
Vignette for metahdep: an R package for hierarchical
dependence in meta-analysis

John R. Stevens1 and Gabriel Nicholas2

May 3, 2016

1. Associate Professor of Statistics, Department of Mathematics and Statistics, and
Center for Integrated Biosystems, Utah State University

(http://www.stat.usu.edu/~jrstevens)
2. MS Biostatistician, Department of Biostatistics and Medical Informatics, University of

Wisconsin at Madison

Contents

1 Introduction 1

2 Meta-Analysis of Gene Expression Studies 2

2.1 Formatting the Gene Expression Data for Meta-Analysis 3

2.2 Meta-Analysis of Formatted Gene Expression Studies 6

3 Meta-Analysis of Foreign Language Learning Studies 9

1 Introduction

The metahdep package provides tools to conduct a meta-analysis of effect size estimates,
particularly when hierarchical dependence is present (Stevens and Taylor, 2009). The pack-
age includes convenient commands for the meta-analysis of gene expression studies. We
assume the reader is familiar with meta-analysis of effect size estimates, and here adopt
the framework used in Stevens and Taylor (2009). This package vignette provides a guide
for the use of these tools, using two examples (Sections 2 and 3). The first example, in
Section 2, shows the main utility of the metahdep package for the meta-analysis of gene

1

expression studies, which motivated the development of this package (to save computation
time). Some familiarity with gene expression technology will help with this first example,
but is not necessary for the use of the tools in this package, as demonstrated by the second
example, in Section 3, which involves foreign language learning.

Note: If you use this package for gene expression studies, please cite Stevens and
Nicholas (2009). If you use this package for general applications, please cite Stevens and
Taylor (2009).

2 Meta-Analysis of Gene Expression Studies

The tools in the metahdep package can be used to systematically combine the results of
multiple gene expression studies, accounting for both sampling and hierarchical dependence
among studies, and accounting for fundamental differences between studies (Stevens and
Nicholas, 2009). Sampling dependence occurs when two (or more) effect size estimates
are based on the same sample of data. Hierarchical dependence occurs when two (or
more) studies are conducted by the same lab or research team. The metahdep package is
specifically designed for cases where each study reports for each gene an effect size estimate
of differential expression between the same two conditions. In the example that follows,
we describe a hypothetical group of similar gene expression studies, and refer to a “Tissue”
difference among studies. In reality this could be any covariate describing differences among
studies, and multiple covariates are possible.

For purposes of illustration in this vignette, we suppose that four separate studies have
been conducted, each using microarrays to look for genes exhibiting differential expres-
sion from the same control condition to the same treatment condition. Study 1 conducted
experiments using two tissues (Tissue 0 and Tissue 1), testing for differential expression
(control vs. treatment) in each tissue, using the hgu133a Affymetrix GeneChip. Study 2
was conducted by the same lab as Study 1 (call it Lab 1), and tested for differential expres-
sion (control vs. treatment) in Tissue 0, using the hgu95a Affymetrix GeneChip. Study 3
was conducted by another lab (call it Lab 2), testing for differential expression (control vs.
treatment) in Tissue 0, using the hgu95av2 Affymetrix GeneChip. Finally, Study 4 was
conducted by Lab 3, testing for differential expression (control vs. treatment) in Tissue
1 using the hgu133b Affymetrix GeneChip. Table 1 summarizes the five comparisons or
tests of differential expression conducted by these three labs.

Before the results of these studies can be passed to the meta-analysis functions of the
metahdep package, the data must first be formatted. As this formatting is nontrivial,
Subsection 2.1 below illustrates the necessary steps. Subsection 2.2 below shows how to
pass these formatted results to the main meta-analysis functions of the metahdep package.

2

Study Comparison Lab Tissue Chip # Control Arrays # Treatment Arrays
1 1 1 0 hgu133a 5 5
1 2 1 1 hgu133a 5 5
2 3 1 0 hgu95a 3 3
3 4 2 0 hgu95av2 2 2
4 5 3 1 hgu133b 9 11

Table 1: Summary of sample gene expression studies that are candidates for a meta-
analyis, as each experiment tested for differential expression between the same control and
treatment conditions.

