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1 Introduction

This package provides methods for an integrative analysis of gene transcription
and epigenetic data, especially histone ChIP-seq data [1]. Histone modification-
s are an epigenetic key mechanism to activate or repress the transcription of
genes. Several data sets consisting of matched transcription data and histone
modification data localized by ChIP-seq have been published. However, both
data types are often analysed separately and results are compared afterward-
s. The methods implemented here are designed to detect transcripts that are
differentially transcribed between two conditions due to an altered histone mod-
ification and are suitable for very small sample sizes. Transcription data may
be obtained by microarrays or RNA-seq.
Briefly, the following workflow is described in this document:

1. Matching of both data types by assigning the number of ChIP-seq reads
aligning within the promoter region to the respective transcription value

2. Normalization of ChIP-seq values

3. Calculation of a correlation score for each gene by multiplying the stan-
dardized difference of ChIP-seq values by the standardized difference of
transcription values

4. Fitting a (Bayesian) mixture model to this score: The implicit assignment
of transcripts to mixture components is used to classify transcripts into one
of the following groups: (i) Transcripts with equally directed differences in
both data sets, (ii) transcripts with reversely directed differences in both
data sets and (iii) transcripts with no differences in at least one of the
two data sets. Group (iii) is represented by centred normal components
whereas an exponential component is used for group (i) and a mirrored
exponential component for group (ii).
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2 Data preprocessing and normalization

2.1 Microarray gene expression data

First, we load an example microarray gene expression data set. The data set
consists of four samples. Two wild type replicates and two CEBPA knock-out
replicates. The differences between CEBPA knock-down and wild type samples
are of interest. The data set is stored as an ExpressionSet object and was
reduced to a few probesets on chromosome 1.

> library(epigenomix)

> data(eSet)

> pData(eSet)

CEBPA

CEBPA_WT_a wt

CEBPA_WT_b wt

CEBPA_KO_a ko

CEBPA_KO_b ko

Data was measured using Affymetrix Mouse Gene 1.0 ST arrays and RMA nor-
malization was applied. See packages affy and Biobase how to process affymetrix
gene expression data.

2.2 RNA-seq data

Using RNA-seq instead of microarrays has the advantage that the abundance
of individual transcript can be estimated. For this task, software like Cufflinks
[2] can be employed. Moreover, the Cuffdiff method (part of the Cufflinks soft-
ware package) allows to summarize the estimated transcript abundances over
all transcripts that share the same transcriptional start site (TSS) and offer-
s several normalization methods, e.g. scaling based on the observed quartiles
[3]. Grouping all transcripts sharing the same TSS is favourable for the later
matching task. Importing the Cuffdiff output as data frame gives us the FPKM
(fragments per kilobase of transcript per million fragments mapped) values.

> data(fpkm)

> head(fpkm[c(-2,-8), ])

tracking_id gene_id gene_short_name

4 TSS1000 XLOC_000367 SH3BGRL3

38 TSS10003 XLOC_003811 TMCO1

49 TSS10004 XLOC_003812 RP11-525G13.2

82 TSS10007 XLOC_003814 FAM78B

149 TSS10013 XLOC_003815 RP11-9L18.2

160 TSS10014 XLOC_003816 RP11-479J7.1

locus CEBPA_WT CEBPA_KO tss_id

4 1:26605666-26647014 9.01200000 6.54111e+01 TSS1000
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38 1:165696031-165880855 0.05631180 5.08823e-02 TSS10003

49 1:165696031-165880855 1.08156000 8.27812e-01 TSS10004

82 1:166026673-166136206 0.00160972 2.34348e-03 TSS10007

149 1:166244865-166246834 1.15553000 1.48034e+00 TSS10013

160 1:166356963-166421869 0.00128422 8.06234e-04 TSS10014

ensemble.estid chr start

4 ENST00000319041.6 1 26606613

38 ENSG00000143183.12,ENST00000580248.1 1 165696032

49 ENST00000455257.1,ENSG00000236364.1 1 165865116

82 ENSG00000188859.5,ENST00000338353.3 1 166026674

149 ENST00000400979.2,ENSG00000215835.2 1 166244866

160 ENST00000448643.1,ENSG00000225325.1 1 166356964

end strand tss

4 26607941 + 26606613

38 165796992 - 165796992

49 165869592 - 165869592

82 166136206 - 166136206

149 166246834 - 166246834

160 166421869 - 166421869

The last six columns were not included in the Cuffdiff output, but were extract-
ed from the annotation file given as input to Cuffdiff. Next, we construct an
ExpressionSet object so that we can handle RNA-seq data in the same way as
microarray data:

