instances from these three datasets

> treat <- function(es, annot="hgu133a.db") {

+ es <- selectFeatures_IQR(es,10000)

+ exprs(es) <- t(apply(exprs(es),1,scale,scale=FALSE))

+ colnames(exprs(es)) <- sampleNames(es)

+ resJade <- runICA(X=exprs(es), nbComp=5, method = "JADE", maxit=10000)

+ resBuild <- buildIcaSet(params=buildMineICAParams(), A=data.frame(resJade$A), S=data.frame(resJade$S),

+ dat=exprs(es), pData=pData(es), refSamples=character(0),

+ annotation=annot, typeID= typeIDmainz,

+ chipManu = "affymetrix", mart=mart)

+ icaSet <- resBuild$icaSet

+ }
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> icaSetUpp <- treat(upp, annot="hgu133plus2.db")

> icaSetVdx <- treat(vdx)

> icaSetTransbig <- treat(transbig)

Each IcaSet was annotated at the gene level using Gene Symbols. We will therefore compute
correlation between gene projection values stored in slot SByGene of each IcaSet .

Pearson correlation is used as a measure of association between the gene projections. The
correlation graph can be build with function runCompareIcaSets:

> resGraph <- runCompareIcaSets(icaSets=list(icaSetMainz, icaSetUpp,

+ icaSetTransbig, icaSetVdx),

+ labAn=c("Mainz", "Upp","Transbig","Vdx"),

+ type.corr="pearson", level="genes",

+ cutoff_zval=0, fileNodeDescr="nodeDescr.txt",

+ fileDataGraph="dataGraph.txt", tkplot=TRUE)

Get the colors attributed to each dataset using the element nodeAttrs of resGraph:

> barplot(names.arg=unique(resGraph[[2]]$labAn),height=rep(1,4),

+ col=unique(resGraph[[2]]$col))

The Mainz dataset is represented in blue. Three cliques of four components appear in the correlation-
based graph, they include the first three components of the Mainz dataset. The latter are therefore
reproducible across the four datasets and thus capture coexpression patterns shared across different
breast cancer cohorts. We showed that the first component was associated with the cell cycle, the
second with immune reaction, and the third one with epiderm development. The third component
also included EGFR and several keratins among its contributing genes, and defined a cluster of
samples constituted by a subset of the ER- breast tumors. The latter typically corresponds to the
subtype of breast cancer known as ”basal-like”.

Here we chose to base the correlation on all genes. By modifying the argument cutoff_zval,
we could have chosen to base the correlations on genes with contribution values higher than a given
threshold. Using cutoff_zval=1, only the projections whose scaled values are not located within
the circle of radius 1 when considering a pair of components are used to compute the correlation.
In practice, the function will be much faster when cutoff_zval=0, since in that case pairs of com-
ponents are not treated individually.

Created files nodeDescr.txt and dataGraph.txt may be used as inputs into Cytoscape ? which
could be a way to obtain a more elegant correlation graph.

Intersection and union between contributing genes When cliques appear in the correlation-
based graph, you may want to compare the genes having high projections on the components in-
cluded in the clique. The function compareGenes allows to compare components of different icaSets
and returns the common genes ordered by their median rank across the components. Intersection
or union of the genes can be considered.

We study the common contributing genes of the components included in two different cliques
of the graph using compareGenes:
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Figure 5: Correlation-based graph representing association between independent components ob-
tained on four expression data of breast cancer samples. Each node denotes an IC and their colors
represent the dataset they originate from. Edge thickness denotes the amount of correlation between
the two ICs it links. Black edges denote reciprocal nodes.
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> ## comparison of four components included in the clique of the correlation-based graph

> # that includes the second component of Mainz.

> inter <- compareGenes(keepCompByIcaSet = c(2,2,2,2),

+ icaSets = list(icaSetMainz, icaSetTransbig, icaSetUpp, icaSetVdx),

+ lab=c("Mainz", "Transbig", "Upp", "Vdx"), cutoff=3,

+ type="intersection", annotate=F)

> head(inter)

min_rank median_rank ranks scaled_proj

IGL@ 1 1.0 1,1,1,1 -8.9,-9.2,9.2,-9.3

IGKV4-1 2 2.0 2,2,3,2 -8.4,-8.7,7.9,-8.9

IGLV2-23 3 3.0 3,3,4,3 -7,-8.3,7.7,-8.8

NKG7 2 5.0 5,8,2,5 -6.4,-6.1,8.4,-7.6

IGHM 4 5.5 4,7,9,4 -6.6,-6.5,6.7,-7.7

TNFRSF17 4 6.0 6,4,6,6 -6.3,-7.8,7.1,-7.6

> ## comparison of four components included in the clique of the correlation-based graph

> # that includes the third component of Mainz.

> inter <- compareGenes(keepCompByIcaSet = c(3,3,3,1),

+ icaSets = list(icaSetMainz, icaSetTransbig, icaSetUpp, icaSetVdx),

+ lab=c("Mainz", "Transbig", "Upp", "Vdx"), cutoff=3,

+ type="intersection", annotate=F)

> head(inter)

min_rank median_rank ranks scaled_proj

GABRP 1 1.0 1,1,1,3 7.7,8.7,8.1,7.2

MIA 2 4.0 5,5,3,2 6.3,7.2,7.3,7.3

SERPINB5 5 6.5 7,7,6,5 6.2,7.1,5.9,6.5

KRT14 2 8.5 13,2,4,21 5.7,7.3,7,5.1

KRT16 2 9.5 2,15,15,4 7.3,5.8,5.4,7

KRT81 4 9.5 4,31,12,7 6.3,4.6,5.6,6.2

The common contributing genes of the first clique are strongly associated in the immune reaction
and many of them are markers of lymphocytes, while the common contributing genes of the second
clique include several keratins (KRT5 KRT14, KRT15, KRT16, KRT17, KRT23, ...) and other
known markers of the basal-like breast subtype.
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