2.1 Formatting the Gene Expression Data for Meta-Analysis

The first object we create to aid in formatting the data in preparation for meta-analysis is a
data frame linking the probeset identifiers for the same gene on the different chip versions.
This data frame is meant to help “resolve the many-to-many relationships between probes
and genes” (Ramasamy et al. 2008). The data frame must have columns named “chip”,
“old.name”, and “new.name.” Probesets sharing a common “new.name” will be combined
in the meta-analysis, even if they are on the same array. Probesets not appearing in the
data frame will not be used in the meta-analysis.

In this vignette example, Affymetrix GeneChip versions hgu133a, hgu133b, hgu95a,
and hgu95av2 are used. Various approaches are possible to match probesets across array
versions based on common gene content; see Ramasamy et al. (2008) for a discussion.
The optimal resolution of this common gene content issue is beyond the scope of this
metahdep package. The code chunk below uses Entrez Gene IDs as probesets’ “new.name”
and creates a data frame in the necessary format, discarding probesets that do not map to
an Entrez Gene ID. As with other possible approaches, this Entrez Gene ID mapping can
allow multiple probesets to share the same “new.name” on the same array version. Package
users may choose to keep only one probeset for each “new.name” per array version. This
choice could be made based on sequence or biological information, or it could be based on
experimental data, as suggested in Ramasamy et al. (2008); for example, the findLargest
function in the genefilter package could be used to identify the probesets with the largest
effect size for each Entrez Gene ID. Similarly, Rhodes et al. (2002) chose the probesets
with the smallest P-values for each gene ID. Even if multiple probesets are allowed to map
to the same “new.name” on an array version, however, their effect size estimates can still
be treated as hierarchically dependent by the metahdep package.

Whichever strategy is employed to match gene content across array versions, the final
data frame must have the same column names (and meanings) as the sample object created
here.

> library(AnnotationDbi)

> library(hgu133a.db); library(hgu133b.db); library(hgu95a.db); library(hgu95av2.db)

3

> EID.hgu133a <- unlist(mget(mappedkeys(hgu133aENTREZID),hgu133aENTREZID))

> EID.hgu133b <- unlist(mget(mappedkeys(hgu133bENTREZID),hgu133bENTREZID))

> EID.hgu95a <- unlist(mget(mappedkeys(hgu95aENTREZID),hgu95aENTREZID))

> EID.hgu95av2 <- unlist(mget(mappedkeys(hgu95av2ENTREZID),hgu95av2ENTREZID))

> chip <- c(rep("hgu133a", length(EID.hgu133a)), rep("hgu133b", length(EID.hgu133b)), rep("hgu95a", length(EID.hgu95a)), rep("hgu95av2", length(EID.hgu95av2)))

> EID <- c(EID.hgu133a, EID.hgu133b, EID.hgu95a, EID.hgu95av2)

> newnames <- data.frame(chip=chip, old.name=names(EID), new.name=EID)

For convenience (specifically to reduce the size of the sample objects created by this
vignette), we use only a subset of the genes. In the following code, we randomly select a
subset of 1000 Entrez Gene IDs. Note that we also identify the subsets of corresponding
probeset ID’s on the different array versions used among our studies of interest.

> set.seed(1234)

> use.new.name <- sample(unique(newnames$new.name),1000)

> use.hgu133a.gn <- names(EID.hgu133a[is.element(EID.hgu133a,use.new.name)])

> use.hgu133b.gn <- names(EID.hgu133b[is.element(EID.hgu133b,use.new.name)])

> use.hgu95a.gn <- names(EID.hgu95a[is.element(EID.hgu95a,use.new.name)])

> use.hgu95av2.gn <- names(EID.hgu95av2[is.element(EID.hgu95av2,use.new.name)])

> HGU.newnames <- newnames[is.element(EID,use.new.name),]

The resulting HGU.newnames data frame is equivalent to the HGU.newnames data frame
that is provided as sample data with the metahdep package.

