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Abstract

In a gene expression experiment (using oligo array, RNA-Seq, or other platform),
researchers typically seek to characterize differentially expressed genes based on com-
mon gene function or pathway involvement. The field of gene set testing provides
numerous characterization methods, some of which have proven to be more valid and
powerful than others. Previous gene set testing methods have focused on experimen-
tal designs where there is a single null hypothesis (usually involving association with
a continuous or categorical phenotype) for each gene. However, increasingly common
experimental designs lead to multiple null hypotheses for each gene, and the charac-
terization of these multivariately differentially expressed genes is of great interest.

The mvGST package provides tools to identify GO terms (gene sets) that are dif-
ferentially active (up or down) in multiple comparisons (contrasts) of interest. These
tools are platform-independent, so results from Affymetrix, next-gen sequencing, or
subsequent gene expression technology can be handled. Given a matrix of p-values
(rows for genes, columns for contrasts), the mvGST package uses statistical methods
from the field of meta-analysis to combine p-values for all genes annotated to each
gene set, and then classify each gene set (or biological process) as being significantly
more active (1), less active (-1), or not significantly differentially active (0) in each
contrast of interest. Where multiple contrasts are of interest, each gene set is as-
signed to a profile (across contrasts) of differential activity. Tools are also provided
for visualizing (in a GO graph) the gene sets classified to a given profile.
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1 Sample Data

1.1 Obatoclax (Affymetrix)

These data, publicly available as GSE36149 from the Gene Expression Omnibus website
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36149), were reported by
Urtishak et al. (2013). Briefly, tissue samples were taken from two human leukemia cell
lines (Line; R = RS4:11, S = SEM-K2), originally cultured from infant leukemia blood.
Three treatments were compared (Trt; C = control, L = low-dose obatoclax, H = high-dose
obatoclax). Gene expression was measured in each replicate using the Affymetrix Human
Genome U133 Plus 2.0 Array.
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For the purposes of mvGST package demonstration, suppose that a research objective is
to identify biological processes differentially active in one or more of the following four
comparisons: low dose vs. control in RS4:11 cell line, high dose vs. control in RS4:11 cell
line, low dose vs. control in SEM-K2 cell line, or high dose vs. control in SEM-K2 cell line.
Each gene individually can be tested for differential expression in these four comparisons
by constructing four contrasts within the framework of the following model:

E [Yijk] = µ+ Trti + Linej + TrtLineij

Here, Yijk is the log-scale expression of the gene in replicate k of Trt i in Line j. The sample
code in Appendix A shows how the tools of the limma package can be used to obtain p-
values for each of these contrasts, for each gene individually. The obatoclax.pvals object
provided with the mvGST package contains these results:

> library(mvGST)

> data(mvGSTsamples)

> head(obatoclax.pvals)

Low.RS4 High.RS4 Low.SEMK2 High.SEMK2

1007_s_at 0.5044534 0.2717903 0.5389786 0.68724607

1053_at 0.4665344 0.3121148 0.1162036 0.53931978

117_at 0.8135495 0.7929617 0.9584846 0.65778015

121_at 0.3793150 0.1299377 0.5644299 0.38994582

1255_g_at 0.1318970 0.2182358 0.5302079 0.30793280

1294_at 0.1416885 0.5124254 0.4539475 0.09247627

Note that (as a result of their construction in Appendix A ) these are “one-sided” or “one-
tailed” p-values, as expected by the mvGST package. Using the first comparison as an
example, the null hypothesis is “expression in low dose and control are the same in the
RS4 cell line” while the alternative hypothesis is “expression in low dose exceeds that in
control, in the RS4 cell line.” As a result, very small p-values in the first column of obato-
clax.pvals are evidence supporting “expression in low dose is greater than expression in
control, in the RS4 cell line” while very large p-values are evidence supporting “expression
in low dose is less than expression in control, in the RS4 cell line.”

Also, note that the row names correspond to genes and the column names correspond to
contrasts of interest. The ‘.’ in the contrast names are important; the ‘RS4’ and ‘SEMK2’
that follow the ‘.’ are considered by the mvGST package to be strata in the comparisons
of interest.

The mvGST package can use these gene-level results to identify biological processes d-
ifferentially active (up or down) in one or more of the comparisons of interest. This is
demonstrated in Section 3.1.
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1.2 Parathyroid (RNA-Seq)

These data, publicly available in the parathyroidSE package, were reported by Haglund
et al. (2012). Briefly, cell cultures of parathyroid tumors were taken from four patients
(Patient; 1, 2, 3, 4), and exposed to one of three treatments (Treatment; DPN = di-
arylpropionitrite, OHT = 4-hydroxytamoxifen, Control). Samples were taken from each
treated cell culture, and gene expression was measured using RNA-Seq, with ENSEMBL
gene names used.

