
Starr: Simple Tiling ARRay analysis

for Affymetrix ChIP-chip data

Benedikt Zacher, Achim Tresch

May 3, 2016

1 Introduction

Starr is an extension of the Ringo [6] package for the analysis of ChIP-chip projects. Whereas
the latter is specialized to the processing of Nimblegen and Agilent arrays, the former provides
all corresponding features for Affymetrix arrays. Data can be read in from Affymetrix CEL-files,
or from text files in gff format. Standard quality assessment and data normalization tools are
available. Starr uses the Bioconductor ExpressionSet class for data storage. The probeAnno class
from Ringo serves as a mapping of the ChIP signals onto the genomic position. Consequently,
all functions from Ringo that operate on either ExpressinoSet or probeAnno can be used without
modification. These include smoothing operations, peak-finding, and quality control plots. Starr
adds new options for high-level analysis of ChIP-chip data. We demonstrate Starr’s facilities at
the example of an experiment that compares DNA binding under two different conditions. Three
chips have been produced, two contain the actual immunoprecipitated DNA, and the other one is
a control experiment.

> library(Starr)

2 Reading the data

To read Affymetrix tiling array data, two different file types are required. The bpmap file contains
the mapping of the physical position on the array to the genomic position of the probe sequences.
The CEL file delivers the measured intensities from the scanner. The data included in this package
contains the first 80000 bp from chromosome 1 of a real ChIP-chip experiment in yeast. Artificial
bpmap and CEL files were constructed for demonstration purposes. Two ChIP-chip experiments
were performed with TAP-tagged RNA Polymerase II subunit Rpb3. For the control experiment,
the ChIP-chip protocol has exactly been reproduced with wild type cells (i.e. with no TAP-tag to
Rpb3). The readBpmap() function from the affxparser package reads the bpmap file.

> dataPath <- system.file("extdata", package="Starr")

> bpmapChr1 <- readBpmap(file.path(dataPath, "Scerevisiae_tlg_chr1.bpmap"))

The function readCelFile() reads one or more CEL files and stores them in an ExpressionSet .
Additionally to the path to the CEL files, experiment names and the type of experiment must be
specified. An optional experimentData object can be included. This is a ”MIAME” object, which
includes information about the experiment (e.g. the investigator or lab where the experiment was
done, an overall title, etc.).

> cels <- c(file.path(dataPath,"Rpb3_IP_chr1.cel"), file.path(dataPath,"wt_IP_chr1.cel"),

+ file.path(dataPath,"Rpb3_IP2_chr1.cel"))

1

> names <- c("rpb3_1", "wt_1","rpb3_2")

> type <- c("IP", "CONTROL", "IP")

> rpb3Chr1 <- readCelFile(bpmapChr1, cels, names, type, featureData=T, log.it=T)

Now we give a very short introduction to the ExpressionSet class. For a more detailed view,
please refer to ”An Introduction to Bioconductor’s ExpressionSet Class” [4]. A summary of the
ExpressionSet can be shown with:

> rpb3Chr1

ExpressionSet (storageMode: lockedEnvironment)

assayData: 20000 features, 3 samples

element names: exprs

protocolData: none

phenoData

sampleNames: rpb3_1 wt_1 rpb3_2

varLabels: type CEL

varMetadata: labelDescription

featureData

featureNames: 1 2 ... 20000 (20000 total)

fvarLabels: chr seq pos

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

The ExpressionSet in this case consists of three different objects. Optinally, a MIAME object
can be added as just described. In the following, a short description of the components of rpb3Chr1
is given:

1. The assayData is a matrix with the measured signals.

> head(exprs(rpb3Chr1))

rpb3_1 wt_1 rpb3_2

1 14.51089 14.42134 15.39158

2 12.67154 14.12533 12.88817

3 14.49791 14.09515 15.21496

4 11.89860 13.72238 12.61816

5 13.75071 13.73682 15.05078

6 11.35590 13.00545 12.09935

2. Phenotypic data summarizes information about the samples (e.g., information about type of
experiment, such as tagged IP, raw IP, input DNA, ...). The rownames of the phenotypic data
are equal to the colnames of the assayData. The information about the type of experiment
is needed for the normalization.