Next, an effect size estimate (and associated variance estimate) for each probeset in each
study is needed. There are a number of possible ways to calculate a meaningful effect size
estimate for gene expression data; see Ramasamy et al. (2008) for a brief discussion. We
adopt the estimate proposed by Hu et al. (2006), and based on the probe-level model test
statistic of Bolstad (2004). This model is fit using the affyPLM package for Bioconductor;
see the Appendix of this vignette for a summary, including the estimation of the variance
and covariance of effect size estimates.

It is necessary to estimate the covariance between effect size estimates in cases such as
Study 1, where two treatment vs. control comparisons are made, one for each tissue, using
data from the same study. The Appendix of this vignette summarizes this covariance
estimation in the probe-level model context. This type of sampling dependence can be
accounted for in the meta-analysis, as discussed in Stevens and Taylor (2009).

The effect size estimates from this probe-level model, as well as the appropriate vari-
ances and covariances, are calculated by the getPLM.es function. Other effect size estimates
are possible, but in order to use the meta-analysis functions of the metahdep package, the
results must be in the same format as that returned by the getPLM.es function. The result
of a call to getPLM.es for each study is an object of class ES.obj; see the object class help
page (?"ES.obj-class") for more on this class.

4

In the sample code that follows, we use gene expression data freely available through
the ALLMLL and ALL packages. The experimental design we describe does not match
the actual design of the experiments used to generate these data. However, our goal here
is to demonstrate the use of the meta-analysis tools in the metahdep package, and these
publicly available data are convenient for this demonstration.

For Study 1, we have 20 arrays (from the MLL.A data in the ALLMLL package). We
assume that the 20 arrays in this AffyBatch object are in the following order: 5 Tissue
0 Controls, 5 Tissue 1 Controls, 5 Tissue 0 Treatments, and then 5 Tissue 1 Treatments.
Based on this assumed structure, we create the ES.obj for Study 1. Note that for this
study, as well as for the remaining studies, we restrict our attention to the convenient
subset of probe set ID’s identified previously for each chip version. The two comparisons
of interest (treatment vs. control for Tissue 0, and treatment vs. control for Tissue 1) are
defined by the pairs of array index vectors passed to the trt1 and trt2 arguments. The
covariate differences of these two comparisons are represented in theh covariates argu-
ment. Because this study was conducted by Lab 1 (see Table 1), we define the hierarchical
dependence group with the dep.grp=1 argument:

> library(ALLMLL); data(MLL.A)

> ES.exp1 <- getPLM.es(abatch=MLL.A, trt1=list(c(1:5),c(6:10)), trt2=list(c(11:15),c(16:20)), sub.gn=use.hgu133a.gn, covariates=data.frame(Tissue=c(0,1)), dep.grp=1)

For Study 2, we have 6 arrays (from the spikein95 data in the SpikeInSubset package).
We assume that the first 3 arrays are Tissue 0 Controls, and the last 3 are Tissue 0
Treatments. Based on this assumed structure, we create the ES.obj for Study 2. Unlike
Study 1, here there is only one comparison of interest, so the trt1 and trt2 arguments
have only one element each, and the covariates data.frame argument has only one row.
This study was conducted by the same Lab 1 as Study 1, and this hierarchical dependence
is indicated by the dep.grp argument:

> library(SpikeInSubset)

> data(spikein95)

> ES.exp2 <- getPLM.es(abatch=spikein95, trt1=1:3, trt2=4:6, sub.gn=use.hgu95a.gn, covariates=data.frame(Tissue=0), dep.grp=1)

For Study 3, we have 4 arrays (from the Dilution data in the affy package). We assume
that the first 2 arrays are Tissue 0 Controls, and the last 2 are Tissue 0 Treatments. Based
on this assumed structure, we create the ES.obj for Study 3:

