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This document illustrates the use of the networkBMA R package (Fraley et al. 2012) to
uncover regulatory relationships in yeast (Saccharomyces cerevisiae) from microarray data
measuring time-dependent gene-expression levels in 95 genotyped yeast segregants subjected
to a drug (rapamycin) perturbation.

Note: this package depends on the rcppArmadillo package, which is known to cause
errors on OS X Mavericks and El Capitan due to a versioning issue of the gfortran library.
This error is discussed in detail here. From that website, the solution is to go to http:

//r.research.att.com/libs/ and download gfortran-4.8.2-darwin13.tar.bz2. Extract the
package in /, which is root. The files should be unpacked into /usr/local/...

1 Data

The expression data for this vignette is provided in the networkBMA package in the vignette
database, which consists of three R objects:

timeSeries: A 582 by 102 data frame in which the first two columns are factors iden-
tifying the replicate and time (in minutes) after drug perturbation, and the remaining
100 columns are the expression measurements for a subset of 100 genes from the yeast-
rapamycin experiment described in Yeung et al. (2011). There are 582/6 = 97 replicates
(the 95 segregants plus two parental strains of the segregants), each with measurements
at 6 time points. The complete time series data is available from Array Express (Parkin-
son et al. 2007) with accession number E-MTAB-412
(http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-412).

reg.known: A 18 by 3 data frame giving known regulatory relationships among this
subset of 100 genes. The first two columns give the regulator and target gene, respec-
tively, while the third encodes the source of the regulatory information (‘YPD’ for Yeast
Proteome Database (Hodges et al. 1999) and ‘SCPD’ for The Promoter Database of Sac-
charomyces cerevisiae (Zhu and Zhang 1999). In this example, we constrained reg.known

to high-confidence experimental results obtained from biochemical (non-high-throughput)
experiments.

reg.prob: A 100 by 100 matrix, giving probability estimates for regulatory relationships
in which the (i, j) entry gives the estimated probability that gene i regulates gene j.
These were computed using the supervised framework integrating multiple data sources
of Lo et al. (2012).

referencePairs: A 2-column data frame giving 287 regulator-gene pairs among the
selected set of 100 genes reported from the literature. In this yeast example, the refer-
ence network was extracted from the documented evidence from the YEASTRACT database
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(Teixeira et al. 2006), which includes curated regulatory relationships from the literature
inferred from high-throughput experiments.

brem.data: An 85 by 111 subset of the data used for network inference in yeast (Brem
et al. 2002, Brem and Kruglyak 2005). The rows correspond to genes and the columns
to experiments. Provided courtesy of Rachel Brem.

> library(networkBMA)

> data(vignette)

> dim(timeSeries)

[1] 582 102

> dim(reg.prob)

[1] 100 100

> dim(brem.data)

[1] 85 111

> reg.known

Regulator TargetGene source

1 YDR216W YKR009C YPD

2 YER040W YPL111W YPD

3 YER040W YKL015W YPD

4 YER040W YOR348C YPD

5 YJR094C YDR523C YPD

6 YKL062W YMR169C YPD

7 YKL062W YPL061W YPD

8 YKL062W YAL062W YPD

9 YKL062W YIL155C YPD

10 YKL062W YFL014W YPD

11 YKL062W YCR021C YPD

12 YKL062W YDR258C YPD

13 YKL062W YJR094C YPD

14 YKL062W YER150W YPD

15 YKL062W YNL194C YPD

16 YBL103C YNL037C YPD

17 YKL112W YCL064C SCPD

18 YKL112W YHR051W SCPD
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2 Network Modeling

Given the yeast expression data from the Rapamycin experiments, the networkBMA function
can be invoked to estimate the probabilities of regulatory relationships using either ScanBMA
or iterative Bayesian Model Averaging (Yeung et al. 2005, 2011). The ScanBMA algorithm,
as shown in Algorithm 1, is preferred when available. The parameter ”prior.prob” indicates
the prior probabilities of regulatory relationships. If the parameter ”prior.prob” is set to a
single positive fraction, it represents the probability of a regulator-gene pair in the network
(i.e. the expected network density as defined in (Lo et al. 2012)). The parameter ”prior.prob”
can also be set to a matrix in which the (i,j) entry is the estimated prior probability that
gene i regulates gene j. The default value of ”prior.prob” is NULL, which implies that no
prior information will be used in modeling the network.