> mat <- log2(as.matrix(fpkm[, c("CEBPA_WT", "CEBPA_KO")]))

> rownames(mat) <- fpkm$tss_id

> eSet.seq <- ExpressionSet(mat)

> pData(eSet.seq)$CEBPA <- factor(c("wt", "ko"))

> fData(eSet.seq)$chr <- fpkm$chr

> fData(eSet.seq)$tss <- fpkm$tss

2.3 Histone ChIP-seq data

The example histone ChIP-seq data is stored as GRangesList object:

> data(mappedReads)

> names(mappedReads)

[1] "CEBPA_WT_1" "CEBPA_KO_1"

There are two elements within the list. One CEBPA wild type and one knock-
out sample. Most of the originally obtained reads were removed to reduce
storage space. Further, the reads were extended towards the 3 prime end to
the mean DNA fragment size of 200bps and duplicated reads were removed.
See R packages Rsamtools and GenomicAlignments how to read in and process
sequence reads
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2.4 Data matching

The presented ChIP-seq data lozalized H3K4me3 histone modifications. This
modification primarily occures at promoter regions. Hence, we assign ChIP-seq
values to transcription values by counting the number of reads lying wihtin the
promoter of the measured transcript.

2.4.1 Microarray gene expression data

Depending on the array design, probes often measure more than one transcripts
simultaneously. These transcripts may have different TSS/promoters. This
makes data matching in case of arrays somewhat tricky. We first create a list
with one element for each probe that stores the Ensemble transcript IDs of all
transcripts measured by that probeset:

> probeToTrans <- fData(eSet)$transcript

> probeToTrans <- strsplit(probeToTrans, ",")

> names(probeToTrans) <- featureNames(eSet)

Next, we need the transcriptional start sites for each transcript.

> data(transToTSS)

> head(transToTSS)

ensembl_transcript_id chromosome_name transcript_start

159 ENSMUST00000001172 1 36547201

441 ENSMUST00000003219 1 39535802

631 ENSMUST00000004829 1 171559193

766 ENSMUST00000006037 1 13374083

1202 ENSMUST00000013842 1 172206804

1306 ENSMUST00000015460 1 171767127

strand

159 -1

441 1

631 1

766 -1

1202 -1

1306 1

Such a data frame can be obtained e.g. using biomaRt :

> library("biomaRt")

> transcripts <- unique(unlist(probeToTrans))

> mart <- useMart("ENSEMBL_MART_ENSEMBL",dataset="mmusculus_gene_ensembl", host="www.ensembl.org")

> transToTSS <- getBM(attributes=c("ensembl_transcript_id",

"chromosome_name", "transcript_start",

"transcript_end", "strand"),

filters="ensembl_transcript_id",
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values=transcripts, mart=mart)

> indNeg <- transToTSS$strand == -1

> transToTSS$transcript_start[indNeg] <- transToTSS$transcript_end[indNeg]

> transToTSS$transcript_end <- NULL

Having these information, the promoter region for each probe can be calculat-
ed unsing matchProbeToPromoter. Argument mode defines how probes with
multiple transcripts should be handled.