> data(Dilution)

> ES.exp3 <- getPLM.es(abatch=Dilution, trt1=1:2, trt2=3:4, sub.gn=use.hgu95av2.gn, covariates=data.frame(Tissue=0), dep.grp=2)

Finally, for Study 4, we have 20 arrays (from the MLL.B data in the ALLMLL package).
We assume that the first 9 arrays are Tissue 1 Controls, followed by 11 Tissue 1 Treatments.
Based on this assumed structure, we create the ES.obj for Study 4:

5

> data(MLL.B)

> ES.exp4 <- getPLM.es(abatch=MLL.B, trt1=1:9, trt2=10:20, sub.gn=use.hgu133b.gn, covariates=data.frame(Tissue=1), dep.grp=3)

With the ES.obj’s thus created for each study, we now put them together as elements in
a list, in preparation for passing the list to the metahdep.format function of the metahdep
package. The list created by the following code is equivalent to the HGU.DifExp.list list
that is provided as sample data with the metahdep package:

> HGU.DifExp.list <- list(ES.exp1, ES.exp2, ES.exp3, ES.exp4)

With the list of ES.obj’s and the “new names”data.frame thus created, the metahde-

p.format function can be used to format the data in final preparation for meta-analysis.
It is important to note that the same covariate(s) must be defined in each of the ES.obj’s
to be used, even if they are constants in some ES.obj’s (as Tissue is in each of Studies 2,
3, and 4 here). Also, if any of the ES.obj’s do not have a value of dep.grp defined, then
the metahdep.format function will assume that the studies (or ES.obj objects) are hierar-
chically independent, and a cautionary note will be displayed. The result of the following
code is equivalent to the HGU.prep.list object that is provided as sample data with the
metahdep package:

> HGU.prep.list <- metahdep.format(HGU.DifExp.list, HGU.newnames)

This resulting HGU.prep.list object is a list. Each element of the list is a metaprep

object corresponding to a specific “new name” and containing the corresponding effect size
estimates, covariance matrix, covariate matrix, and hierarchical dependence structure. See
the object class help page (?"metaprep-class") for more on this class. Section 2.2 below
demonstrates how this list of metaprep objects is passed to the meta-analysis functions of
the metahdep package.

2.2 Meta-Analysis of Formatted Gene Expression Studies

With a list of metaprep objects as returned by the metahdep.format function, the fixed
effects, random effects, and hierarchical Bayes models can be applied to each “new name”
gene individually using the metahdep function. In the following code, sampling dependence
is accounted for in each of the models, and hierarchical dependence is accounted for in the
two “.ds” objects returned when delta.split=TRUE. The non-intercept columns of the
covariate matrix are centered about their means (center.X=TRUE) so that the Intercept
term is of primary interest as the population mean effect size.

First load the package and necessary data objects (all created above). We can also
select a subset of genes on which to perform the meta-analysis. In practice, biological
interest would identify the subset, but we use a random subset of 50 just for convenience
in our demonstration here:

6

> library(metahdep)

> data(HGU.newnames)

> data(HGU.prep.list)

> set.seed(123)

> gene.subset <- sample(HGU.newnames$new.name, 50)

Run fixed effects meta-analysis on each gene:

> FEMA <- metahdep(HGU.prep.list, method="FEMA", genelist=gene.subset, center.X=TRUE)

Run random effects meta-analysis on each gene, first ignoring hierarchical dependence
(delta.split=FALSE) and then accounting for hierarchical dependence (delta.split=TRUE):

> REMA <- metahdep(HGU.prep.list, method="REMA", genelist=gene.subset, delta.split=FALSE, center.X=TRUE)

> REMA.ds <- metahdep(HGU.prep.list, method="REMA", genelist=gene.subset, delta.split=TRUE, center.X=TRUE)

Run hierarchical Bayes meta-analysis on each gene, first ignoring hierarchical depen-
dence (delta.split=FALSE) and then accounting for hierarchical dependence (delta.split=TRUE):

> HBLM <- metahdep(HGU.prep.list, method="HBLM", genelist=gene.subset, delta.split=FALSE, center.X=TRUE, two.sided=TRUE)

> HBLM.ds <- metahdep(HGU.prep.list, method="HBLM", genelist=gene.subset, delta.split=TRUE, center.X=TRUE, two.sided=TRUE)

In these hierarchical Bayes meta-analysis models, we use two.sided=TRUE so that the
posterior probabilities are converted to two-sided p-values, for more traditional interpreta-
tion, as in Stevens and Taylor (2009).