> edges.ScanBMA <- networkBMA(data = timeSeries[,-(1:2)],

+ nTimePoints = length(unique(timeSeries$time)),

+ prior.prob = reg.prob,

+ nvar = 50,

+ ordering = "bic1+prior", diff100 = TRUE, diff0 = TRUE)

> edges.ScanBMA[1:9,]

Regulator TargetGene PostProb

1 YJL217W YJL217W 1

2 YIL037C YIL037C 1

3 YGL009C YGL009C 1

101 YHR216W YHR216W 1

102 YOL014W YOL014W 1

201 YAL062W YAL062W 1

202 YHR136C YHR136C 1

203 YJR094C YJR094C 1

301 YOR032C YOR032C 1

For each gene g, the observed gene expression of genes at time t−1 serve as linear predictors
for modeling the observed expression of gene g at time t. BMA modeling results in a weighted
average of models consisting of relatively small numbers of predictors. The probability of
gene h being a linear predictor in the model for gene g is taken as the probability that gene
h regulates gene g in the network.

There are options for ordering the variables (parameter ”ordering”) and specifying the
number of ordered variables (parameter ”nvar”) to be included in the modeling. In both
algorithms ScanBMA and iBMA, all the candidate variables (genes) are initially ranked
using the method specified in ”ordering”, and the top ”nvar” such variables will be used as
input in the BMA regression step. Note that if ScanBMA is used, the parameter ”ordering”
will have no effect in the BMA regression step.

Differentiation can also be performed on edges returned with 0% or 100% posterior prob-
ability. To include known regulatory relationships, the iBMA algorithm must be used. This
can be done as shown below, but the results shown subsequently will use the call with
ScanBMA as the algorithm, as above. Note that a running time of hours up to a few days
is normal when analyzing datasets containing thousands of genes.
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> tsVar <- which(names(timeSeries) %in%

+ unique(c(reg.known$Regulator, reg.known$TargetGene)))

> timeSeriesData <- timeSeries[,tsVar]

> timeSeriesProbs <- reg.prob[tsVar-2,tsVar-2]

> edges.iBMA <- networkBMA(data = timeSeriesData,

+ nTimePoints = length(unique(timeSeries$time)),

+ prior.prob = timeSeriesProbs, known = reg.known,

+ nvar = 50, control = iBMAcontrolLM(),

+ ordering = "bic1+prior", diff100 = FALSE,

+ diff0 = FALSE)

> edges.iBMA[1:9,]

Regulator TargetGene PostProb

1 YBL103C YBL103C 1

2 YOR348C YBL103C 1

3 YKL112W YKL112W 1

4 YOR348C YKL112W 1

5 YKL062W YKL112W 1

6 YFL014W YKL112W 1

7 YDR216W YDR216W 1

8 YDR523C YDR216W 1

9 YKL062W YDR216W 1

Algorithm 1: ScanBMA

Initialize Mkeep,Mnext = {}
Initialize Mactive = {null model}, bestScore = 0
whileMactive not empty do

for model mnew in NeighborsOf(Mactive) do
mScore = EvaluateModelScore(mnew)
if mScore in OccamsWindow(bestScore) then

add mnew to Mnext

bestScore = BestModelScore(bestScore, mScore)

end

end
Trim models from Mkeep according to bestScore
Add good models from Mactive to Mkeep

Mactive = good models from Mnext

end
return Mkeep
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3 Assessment of Network Models

Although, except for synthetic data, the true underlying network is unknown, the results
can be assessed using a set of regulator-target gene network edges reported in the literature.
The comparison is done as follows:

� Let E be the set of regulator-target gene edges resulting from networkBMA, possibly
reduced using a probability threshold. In the context of the example in Section 2, E
corresponds to the set of edges represented in the object edges.ScanBMA.

� Let K be the set of known regulator-target gene edges hardcoded in the modeling. In
the example in Section 2, K corresponds to reg.known.

� Let L be the set regulator-target gene edges reported in the literature. In the example
in Section 2, L corresponds to referencePairs.

� Let E\K and L\K be the set of pairs in E and L, respectively, with any hardcoded edges
removed. In the example of Section 2, E represented by edges.ScanBMA contains 483
pairs, and L represented by referencePairs contains 287 pairs. Both E and L include
all 18 of the known hardcoded edges K represented by reg.known. Hence E\K contains
465 pairs, and L\K contains 269 pairs.

� Let U be the set of all directed pairs r-g such that r is a regulator in L\K and g is a
target gene in L\K. For the example of Section 2, L\K has 11 unique regulator genes
and 99 unique target genes. So there are 11 × 99 or 1089 pairs in U . Assume further
that the linked pairs in U are precisely those pairs in L\K, and that all other pairs are
unlinked.

� Let U\K be the set of pairs in U with any hardcoded eges removed (hardcoded edges
may resurface in the unlinked pairs). For the example of Section 2, 17 of the 18 pairs in
K occur in U , so there are 1089 - 17 = 1072 edges in U\K.

The assessment is done using the contingency table of (E\K)∩ (U\K) relative to U\K. For
the example of Section 2, the assessment would be done with the 57 of the 465 pairs in E\K
that also belong to U\K.