> pData(rpb3Chr1)

type

rpb3_1 IP

wt_1 CONTROL

rpb3_2 IP

CEL

rpb3_1 E:/biocbld/bbs-3.3-bioc/tmpdir/RtmpcLNJ2x/Rinst2c3c42c94ac6/Starr/extdata/Rpb3_IP_chr1.cel

wt_1 E:/biocbld/bbs-3.3-bioc/tmpdir/RtmpcLNJ2x/Rinst2c3c42c94ac6/Starr/extdata/wt_IP_chr1.cel

rpb3_2 E:/biocbld/bbs-3.3-bioc/tmpdir/RtmpcLNJ2x/Rinst2c3c42c94ac6/Starr/extdata/Rpb3_IP2_chr1.cel

2

3. The featureData in this case contains information from the bpmap file. The featureNames
correspond to the rownames of the assayData of the ExpressionSet . With the featureData,
each ChIP-signal from the expression matrix can be mapped to the chromosome and its
position on it, as well as its genomic sequence. This information can be used for sequence
specific normalization methods.

> featureData(rpb3Chr1)

An object of class 'AnnotatedDataFrame'

featureNames: 1 2 ... 20000 (20000 total)

varLabels: chr seq pos

varMetadata: labelDescription

> head(featureData(rpb3Chr1)$chr)

[1] chr1 chr1 chr1 chr1 chr1 chr1

Levels: chr1

> head(featureData(rpb3Chr1)$seq)

[1] "GTGTGGGTGTGTGGGTGTGGTGTGG" "ACCACACCCACACACCCACACACCA"

[3] "GGTGTGGTGTGTGGGTGTGTGGGTG" "CACACACCCACACACCACACCACAC"

[5] "TGGTGTGTGGTGTGGTGTGTGGGTG" "CACACACCACACCACACACCACACC"

> head(featureData(rpb3Chr1)$pos)

[1] 1 5 9 13 17 21

3 Diagnostic plots

Since the probes are placed on the array in a randomized way, localized signal distortions are
most likely due to technical artefacts. A reconstruction of the array image helps to identify these
defects. The plotImage() function constructs a reconstruction of the artificial array, used in this
example (see figure 1).

> plotImage(file.path(dataPath,"Rpb3_IP_chr1.cel"))

Besides that, Starr provides different diagnostic plots for the visual inspection of the data.
These plots should help to find an appropriate normalization method. The densityplots and the
boxplots show the distribution of the measured intensities (see figure 2).

> par(mfcol=c(1,2))

> plotDensity(rpb3Chr1, oneDevice=T, main="")

> plotBoxes(rpb3Chr1)

To compare the different experiments, the plotScatter() function can be applied. This produces
a matrix of pairwise scatterplots in the upper panel and pearson correlation in the lower panel.
The density of the data points can be visualized with a color gradient (see figure 3).

> plotScatter(rpb3Chr1, density=T, cex=0.5)

3

Figure 1: Spatial distribution of raw reporter intensities of the artificial array

Figure 2: Density- and boxplots of the logged intensities

4

Figure 3: A scatterplot matrix, showing the correlation in the lower panel. In the scatterplots,
the density of the points is illustrated with a color gradient.

MA-plots are a classic and important quality control plot to spot and correct saturation-
dependent effects in the log enrichment. For each probe, the log enrichment M is plotted versus
the average log intensities of signal and reference (A-value). Ideally, the measured enrichment
should be independent of the mean intensity A of signal and reference. But if e.g. the signal
and the reference measurements have different saturation characteristics, then e.g. M will show a
dependence on A. plotMA() constructs MA plots of all pairs of Immunoprecipitation and control
experiments (see figure 4).

> ips <- rpb3Chr1$type == "IP"

> controls <- rpb3Chr1$type == "CONTROL"

> plotMA(rpb3Chr1, ip=ips, control=controls)

The last diagnostic plot shown here is about the sequence depedent bias of the probe intensities
(see figure 5). The raw logged intensity depends on the GC-content of the probe sequence. But
there is also a remarkable dependency on base position within the sequence.