For the purposes of mvGST package demonstration, suppose that a research objective is
to identify biological processes differentially active in one or more of the following three
pairwise treatment comparisons: OHT vs. DPN, OHT vs. Control, and DPN vs. Control.
Each gene individually can be tested for differential expression in these three comparisons
by constructing three contrasts within the framework of the following model:

log (E [Yijk]) = µ+ Patienti + Treatmentj

Here, Yijk is the mapped sequence count of the gene in replicate k of Treatment j in
Patient i. The sample code in Appendix B shows how the tools of the DESeq2 package
can be used to obtain p-values for each of these contrasts, for each gene individually. The
parathyroid.pvals object provided with the mvGST package contains these results:

> head(parathyroid.pvals)

OHT_DPN OHT_Control DPN_Control

ENSG00000000003 0.77615783 0.77615783 0.77615783

ENSG00000000005 0.40872077 0.40872077 0.40872077

ENSG00000000419 0.08509812 0.08509812 0.08509812

ENSG00000000457 0.25179363 0.25179363 0.25179363

ENSG00000000460 0.36515566 0.36515566 0.36515566

ENSG00000000938 0.73911620 0.73911620 0.73911620

Again, note that (as a result of their construction in Appendix B ) these are “one-sided”
or “one-tailed” p-values, as expected by the mvGST package. Using the first comparison
as an example, the null hypothesis is “expression in OHT and DPN are the same” while
the alternative hypothesis is “expression in OHT is greater than expression in DPN.” As
a result, very small p-values in the first column of parathyroid.pvals are evidence sup-
porting “expression in OHT is greater than expression in DPN” while very large p-values
are evidence supporting “expression in OHT is less than expression in DPN.”

Also, note that the row names correspond to genes and the column names correspond to
contrasts of interest. The lack of ‘.’ in the contrast names is important, as this tells the
mvGST package that there are no strata in the comparisons of interest.
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The mvGST package can use these gene-level results to identify biological processes d-
ifferentially active (up or down) in one or more of the comparisons of interest. This is
demonstrated in Section 3.2.

2 Multivariate and Directional Gene Set Testing

The statistical methods employed for gene set testing by the mvGST package are discussed
in Stevens and Isom (2012) and Mecham (2014), and the key points are summarized in
the bullet points below. Here, italics are used to indicate text cited from Stevens and
Isom (2012), and the obatoclax example from Section 1.1 is used along with the biological
process ontology as an example.

� “Multivariate”:

– Expression data of genes annotated to a particular GO term are used as proxy
for the activity level of the corresponding biological process in a given treatment
condition.

– Multiple comparisons can be of simultaneous interest, as in seeking to identify
biological processes that are more active in high dose than control in the RS4:11
cell line, but not differentially active between low dose and control in the RS4:11
cell line.

� “Directional”:

– A gene is annotated to a biological process only when the gene’s product “con-
tributes to” the biological process (Hill et al. 2008). (Consequently, there is no
annotation if a gene’s product impedes or inhibits the biological process.) Then
for a biological process to proceed, it is not necessarily sufficient for “at least
one” of the contributing genes to be active. In fact, lower activity by any of the
genes annotated to a biological process will “disturb” the biological process (Hill
et al. 2008). Thus a more meaningful alternative in gene set testing would be
that there is a consensus of activity among gene set members – for example, that
there is “collective support” (Rice 1990) that the genes annotated to the biological
process are more active in high dose than control in the RS4:11 cell line.

– Using one-sided p-values (i.e., from a one-sided test) allows statements of di-
rectional activity differences, such as that a biological process is more active in
high dose than control in the RS4:11 cell line.

� For a given set of genes for each comparison of interest, the p-values for the genes can
be meaningfully combined using Stouffer’s method (Stouffer et al. 1949) from the
field of meta-analysis, to arrive at a single p-value for the corresponding biological
process. While Fisher’s p-value combination method was found previously to be most
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powerful (Fridley et al. 2010), it seems that it may be most powerful for a less mean-
ingful alternative hypothesis. In cases were directionality is meaningful, consensus
is the desired alternative, and there Stouffer’s method has been shown superior to
competing methods (Whitlock 2005).