> promoters <- matchProbeToPromoter(probeToTrans,

transToTSS, promWidth=6000, mode="union")

> promoters[["10345616"]]

GRanges object with 2 ranges and 1 metadata column:

seqnames ranges strand | probe

<Rle> <IRanges> <Rle> | <character>

[1] 1 [37869206, 37875205] + | 10345616

[2] 1 [37887407, 37893406] - | 10345616

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Note that some promoter regions, like for probeset "10345616", may consist of
more than one interval.
Finally, summarizeReads is used to count the number of reads within the pro-
moter regions:

> chipSetRaw <- summarizeReads(mappedReads, promoters, summarize="add")

> chipSetRaw

class: ChIPseqSet

dim: 180 2

metadata(0):

assays(1): chipVals

rownames(180): 10344803 10344813 ... 10361191

10361215

rowData names(0):

colnames(2): CEBPA_WT_1 CEBPA_KO_1

colData names(1): totalCount

> head(chipVals(chipSetRaw))

CEBPA_WT_1 CEBPA_KO_1

10344803 145 401

10344813 145 401

10344897 2 8

10345007 8 6

10345037 69 122

10345099 38 90

The method returns an object of class ChIPseqSet , which is derived from class
RangedSummarizedExperiment .
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2.4.2 RNA-seq data

In case of RNA-seq data, we have one transcription value for each group of
transcripts sharing the same TSS. Hence, a promoter region can be simply
assigned to each transcription value:

> promoters.seq <- GRanges(seqnames=fData(eSet.seq)$chr,

ranges=IRanges(start=fData(eSet.seq)$tss, width=1),

probe=featureNames(eSet.seq))

> promoters.seq <- resize(promoters.seq, width=3000, fix="center")

> promoters.seq <- split(promoters.seq, elementMetadata(promoters.seq)$probe)

Next, we can count the number of reads falling into our promoters:

> chipSetRaw.seq <- summarizeReads(mappedReads, promoters.seq, summarize="add")

> chipSetRaw.seq

class: ChIPseqSet

dim: 3502 2

metadata(0):

assays(1): chipVals

rownames(3502): TSS1000 TSS10001 ... TSS9998 TSS9999

rowData names(0):

colnames(2): CEBPA_WT_1 CEBPA_KO_1

colData names(1): totalCount

> head(chipVals(chipSetRaw.seq))

CEBPA_WT_1 CEBPA_KO_1

TSS1000 0 0

TSS10001 0 0

TSS10003 0 0

TSS10004 0 0

TSS10007 0 0

TSS10013 0 0

From now on, we do not distinguish between microarray and RNA-seq any more.
eSet can be substituted by eSet.ser and chipSetRaw by chipSetRaw.seq. In
the following, the microarray data is used, since the RNA-seq data was not
obtained from the same samples as the ChIP-seq data (actually, not even the
same organism).
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3 ChIP-seq data normalization

It may be necessary to normalize ChIP-seq data due to different experimental
conditions during ChIP.

> chipSet <- normalize(chipSetRaw, method="quantile")

In addition to quantile normalization, other methods like the method presented
by [4] are available.

> par(mfrow=c(1,2))

> plot(chipVals(chipSetRaw)[,1], chipVals(chipSetRaw)[,2],

xlim=c(1,600), ylim=c(1,600), main="Raw")

> plot(chipVals(chipSet)[,1], chipVals(chipSet)[,2],

xlim=c(1,600), ylim=c(1,600), main="Quantile")
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Figure 1: Raw and quantile normalized ChIP-seq data.
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4 Data integration

In order to integrate both data types, a correlation score Z (motivated by the
work of [5]) can be calculated by multiplying the standardized difference of gene
expression values with the standardized difference of ChIP-seq values. Prior to
this, pheno type information must be added to the chipSet object.

> eSet$CEBPA

[1] wt wt ko ko

Levels: ko wt

> colnames(chipSet)

[1] "CEBPA_WT_1" "CEBPA_KO_1"

> chipSet$CEBPA <- factor(c("wt", "ko"))

> colData(chipSet)

DataFrame with 2 rows and 2 columns

totalCount CEBPA

<integer> <factor>

CEBPA_WT_1 8687 wt

CEBPA_KO_1 17122 ko

> intData <- integrateData(eSet, chipSet,

factor="CEBPA", reference="wt")

> head(intData)

expr_ko expr_wt chipseq_ko chipseq_wt z

10354832 8.864536 8.392561 193.0 202.5 -0.8048761

10359770 7.161367 7.305733 213.0 224.5 0.2980229

10355974 7.956849 7.850496 214.5 271.0 -1.0786664

10348378 5.384252 5.339577 49.0 85.5 -0.2927146

10353775 4.780612 4.700385 15.0 13.5 0.0216021

10352827 6.175612 5.873558 8.5 8.5 0.0000000
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5 Classification by mixture models

5.1 Maximum likelihood approach

We now fit a mixture model to the correlation score Z. The model consists of
two normal components with fixed µ = 0. These two components should capture
Z values close to zero, i.e. genes that show no differences between wild type
and knock-out in at least one of the two data sets. The positive (negative) Z
scores are represented by a (mirrored) exponential component. Parameters are
estimated using the EM-algorithm as implemented in the method mlMixModel.