> par(mfcol=c(1,2))

> plotGCbias(exprs(rpb3Chr1)[,1], featureData(rpb3Chr1)$seq, main="")

> plotPosBias(exprs(rpb3Chr1)[,1], featureData(rpb3Chr1)$seq)

4 Normalization of the data

After quality assessment, we perform normalization of the raw data. Here we use the cyclic loess
normalization.

> rpb3_loess <- normalize.Probes(rpb3Chr1, method="loess")

5

Figure 4: Pairwise MA-plots of all pairs of Immunoprecipitation and control experiments. Both
plots show a dependency between A and M value.

Figure 5: Sequence-specific hybridization bias (raw data). The raw logged intensity depends on
the GC-content of the probe sequence. But there is also a remarkable dependency on base position
within the sequence.

6

Besides this normalization method, there are e.g. median rank percentile [2], scale, quantile,
vsn, MAT and some others available. After normalization, we perform again diagnositc plots to
assert that the normalization was appropriate for the correction of the systematic measurement
errors. The MA-plot of the normalized data does not show any dependence of the M and A values
(see figure 6).

> plotMA(rpb3_loess, ip=ips, control=controls)

Figure 6: MA-plot of normalized data. There is no dependency between A- and M-value observed
any more.

Now we calculate the ratio of the probe intensities. Median values over replicates are taken.

> description <- c("Rpb3vsWT")

> rpb3_loess_ratio <- getRatio(rpb3_loess, ips, controls, description, fkt=median, featureData=F)

It is very important that the control or reference experiment is able to correct the sequence-
dependent bias on probe intensity, which is shown in figure 5. In this case the normalization and
reference experiment was adequate to correct all systematic biases in the data (see figure 7).

> par(mfcol=c(1,2))

> plotGCbias(exprs(rpb3_loess_ratio)[,1], featureData(rpb3_loess)$seq, main="")

> plotPosBias(exprs(rpb3_loess_ratio)[,1], featureData(rpb3_loess)$seq, ylim=c(-0.5,0.5))

5 Data analysis

Besides the typical ChIP-chip analysis of the data, like visualization (see Ringo) or peak finding,
Starr provides additional useful functions to analyze ChIP-signals along specific genomic regions.
For this purpose, we need a mapping of the probe intensities in our ExpressionSet to the genomic
positions. To achieve that, we construct a probeAnno object (as provided by Ringo). The object

7

Figure 7: Dependency of probe intensity on sequences (normalized ratio). The systematic bias
could be corrected.

consists of four vectors of equal length and ordering for each chromosome. The vectors specify
probe start and end, as well as the index of the probe intensity in the ExpressionSet . The unique
vector encodes how many matches the corresponding probe has on the given array. An entry of
’0’ indicates that the probe matching at this position has only this one match. See Ringo for a
detailed description of the probeAnno class.
If the array was designed on an outdated assembly of the genome, a re-mapping of reporters to
the genome can be necessary. Further on, the unique vector does possibly not identify all probes,
that match the genome uniquely at the sepcified position. A re-mapping can be used to identify
all uniquely matching reporters.

> probeAnnoChr1 <- bpmapToProbeAnno(bpmapChr1)

5.1 Remapping probes to a current genome build

Starr provides an easy-to-use method for remapping probe sequences and building new bpmap
annotation. It implements the Aho-Corasick [1] string matching algorithm, which is designed for
searching a given set of sequences in a text. The genomic sequences must be provided as fasta files.
Each file is supposed to contain one chromosome. The sequences to be searched can be passed to
the function either as a character vector or as a bpmap list (returned by RmethodreadBpmap).
An example below, shows how to match the sequences of the given bpmap file from above to
chromosome 1 of S. cerevisiae. Sequences in this bpmap file are taken from both strands in 5′ → 3′

direction, that means we have to search the +1 and -1 strand. The sequence of chromosome 1 is
stored in a fasta file chrI.fa in the dataPath folder.

> newbpmap <- remap(bpmapChr1, path=dataPath, reverse_complementary=TRUE, return_bpmap=TRUE)

Number of nodes: 365098

Searching: chrI

89.5 % of the probes could be mapped uniquely.