Each call to the metahdep function returns a data.frame object with summaries of
the meta-analysis model called, with a row for each “new name” gene. The final chunk of
code below compares the results from these five models, focusing on the test of significance
of the population mean effect size (i.e., the Intercept p-value). The resulting scatterplot
matrix appears in Figure 1.

7

> pvals <- data.frame(FEMA=FEMA$Intercept.pval, REMA=REMA$Intercept.pval, REMA.ds=REMA.ds$Intercept.pval,

+ HBLM=HBLM$Intercept.pval, HBLM.ds=HBLM.ds$Intercept.pval)

> plot(pvals, main='Comparison of Intercept P-values from Meta-Analysis',pch=16,cex=.5)

FEMA

0.5 0.7 0.9

●

●

●

●

●

●

●

●

0.4 0.6 0.8

●

●

●

●

0.
3

0.
5

0.
7

●

●

●

●

0.
5

0.
7

0.
9

●

●

●

●

REMA

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

REMA.ds

●

●

●

●

0.
4

0.
6

0.
8

●

●

●

●

0.
4

0.
6

0.
8

●

●

●

●

●

●

●

●

●

●

●

●

HBLM

●

●

●

●

0.3 0.5 0.7

●

●

●

●

●

●

●

●

0.4 0.6 0.8

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

0.
2

0.
5

0.
8

HBLM.ds

Comparison of Intercept P−values from Meta−Analysis

Figure 1: A comparison of the Intercept p-values (testing the significance of the population
mean effect size) from several meta-analysis models applied to the gene expression data.

8

n2 n1 y2 y1 s2 s1 Rec Time Part Pct dfE

Aweiss 24 24 43.50 30.00 21.47 19.42 1 2 1 2 46

Baumann #1 6 6 37.17 33.50 20.54 20.54 1 2 1 1 33

Baumann #2 7 7 61.29 51.86 20.54 20.54 1 2 2 1 33

Baumann #3 8 7 25.75 18.29 21.83 21.83 1 2 1 1 38

Baumann #4 7 7 57.71 78.00 21.83 21.83 1 2 2 1 38

Davis 23 26 28.22 11.10 8.69 9.00 1 1 2 1 47

Goyette 12 12 43.00 25.20 14.00 13.10 1 2 3 2 22

Jacobs 58 58 18.16 13.70 5.68 5.44 1 2 2 1 114

Jacobs et al. 33 27 17.30 16.40 9.00 7.30 1 1 2 1 58

Joyce #1 12 11 9.50 8.60 7.59 7.59 1 1 1 1 83

Joyce #2 17 18 14.47 10.89 7.59 7.59 1 1 1 1 83

Joyce #3 13 18 13.10 15.10 7.59 7.59 1 1 2 1 83

Knight 54 51 74.01 56.65 27.29 23.35 1 2 2 2 103

Ko 64 63 13.05 12.86 3.95 3.21 2 1 3 1 125

Kwong-Hung 55 60 6.15 5.97 1.99 1.77 2 2 3 1 113

Lou 16 17 14.63 6.24 8.85 5.14 1 1 2 1 31

Palmer 48 47 21.54 11.78 7.70 6.22 1 1 3 1 93

Stoehr 33 29 15.33 8.03 5.31 4.26 1 2 2 2 60

Table 2: Summary of the glossing data.