3 mvGST Package Demonstration

3.1 Obatoclax Demonstration

3.1.1 Obatoclax: profileTable

The following code chunk uses the obatoclax.pvals object introduced in Section 1.1
to classify biological processes into multivariate profiles across the four comparisons of
interest, while restricting attention to only biological processes with between 10 and 200
genes annotated thereto. Because the gene names (row names in obatoclax.pvals) are
Affymetrix probe set identifiers from the hgu133plus2 array version (corresponding to the
human genome), the gene.ID, affy.chip, and organism arguments are as specified in the
call to function profileTable.

> library(hgu133plus2.db)

> test1 <- profileTable(obatoclax.pvals, gene.ID='affy',

affy.chip='hgu133plus2', organism='hsapiens',

minsize=10, maxsize=200)

> test1

Low High RS4 SEMK2

0 0 6834 6450

0 1 14 331

0 -1 29 143

1 1 29 56

1 0 54 18

-1 -1 46 17

-1 0 14 5

Recall the brief discussion of the contrast names in Section 1.1: the ‘RS4’ and ‘SEMK2’
that follow the ‘.’ are considered by the mvGST package to be strata in the comparisons
of interest. This can be seen in the above output, where the profiles were stratified by
cell line (RS4 or SEMK2). Within each cell line, there were two contrasts of interest
– Low−Control and High−Control. Within each comparison, each biological process is
classified as a −1 if the tested contrast is significantly negative, as a 1 if the tested contrast
is significantly positive, and as a 0 otherwise. Based on the preceding output, there are 5
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biological processes in the SEMK2 cell line that are classified as −1 in the Low vs. Control
comparison (meaning they are significantly less active in the low dosage group than in
the control group) and as 0 in the High vs. Control comparison (meaning they have no
significant activity difference between the high dosage and control groups). This can be
thought of as the (-1, 0) multivariate profile.

3.1.2 Obatoclax: pickOut

Note that these 5 biological processes correspond to row 7 and stratum 2 of the test1 table
output above. The pickOut function can be used to see which biological processes these
are, by picking them out of the table. The object returned by pickOut is a data frame,
with the first two columns being the GO identifier and description, followed by columns of
p-values for each of the comparisons of interest. In the following code chunk, the “head” of
this object is trimmed to ensure it will fit on the vignette page:

> res <- pickOut(test1, row=7, col=2)

> as.data.frame(apply(head(res),2,strtrim,width=60))

GO.ID GO.Description

1 GO:0021545 cranial nerve development

2 GO:0021602 cranial nerve morphogenesis

3 GO:0048745 smooth muscle tissue development

4 GO:0051481 negative regulation of cytosolic calcium ion concentration

5 GO:2001222 regulation of neuron migration

Low.RS4 High.RS4 Low.SEMK2 High.SEMK2

1 0.5 0.5 0.995918488266483 0.886540085188766

2 0.5 0.5 0.990917298194852 0.92858921054886

3 0.5 0.5 0.990867457865795 0.5

4 0.353485059160372 0.5 0.987601754476767 0.5

5 0.5 0.5 0.982048955912936 0.5

These GO-level p-values are the result of Stouffer’s combination of the p-values of all genes
in the gene set, and are returned as “one-sided” or “one-tailed” p-values. For example, very
small p-values in the Low.SEMK2 column of the pickOut output are evidence supporting
“activity in low dose is greater than activity in control, in the SEMK2 cell line” while
very large p-values (as for the biological processes in the preceding output) are evidence
supporting “activity in low dose is less than activity in control, in the SEMK2 cell line.”

3.1.3 Obatoclax: go2Profile

If there are certain GO terms of interest, the go2Profile function can be used to identify
their profile classification. Note that a profile of NA values (and a warning message) will
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be returned if a GO term of supposed interest (such as “GO:dummmy” in the following
code chunk) is not among the gene sets that were actually tested:

> temp <- go2Profile(c("GO:0002274", "GO:0002544", "GO:dummy"), test1)

> temp

$`GO:0002274`

Low High RS4 SEMK2

[1,] NA NA 1 1

$`GO:0002544`

Low High RS4 SEMK2

0 0 1 1

$`GO:dummy`

Low High RS4 SEMK2

[1,] NA NA 1 1

This output shows, for each of the requested GO terms, the (Low vs. Control, High vs.
Control) multivariate profile to which they were classified, for each strata. For example,
the row of the $`GO:0002544` output where RS4 is 1 indicates the profile to which that
GO term was classified in the RS4 cell line; it is the (0, 0) profile.