In this case, 89.5 % of the probe sequences could be mapped to a unique position on chromosome
1. The method returns a list in the output format of the affxparser function readBpmap.

8

array time #sequences genome size (bp)
S. cerevisiae Tiling 1.0R 34 s 2 697 594 12 495 682
Drosophila Tiling 2.0R 1 min 16s 2 907 359 122 653 977
Human Promoter 1.0R 14 min 22 s 4 315 643 3.3 ∗ 109

Table 1: Time for remapping of reporter sequences from Affymetrix tiling arrays to a current
genome build. Results were calculated on an Intel Core Duo E8600 3.33 GHz machine.

> str(newbpmap)

List of 1

$ chrI:List of 8

..$ seqInfo :List of 7

.. ..$ name : chr "chrI"

.. ..$ groupname : chr ""

.. ..$ fullname : chr "chrI"

.. ..$ version : chr ""

.. ..$ mapping : chr "onlypm"

.. ..$ number : int 1

.. ..$ numberOfHits: int 17900

..$ pmx : int [1:17900] 129 129 27 27 170 170 131 131 130 130 ...

..$ pmy : int [1:17900] 0 100 86 186 42 142 66 166 75 175 ...

..$ mmx : NULL

..$ mmy : NULL

..$ probeseq: chr [1:17900] "GTGTGGGTGTGTGGGTGTGGTGTGG" "ACCACACCCACACACCCACACACCA" "GGTGTGGTGTGTGGGTGTGTGGGTG" "CACACACCCACACACCACACCACAC" ...

..$ strand : int [1:17900] 0 1 0 1 0 1 0 1 0 1 ...

..$ startpos: int [1:17900] 1 5 9 13 17 21 25 29 33 37 ...

One can use this list either to write a new binary bpmap file, or to create a new probeAnno
object. Note, that this bpmap file differs from the original file. Consequently, one has to read in the
data using this file, otherwise the probeAnno object will not be compatible with the ExpressionSet .

> writeTpmap("newbpmap.tpmap", newbpmap)

> tpmap2bpmap("newbpmap.tpmap", "newbpmap.bpmap")

> pA <- bpmapToProbeAnno(newbpmap)

The function works efficinetly for all sizes of genomes. Table 1 shows a comparison of compu-
tation time for different Affymetrix tiling arrays. If the memory on your machine is not sufficient
for the amount of sequences that should be mapped, the parameter nseq can be set to search the
sequences in more than one iteration.

5.2 Analyse the correlation of ChIP signals to other data

In the following section we want to demonstrate, how the binding profiles of the protein of interest
can be analyzed over annotated genomic features. First we read in a gff file, which contains anno-
tations for transcription start (TSS) and termination sites (TTS) of some genes on chromosome
1 [3]. The filterGenes() function filters the annotated features with respect to length, overlaps or
distance to other features. In this case the genes are supposed to have a minimal length of 1000
base pairs.

> transcriptAnno <- read.gffAnno(file.path(dataPath, "transcriptAnno.gff"), feature="transcript")

> filteredIDs <- filterGenes(transcriptAnno, distance_us = 0, distance_ds = 0, minLength = 1000)

The correlationPlot() can then be used to visualize e.g. the correlation between the mean
binding intensity of specific regions around these transcripts and gene expression. First we need

9

to define the regions around the annotated features, that we want to analyze. This is realised with
a data frame.

> pos <- c("start", "start", "start", "region", "region","region","region", "stop","stop","stop")

> upstream <- c(500, 0, 250, 0, 0, 500, 500, 500, 0, 250)

> downstream <- c(0, 500, 250, 0, 500, 0, 500, 0, 500, 250)

> info <- data.frame(pos=pos, upstream=upstream, downstream=downstream, stringsAsFactors=F)

Every row of this data frame represents one region, flanking the annotated features. The first
row e.g. indicates, that we want to calculate the mean ChIP signal 500 bp upstream and 0 bp
downstream around the start of the feature. The term “region” means in this context the area
between start and stop of the feature. Once we have defined these regions, we use the getMeans()
function to calculate the mean intensity over these regions for each transcript in our gff annotation.
This function returns a list. Each entry of the list represents one of the regions defined above and
contains a vector with all mean signals of the annotated featues.