3 Meta-Analysis of Foreign Language Learning Stud-

ies

The statistical methods used by the metahdep package are described in Stevens and Taylor
(2009), which focused on a meta-analytic review of 13 experiments with 18 study reports
all involving the effect of native-language (L1) vocabulary aids (e.g., glossing) on second
language (L2) reading comprehension. The data from that paper are included in the
metahdep package for purposes of demonstration. The sample code in this section of the
package vignette reproduces the main results of Stevens and Taylor (2009).

A summary of the glossing data is provided in the gloss.Table1 data frame within
the gloss data set (see output in Table 2).

> library(metahdep)

> data(gloss)

> gloss.Table1

Based on this summary, the vector of unbiased effect size estimates can be construct-
ed. The following code produces this vector (theta), which is equivalent to the vector
gloss.theta within the gloss data set:

9

> attach(gloss.Table1)

> sp <- sqrt(((n1-1)*s1^2+(n2-1)*s2^2) / (n1+n2-2))

> c.correct <- (1-3/(4*dfE-1))

> theta <- c.correct * (y2-y1)/sp

The covariance matrix corresponding to the vector of unbiased effect size estimates
is constructed next, with some off-diagonal elements nonzero because of the sampling
dependence (as described in Stevens and Taylor, 2009). First get the diagonal elements of
the matrix:

> pE <- c.correct^2*dfE/(dfE-2)

> var.theta <- pE*(1/n2+1/n1) + (pE-1)*theta^2

> V <- diag(var.theta)

As described in Stevens and Taylor (2009), sampling dependence exists among effect
size estimates in both the Baumann and Joyce studies. As currently ordered, sampling
dependence exists between studies 2 and 3 (Baumann), between studies 4 and 5 (Baumann),
and among studies 10-12 (Joyce). The off-diagonal elements of the covariance matrix can
be constructed accordingly. This resulting matrix V is equivalent to the matrix gloss.V

within the gloss data set.

> V[2,3] <- V[3,2] <- (pE[2]-1)*theta[2]*theta[3]

> V[4,5] <- V[5,4] <- (pE[4]-1)*theta[4]*theta[5]

> V[10,11] <- V[11,10] <- (pE[10]-1)*theta[10]*theta[11]

> V[10,12] <- V[12,10] <- (pE[10]-1)*theta[10]*theta[12]

> V[11,12] <- V[12,11] <- (pE[11]-1)*theta[11]*theta[12]

To account for fundamental differences between studies in the meta-analysis, the design
matrix can be constructed. This is equivalent to the matrix gloss.X within the gloss data
set.

> X <- matrix(0,nrow=18,ncol=6)

> X[,1] <- 1

> X[Rec==2,2] <- 1

> X[Time==2,3] <- 1

> X[Part==2,4] <- 1

> X[Part==3,5] <- 1

> X[Pct==2,6] <- 1

> colnames(X) <- c('Intercept','Rec2','Time2','Part2','Part3','Pct2')

With the vector of unbiased effect size estimates (theta), the corresponding covariance
matrix (V), and the design matrix (X) now defined, three classes of meta-analysis models

10

may be considered: fixed effects, random effects, and hierarchical Bayes. The metahdep
package has defined the metahdep.FEMA, metahdep.REMA, and metahdep.HBLM functions
for these three model classes, respectively. In each model, three dependence structures
are considered: independence (V diagonal), dependence (V not necessarily diagonal), and
delta-split (also accounting for hierarchical dependence). The delta-split structure is not
possible in the fixed effects model. For the delta-splitting models, dependence groups must
be defined. In these data, the Baumann studies (numbered 2-5 in the current format) are
one group, and the Joyce studies (numbered 10-12 in the current format) are another. The
following commands define these dependence groups and then proceed to fit these possible
models.