3.1.4 Obatoclax: graphCell

The graphCell function can be used to visualize (in a GO graph) the GO terms that
were classified to a particular profile. The function name is derived from the fact that
it graphs GO terms from a specified cell in the profileTable output. For example, the
following code chunk visualizes (as red nodes) the 5 biological processes classified to the
(-1, 0) multivariate profile (row 7 of test1 table output) in the SEMK2 cell line (stratum 2).

> graphCell(test1, row=7, col=2, print.legend=FALSE, interact=FALSE)
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In this preceding code chunk, the bg.col argument is used to force the GO graph portions
of lesser interest (i.e., GO terms other than the 5 classified to the (-1, 0) multivariate
profile) into the “background” by using a lighter color. The print.legend and interact

arguments are set to FALSE just for convenience in creating this vignette. If set to TRUE,
they allow interactivity with the graph (click on or near a node to see its description, ESC
to end interactivity) and a printed summary of the graph (IDs and descriptions for all
nodes).

3.2 Parathyroid Demonstration

3.2.1 Parathyroid: profileTable

The following code chunk uses the parathyroid.pvals object introduced in Section 1.2 to
classify biological processes into multivariate profiles across the three comparisons of inter-
est. Because the gene names (row names in parathyroid.pvals) are ENSEMBL identifiers
and these are human genes, the gene.ID and organism arguments are as specified in the
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call to function profileTable.

> test2 <- profileTable(parathyroid.pvals, gene.ID='ensembl',

organism='hsapiens')

> test2

OHT_DPN OHT_Control DPN_Control BP

0 0 0 13096

1 1 1 1478

-1 -1 -1 105

Because there was no ‘.’ in the contrast names (see Section 1.2), there are no strata here
– so profileTable adds a column BP for a single “pseudo-stratum” (biological process-
es). Based on the preceding output, there are 105 biological processes classified to the
(-1, -1, -1) multivariate profile, with comparisons in order (OHT−DPN, OHT−Control,
DPN−Control). In other words, there are 105 biological processes significantly less active
in OHT than in DPN, less active in OHT than in Control, and less active in DPN than in
Control. Put another way, for these 105 biological processes, activity is less in OHT than
in DPN, and in DPN than in Control.

3.2.2 Parathyroid: pickOut

The pickOut function can be used to identify these 105 biological processes. In the follow-
ing code chunk, the “head” of the resulting object is trimmed to ensure it will fit on the
vignette page:

> res <- pickOut(test2, row=3, col=1)

> as.data.frame(apply(head(res),2,strtrim,width=60))

GO.ID GO.Description

1 GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediate

2 GO:0001887 selenium compound metabolic process

3 GO:0006986 response to unfolded protein

4 GO:0006000 fructose metabolic process

5 GO:0006082 organic acid metabolic process

6 GO:0006083 acetate metabolic process

OHT_DPN.BP OHT_Control.BP DPN_Control.BP

1 0.999998399533644 0.999998399533644 0.999998399533644

2 0.999999999999799 0.999999999999799 0.999999999999799

3 0.999634134845203 0.999634134845203 0.999634134845203

4 0.999528201663257 0.999528201663257 0.999528201663257
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5 0.999982781424065 0.999982781424065 0.999982781424065

6 0.999148594030093 0.999148594030093 0.999148594030093

The three p-value columns in the preceding output represent “one-sided” or “one-tailed”
p-values from the Stouffer’s combination for each GO term in the comparison named. For
example, very small p-values in the DPN_Control.BP column of the pickOut output (as for
the biological processes in the preceding output) are evidence supporting “activity in DPN
is greater than activity in Control” while very large p-values would be evidence supporting
“activity in DPN is less than activity in Control.”

3.2.3 Parathyroid: graphCell

The following code chunk visualizes (as red nodes) the 105 biological processes classified to
the (-1, -1, -1) multivariate profile (row 3 of test2 table output). Because there are no stra-
ta here, the column number is 1 (for the single “pseudo-stratum” BP in the profileTable

output).

> graphCell(test2, row=3, col=1, print.legend=FALSE, interact=FALSE)
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Such a large GO graph is probably most useful when the number of GO terms of interest
is more manageable (i.e., smaller).