> mlmm = mlMixModel(intData[,"z"],

normNull=c(2, 3), expNeg=1, expPos=4,

sdNormNullInit=c(0.5, 1), rateExpNegInit=0.5, rateExpPosInit=0.5,

pi=rep(1/4, 4))

> mlmm

MixModel object

Number of data points: 180

Number of components: 4

1: ExpNeg

rate = 1.532987

weight pi = 0.2219707

classified data points: 30

2: NormNull

mean = 0

sd = 0.01644812

weight pi = 0.2154126

classified data points: 48

3: NormNull

mean = 0

sd = 0.1213587

weight pi = 0.3526906

classified data points: 70

4: ExpPos

rate = 0.6931467

weight pi = 0.2099261

classified data points: 32

The method returns an object of class MixModelML, a subclass of MixModel .
We now plot the model fit and the classification results:
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> par(mfrow=c(1,2))

> plotComponents(mlmm, xlim=c(-2, 2), ylim=c(0, 3))

> plotClassification(mlmm)
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Figure 2: Model fit and classification results of the maximum likelihood ap-
proach.

5.2 Bayesian approach

Alternatively, an Bayesian approach can be used.

> set.seed(1515)

> bayesmm = bayesMixModel(intData[,"z"],

normNull=c(2, 3), expNeg=1, expPos=4,

sdNormNullInit=c(0.5, 1), rateExpNegInit=0.5, rateExpPosInit=0.5,

shapeNorm0=c(10, 10), scaleNorm0=c(10, 10), shapeExpNeg0=0.01,

scaleExpNeg0=0.01, shapeExpPos0=0.01, scaleExpPos0=0.01,

pi=rep(1/4, 4), sdAlpha=1, itb=2000, nmc=8000, thin=5)

bayesMixModel returns an object of class MixModelBayes, which is also a sub-
class of MixModel .

> bayesmm

MixModel object

Number of data points: 180

Number of components: 4

1: ExpNeg

rate = 7.946674e-05

weight pi = 0.000248503

classified data points: 0

2: NormNull

mean = 0

sd = 0.08108583
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weight pi = 0.5518981

classified data points: 111

3: NormNull

mean = 0

sd = 0.7907854

weight pi = 0.3967847

classified data points: 61

4: ExpPos

rate = 0.06959121

weight pi = 0.05106871

classified data points: 8

The same methods for plotting the model fit and classification can be applied.

> par(mfrow=c(1,2))

> plotComponents(bayesmm, xlim=c(-2, 2), ylim=c(0, 3))

> plotClassification(bayesmm, method="mode")
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Figure 3: Model fit and classification results of the Bayesian approach.

Note, that the parameters ’burn in’ (itb) and ’number of iterations’ (nmc)
have to be chosen carefully. The method plotChains should be used to assess
the convergence of the markov chains for each parameter. The settings here
lead to a short runtime, but are unsuitable for real applications.

Both models tend to classify more genes to the positive component (compo-
nent 4) than to the negative one (component 1):

> table(classification(mlmm, method="maxDens"),

classification(bayesmm, method="mode"))

2 3 4

1 0 30 0
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2 48 0 0

3 63 7 0

4 0 24 8

This is in line with the fact that H3K4me3 occurs in the promoters of active
genes. Since each z corresponds to a probeset (and so to at least one transcript),
the corresponding microarray annotation packages can be used to obtain e.g. the
gene symbols of all positivly classified z scores.

> posProbes <- rownames(intData)[classification(bayesmm, method="mode") == 4]

> library("mogene10sttranscriptcluster.db")

> unlist(mget(posProbes, mogene10sttranscriptclusterSYMBOL))
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