> # define dependence groups for delta-splitting models

> dep.groups <- list(c(2,3,4,5), c(10,11,12))

> # fixed effects meta-analysis

> FEMA.indep <- metahdep.FEMA(theta, diag(diag(V)), X, center.X=TRUE)

> FEMA.dep <- metahdep.FEMA(theta, V, X, center.X=TRUE)

> # random effects meta-analysis

> REMA.indep <- metahdep.REMA(theta, diag(diag(V)), X, center.X=TRUE)

> REMA.dep <- metahdep.REMA(theta, V, X, center.X=TRUE)

> REMA.ds <- metahdep.REMA(theta, V, X, center.X=TRUE, delta.split=TRUE, dep.groups=dep.groups)

> # hierarchical Bayes meta-analysis

> HBLM.indep <- metahdep.HBLM(theta, diag(diag(V)), X, center.X=TRUE, two.sided=TRUE)

> HBLM.dep <- metahdep.HBLM(theta, V, X, center.X=TRUE, two.sided=TRUE)

> HBLM.ds <- metahdep.HBLM(theta, V, X, center.X=TRUE, two.sided=TRUE, delta.split=TRUE, dep.groups=dep.groups, n=20, m=20)

The metahdep.HBLM function may return slightly different results for different values of
the n and m arguments, as these control the step sizes in the necessary numerical integrations
of the hierarchical Bayes model.

The results from these various meta-analysis models can be summarized. The following
code produces the output shown in Table 3; this is a reproduction of Table 4 of Stevens
and Taylor (2009).

> r1 <- round(c(FEMA.indep$beta.hats[1], FEMA.indep$beta.hat.p.values[1],NA,NA),4)

> r2 <- round(c(FEMA.dep$beta.hats[1], FEMA.dep$beta.hat.p.values[1],NA,NA),4)

> r3 <- round(c(REMA.indep$beta.hats[1], REMA.indep$beta.hat.p.values[1], REMA.indep$tau2.hat, NA),4)

> r4 <- round(c(REMA.dep$beta.hats[1], REMA.dep$beta.hat.p.values[1], REMA.dep$tau2.hat, NA),4)

> r5 <- round(c(REMA.ds$beta.hats[1], REMA.ds$beta.hat.p.values[1], REMA.ds$tau2.hat, REMA.ds$varsigma.hat),4)

> #r5 <- c(0.5261, 0.0026, 0.2936, -0.0816)

> r6 <- round(c(HBLM.indep$beta.hats[1], HBLM.indep$beta.hat.p.values[1], HBLM.indep$tau.var + HBLM.indep$tau.hat^2, NA),4)

> r7 <- round(c(HBLM.dep$beta.hats[1], HBLM.dep$beta.hat.p.values[1], HBLM.dep$tau.var + HBLM.dep$tau.hat^2, NA),4)

> r8 <- round(c(HBLM.ds$beta.hats[1], HBLM.ds$beta.hat.p.values[1], HBLM.ds$tau.var + HBLM.ds$tau.hat^2, HBLM.ds$varsigma.hat),4)

> model <- c(rep('Fixed',2),rep('Random',3),rep('Bayes',3))

11

Model Structure Intercept P tau-square varsigma

1 Fixed Independent 0.6166 0 <NA> <NA>

2 Fixed Dependent 0.6154 0 <NA> <NA>

3 Random Independent 0.577 0.0017 0.2432 <NA>

4 Random Dependent 0.5764 0.0017 0.243 <NA>

5 Random Delta-split 0.5261 0.0026 0.2936 -0.0816

6 Bayes Independent 0.5775 0.0019 0.3057 <NA>

7 Bayes Dependent 0.5769 0.0019 0.3054 <NA>

8 Bayes Delta-split 0.628 0.0011 0.2573 0.1117

Table 3: Summary of results from various meta-analysis models of the glossing data.

> dep <- c('Independent','Dependent',rep(c('Independent','Dependent','Delta-split'),2))

> Table2 <- as.data.frame(cbind(model,dep,rbind(r1,r2,r3,r4,r5,r6,r7,r8)))

> colnames(Table2) <- c('Model','Structure','Intercept','P','tau-square','varsigma')

> rownames(Table2) <- NULL

> Table2

References

[1] Bolstad, B.M. (2004),“Low-level Analysis of High-density Oligonucleotide Array Data:
Background, Normalization and Summarization,” PhD dissertation, U.C. Berkeley.