4 Multiple Comparison Adjustments

4.1 Default: False Discovery Rate

With thousands of GO terms tested in possibly multiple comparisons of interest, attention
must be paid to multiple comparisons adjustments and thresholds of significance. The de-
fault in the mvGST package (and in the profileTable function in particular) is to control
the FDR at 0.05 using the Benjamini-Yekutieli adjustment (Benjamini & Yekutieli 2001)
within each comparison (contrast) of interest. This threshold can be modified using the
sig.level argument of the profileTable function. This Benjamini-Yekutieli adjustment
allows for dependence among p-values, which is certainly the case with nested GO terms.
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4.2 Short Focus Level Demonstration: Parathyroid Data

For those interested in controlling the family-wise error rate at a specified level within
the structure of the GO graph, the mvGST package includes an interface to the Short
Focus Level method (Saunders 2014; Saunders, Stevens, and Isom 2014). The following
code chunk is not run here to conserve computation time in the creation of this vignette
document:

> test3 <- profileTable(parathyroid.pvals, gene.ID='ensembl',

organism='hsapiens', mult.adj='SFL')

It takes about 4 hours on a desktop PC to run this full example.

Note that the Short Focus Level adjustment requires all ancestor and offspring nodes of
the GO terms of interest to be included in the set of tested GO terms (Saunders 2014;
Saunders, Stevens, and Isom 2014), so the minsize and maxsize arguments are not used.

For demonstration purposes of the p.adjust.SFL in this vignette, suppose we were only
interested in the OHT vs. DPN comparison, and in the following set of GO terms that are
ancestors of GO:0001775 and GO:0007275:

> library(GO.db)

> xx <- as.list(GOBPANCESTOR)

> ancs <- sort( union( xx$`GO:0001775`, xx$`GO:0007275` ) )[-1]

> GOids <- c('GO:0001775','GO:0007275', ancs)

> GOids

[1] "GO:0001775" "GO:0007275" "GO:0009987" "GO:0032501" "GO:0032502"

[6] "GO:0044699" "GO:0044707" "GO:0044763" "GO:0044767" "all"

We can get the p-values for the OHT vs. DPN comparison for each of these GO terms
from the test2 object created in Section 3.2.1:

> t <- is.element(test2$group.names, GOids)

> frame <- as.data.frame(test2$grouped.raw[t,])

> pvals <- frame$OHT_DPN.BP

> names(pvals) <- test2$group.names[t]

Note that the names of the p-values vector is the GO term IDs. Then the p.adjust.SFL

function can be called:
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> SFL.pvals <- p.adjust.SFL(pvals, ontology='BP', sig.level=.10)

> cbind(pvals, SFL.pvals)

pvals SFL.pvals

GO:0001775 3.309091e-22 9.927274e-22

GO:0007275 8.393820e-64 2.027395e-44

GO:0009987 5.492180e-48 1.000000e+00

GO:0032501 1.266240e-59 1.000000e+00

GO:0032502 1.688409e-67 1.000000e+00

GO:0044699 2.027395e-44 2.027395e-44

GO:0044707 2.191569e-64 2.027395e-44

GO:0044763 4.393146e-42 1.317944e-41

GO:0044767 4.859507e-67 2.027395e-44

Calling GO terms significant when SFL.pvals is less than 0.10 controls the family-wise
error rate at 0.10, within the context of the GO graph.
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Appendix A: Constructing obatoclax.pvals object

The obatoclax.pvals object was introduced in Section 1.1.

After downloading the .CEL files from http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE36149 and saving them to a directory (say “C:\folder\data”), the .CEL files
were renamed as follows to facilitate interpretation of the constructed contrasts:

Sample Trt Line Rep CELfile
GSM881823 C R 1 CR1.CEL
GSM881824 L R 1 LR1.CEL
GSM881825 H R 1 HR1.CEL
GSM881826 C S 1 CS1.CEL
GSM881827 L S 1 LS1.CEL
GSM881828 H S 1 HS1.CEL
GSM881829 C R 2 CR2.CEL
GSM881830 L R 2 LR2.CEL
GSM881831 H R 2 HR2.CEL
GSM881832 C S 2 CS2.CEL
GSM881833 L S 2 LS2.CEL
GSM881834 H S 2 HS2.CEL

Then the following R code (which is not run in this vignette, simply to avoid needing
the .CEL files with this mvGST package) was used on July 10, 2014 to construct the
obatoclax.pvals object for the mvGST package:

> ### Objective is to identify gene sets differentially active

> ### in one or more of the following comparisons:

> ## G1 = RS4:11 cell line at low dose (vs. control)

> ## G2 = RS4:11 cell line at high dose (vs. control)

> ## G3 = SEM-K2 cell line at low dose (vs. control)

> ## G4 = SEM-K2 cell line at high dose (vs. control)