A function called contabs.netBMA is provided to produce contingency tables from a
reference network according the procedure described above. Here we compare the edges
produced in Section 2 by networkBMA modeling on the yeast data with the reference network
referencePairs made up of results reported in the literature:

> ctables <- contabs.netwBMA( edges.ScanBMA, referencePairs, reg.known,

+ thresh=c(.5,.75,.9))

> ctables

TP FN FP TN

0.5 18 251 21 782

0.75 18 251 16 787

0.9 18 251 13 790
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Another function called ‘contabs’ is provided for computing contingency tables when the
true underlying network is known. The scores function can be used to obtain common
assessment statistics from the contingency tables, including sensitivity, specificity, precision,
recall, and false discovery rate among other measures.

> scores( ctables, what = c("FDR", "precision", "recall"))

FDR precision recall

0.5 0.5384615 0.4615385 0.0669145

0.75 0.4705882 0.5294118 0.0669145

0.9 0.4193548 0.5806452 0.0669145

Areas under the ROC and Precision-Recall curves covered by contingency tables can also be
estimated using functions roc and prc, with the option to plot the associated curves. The
following gives the ROC and Precision-Recall curvers associated with the default contingency
tables, in which the threshholds are all values for posterior probabilities that appear in
edges.ScanBMA.

> ## Not run

> ## roc( contabs.netwBMA( edges.ScanBMA, referencePairs), plotit = TRUE)

> ## title("ROC")

>

> ## prc( contabs.netwBMA( edges.ScanBMA, referencePairs), plotit = TRUE)

> ## title("Precision-Recall")

The resulting plots are shown in Figure 1. The output components are as follows:

� area: The estimated area under the curve for the horizontal sector ranging from 0 to 1.
This should be used with caution when the sector in which the data falls is small.

� sector: The estimated area under the horizontal sector covered by the contingency
tables.

� width: The width of the horizontal sector covered by the contingency tables.

4 Linear Modeling for Static Gene Expression Data

networkBMA relies on sparse linear modeling via iterative Bayesian model averaging (BMA).
BMA addresses uncertainty in model selection, and builds a weighted–average model from
plausible models. The resulting model has better overall predictive ability than constituent
models, and tends to use few variables from among a larger set. BMA has been iteratively
extended to data with more variables that observations (Yeung at al. 2005, 2009, 2011). The
networkBMA package functions, ScanBMA and iterateBMAlm, for linear modeling via iterative
BMA. We illustrate their use on a static gene expression dataset (without any time points),
brem.data, to infer the regulators of a particular gene by regressing it on the expression
levels of the other genes. Functions ScanBMA and iterateBMAlm can be applied to each gene
so as to infer all edges in the network. For one gene, the procedure is as follows:
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Figure 1: ROC and Precision-Recall curve sectors for a networkBMA model of the yeast-
rapamycin test data. The black lines delineate the estimated curves. The vertical red lines
delineate the range of horizontal values covered by the contingency tables. The dotted black
lines are linear interpolants outside this range. The diagonal blue line on the ROC plot
indicates the line betwween (0,0) and (1,1).

> gene <- "YNL037C"

> variables <- which(rownames(brem.data) != gene)

> control <- ScanBMAcontrol(OR = 20, useg = TRUE,

+ gCtrl = gControl(optimize = FALSE, g0 = 20))

> ScanBMAmodel.YNL037C <- ScanBMA(x = t(brem.data[variables,]),

+ y = unlist(brem.data[gene,]),

+ prior.prob = 0.1, control = control)

Function ScanBMAcontrol facilitates input of BMA control parameters, including useg

for indicating whether to use Zellner’s g-prior or BIC for model likelihood approximation and
OR for defining the width of ‘Occam’s window’ for model exclusion. gCtrl allows specification
of parameters related to the use of Zellner’s g-prior, including whether to use a static g or
optimize g using an EM algorithm. See the R help documentation for ScanBMAcontrol and
gControl for detailed description of these parameters, and Hoeting et al. (1999) for a tutorial
on the underlying BMA paradigm. The prior.prob parameter allows prior probabilities to
be used. If just a scalar is provided, it is used for all regulators. A vector corresponding to
unique priors for each regulator can also be provided. The estimated posterior probabilities
(in percent) for genes that regulate YBL103C can be seen as follows:

> ScanBMAmodel.YNL037C$probne0[ScanBMAmodel.YNL037C$probne0 > 0]

YBL103C YDL170W YHR051W YPR002W YML123C YLR258W YDR171W YAL062W

3.32595 8.72814 93.37633 100.00000 12.35445 0.94866 100.00000 8.00113
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YGR043C YHR018C YLR130C YLR327C YNL036W YFR022W YPL265W YOR100C

0.87217 0.90034 2.36997 1.25737 6.89447 9.67197 6.61885 1.05088

YOR348C YCL064C YER067W YMR229C YOR388C YGR183C YLR174W YJL153C

3.99539 100.00000 1.65619 99.07156 32.70026 3.91132 1.16296 2.28332

YJL063C

0.98410
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