[2] Hu, P., Greenwood, C.M.T., and Beyene, J. (2006), “Integrative Analysis of Gene Ex-
pression Data Including an Assessment of Pathway Enrichment for Predicting Prostate
Cancer,” Cancer Informatics 2006:2 289-300.

[3] Ramasamy, A., Mondry, A., Holmes, C.C., and Altman, D.G. (2008), “Key Issues in
Conducting a Meta-Analysis of Gene Expression Microarray Datasets,”PLoS Medicine
5(9):e184.

[4] Rey, W.J. (1983), Introduction to Robust and Quasi-Robust Statistical Methods,
Springer-Verlag, Berlin.

[5] Rhodes, D.R., Barrette, T.R., Rubin, M.A., Ghosh, D. and Chinnaiyan, A.M. (2002),
“Meta-Analysis of Microarrays: Interstudy Validation of Gene Expression Profiles
Reveals Pathway Dysregulation in Prostate Cancer,” Cancer Research 62:4427-4433.

[6] Stevens, J.R. and Nicholas, G. (2009), “metahdep: Meta-analysis of hierarchically
dependent gene expression studies”, Bioinformatics 25(19):2619-2620.

12

[7] Stevens, J.R. and Taylor, A.M. (2009), “Hierarchical Dependence in Meta-Analysis,”
Journal of Educational and Behavioral Statistics 34(1):46-73.

13

Appendix: Summary of Effect Size Estimate Calcula-

tion, with Variance and Covariance

For meta-analysis of gene expression data, Hu et al. (2006) demonstrated the strong
performance of an effect size estimate based on Bolstad’s probe-level model (Bolstad 2004).
This model is fit with data from several arrays using the affyPLM package for Bioconductor.
For each probeset, the Bolstad model returns a vector β̂ of M-estimates for expression across
the arrays, as well as a matrix Σ̂, the estimated covariance matrix of β̂. By the central
limit theorem, and as in Rey (1983), the asymptotic distribution is

β̂ ∼ N(β,Σ),

where βi is the expression of the gene on array i.

Suppose that for a specific comparison j, a test of differential expression between groups
of arrays is to be considered. We assume there are nj,t “treatment” arrays and nj,c “control”
arrays. We define cj to be a contrast vector with elements 1/nj,t for “treatment” arrays,
−1/nj,c for “control” arrays, and 0 for all other arrays in the study. Then the gene’s effect
size estimate for this comparison of interest j is

θ̂j =

√
1

nj,t

+
1

nj,c

×
cTj β̂√
cTj Σ̂cj

.

Note that

cTj β̂√
cTj Σcj

∼ N

 cTj β√
cTj Σcj

, 1

 ,
and so

V ar

 cTj β̂√
cTj Σcj

 = 1.

Another comparison or test of differential expression could be considered between dif-
ferent groups of arrays, such as treatment vs. control for another tissue. Define ch to be
the appropriate contrast vector, constructed similar to cj. The gene’s effect size estimate

for this comparison of interest h, θ̂h, can be calculated similar to θ̂j. Because θ̂j and θ̂h are

both based on the same estimate β̂, they are sampling dependent. We can calculate

Cov

 cTj β̂√
cTj Σcj

,
cTh β̂√
cThΣch

 =
cTj Σch√

cTj Σcj
√
cThΣch

.

14

With all this, we have estimates for the variance and covariance of the gene’s effect size
estimates as

V ar
[
θ̂j
]

≈ 1

nj,t

+
1

nj,c

,

Cov
[
θ̂j, θ̂h

]
≈

√√√√√
(

1
nj,t

+ 1
nj,c

) (
1

nh,t
+ 1

nh,c

)
(
cTj Σ̂cj

) (
cTh Σ̂ch

) × cTj Σ̂ch.

15