> #

> ## Read in data

> library(affy)

> data <- ReadAffy(celfile.path="C:\\folder\\data")

> eset <- exprs(rma(data))

> colnames(eset)

> # [1] "CR1.CEL" "CR2.CEL" "CS1.CEL" "CS2.CEL" "HR1.CEL" "HR2.CEL" "HS1.CEL"

> # [8] "HS2.CEL" "LR1.CEL" "LR2.CEL" "LS1.CEL" "LS2.CEL"

> #

> # Define simple function to convert two-tailed p-values to one-tailed,

> # based on means of comparison groups

> # - this assumes null: Mean2=Mean1 and alt: Mean2>Mean1, and
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> # diff = Mean2-Mean1

> p2.p1 <- function(p,diff)

{

p1 <- rep(NA,length(p))

t <- diff >=0

p1[t] <- p[t]/2

p1[!t] <- 1-p[!t]/2

return(p1)

}

> #

> # Define function to return one-tailed p-values for a specific contrast,

> # sorted in order of geneNames

> p1.ctrst <- function(ctr)

{

ctr <<- ctr

ctrst <- makeContrasts(ctr, levels=design)

fit.ctrst <- contrasts.fit(fit, ctrst)

final.fit.ctrst <- eBayes(fit.ctrst)

top.ctrst <- topTableF(final.fit.ctrst, n=nrow(eset))

p1 <- p2.p1(top.ctrst$P.Value, top.ctrst[,1])

gn <- rownames(top.ctrst)

names(p1) <- gn

t <- order(gn)

return(p1[t])

}

> #

> ## Fit model

> library(limma)

> trt <- rep(c('C','H','L'),each=4)

> line <- rep(rep(c('R','S'),each=2),3)

> design <- model.matrix(~0+trt:line)

> head(design)

> colnames(design) <- c('CR','HR','LR','CS','HS','LS')

> fit <- lmFit(eset, design)

> #

> ## Create contrasts

> # R: L vs. C (G1)

> Low.RS4 <- p1.ctrst(ctr="LR-CR")

> # R: H vs. C (G2)

> High.RS4 <- p1.ctrst("HR-CR")

> # S: L vs. C (G3)

> Low.SEMK2 <- p1.ctrst("LS-CS")

> # S: H vs. C (G4)
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> High.SEMK2 <- p1.ctrst("HS-CS")

> #

> ## Assemble object for mvGST

> GN <- names(Low.RS4)

> o.pvals <- cbind(Low.RS4, High.RS4, Low.SEMK2, High.SEMK2)

> rownames(o.pvals) <- GN

> obatoclax.pvals <- o.pvals
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Appendix B: Constructing parathyroid.pvals object

The parathyroid.pvals object was introduced in Section 1.2. The following R code (which
is not run in this vignette, simply to avoid needing the parathyroidSE and DESeq2 packages
with this mvGST package) was used on July 10, 2014 to construct the parathyroid.pvals
object for the mvGST package:

> # Load data

> library("parathyroidSE")

> data("parathyroidGenesSE")

> se <- parathyroidGenesSE

> colnames(se) <- colData(se)$run

> #

> # Fit model

> library("DESeq2")

> dds <- DESeqDataSet(se = se, design = ~ patient + treatment)

> design(dds) <- ~ patient + treatment

> ddsCtrst1 <- DESeq(dds)

> resultsNames(ddsCtrst1)

> #

> # Create contrasts

> res1 <- results(ddsCtrst1, contrast=c("treatment", "OHT", "DPN"))

> res2 <- results(ddsCtrst1, contrast=c("treatment", "OHT", "Control"))

> res3 <- results(ddsCtrst1, contrast=c("treatment", "DPN", "Control"))

> #

> # Assemble object for mvGST

> r1 <- res1[!is.na(res1$pvalue),]

> r2 <- res1[!is.na(res2$pvalue),]

> r3 <- res1[!is.na(res3$pvalue),]

> OHT_DPN <- p2.p1(r1$pvalue,r1$log2FoldChange)

> OHT_Control <- p2.p1(r2$pvalue,r2$log2FoldChange)

> DPN_Control <- p2.p1(r3$pvalue,r3$log2FoldChange)

> p.pvals <- cbind(OHT_DPN,OHT_Control,DPN_Control)

> GN <- rownames(r1)

> rownames(p.pvals) <- GN

> parathyroid.pvals <- p.pvals

This code is based on code found in the DESeq2 package vignette. Note that the p2.p1

function was defined in Appendix A .
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