> means_rpb3 <- getMeans(rpb3_loess_ratio, probeAnnoChr1, transcriptAnno[which(transcriptAnno$name %in% filteredIDs),], info)

Now, that we have the mean ChIP signals, we could define another vector, which contains e.g.
gene expression values and visualize the correlation of the specific regions to the expression value.
For this purpose the function correlate() from this package can be used to easily calculate the
correlation between the different areas and the corresponding expression value. In this example,
we just plot the mean signal over the different areas. The last thing we need to define for the
visualization is the order of the boxes in the lower panel of the plot (see figure 8). In this lower
panel, the different regions along the transcript, defined in the data frame info are shown. The
numbering of the levels starts at the bottom with level 1. Now we add this information to the
data frame and call correlationPlot().

> info$cor <- sapply(means_rpb3, mean, na.rm=T)

> level <- c(1, 1, 2, 3, 4, 5, 6, 1, 1, 2)

> info$level <- level

> correlationPlot(info, labels=c("TSS", "TTS"))

5.3 Visualization of a set of “profiles”

Starr provides functions for the visualization of a set of “profiles” (e.g. time series, signal levels
along genomic positions). Suppose that we are interested in the ChIP profile of a protein along
the transcription start site. One way of looking over the inensity profiles is to take the mean
intensity at each available position along this region. This illustration gives a first view of the
main tendency in the profiles. But some profiles with e.g. extremely high values can easily lead to
a distorted mean profile. To get a more detailed view on a group of profiles and their divergence,
we developed the profileplot .
In this function, the profiles are given as the rows of a samples times × positions matrix that
contains the respective signal of a sample at given position. Instead of plotting a line for each
profile (e.g. column of the row), the q-quantiles for each position (e.g. column of the matrix) are
calculated, where q runs through a set of representative quantiles. Then for each q, the profile
line of the q-quantiles is plotted. Color coding of the quantile profiles aids the interpretation
of the plot: There is a color gradient from the median profile to the 0 (=min) resp. 1 (=max)
quantile. The following example shows how this function is used. First we construct an example
data matrix.

> sampls = 100

> probes = 63

10

Figure 8: correlationPlot of the mean intensities over areas around transcription start site (TSS)
and the transcription termination site (TTS) of annotated transcripts from chromosome 1 [3]. The
lower panel shows the the analyzed regions. The upper panel shows the mean intensity over the
individual regions.

> at = (-31:31)*14

> clus = matrix(rnorm(probes*sampls,sd=1),ncol=probes)

> clus= rbind(t(t(clus)+sin(1:probes/10))+1:nrow(clus)/sampls , t(t(clus)+sin(pi/2+1:probes/10))+1:nrow(clus)/sampls)

Next, we apply kmeans clustering to identify two different clusters and construct a “character”
vector, that indicates to which cluster an individual profile belongs.

> labs = paste("cluster",kmeans(clus,2)$cluster)

Then we apply the profileplot function. In this case, the quantiles from the 5%- to the 95%-
quantile are shown with the color gradient (see figure 9). The median is shown as black line. The
25%- and the 75%-quantile are shown as grey lines. The grey lines in the background show the
original profiles of the different clusters.

> par(mfrow=c(1,2))

> profileplot(clus,label=labs,main="Clustered data",colpal=c("heat","blue"),add.quartiles=T,fromto=c(0.05,0.95))

5.4 Visualize profiles of ChIP signals along genomic features

With the just described methods, one can easily visualize ChIP profiles over annotated features
of groups of genes (e.g. different groups of genes identified by a clustering method). To exemplify
the usage of this visualization method, we build a gff annotation for the transcription start sites
from our transcript annotation. For that purpose, we use the transcript annotation and set the
end position of each transcript to its start site.

> tssAnno <- transcriptAnno

> watson <- which(tssAnno$strand == 1)

11

Figure 9: profileplot of two clusters identified by kmeans clustering. The quantiles from the 5%-
to the 95%-quantile are shown with the color gradient. The median is shown as black line. The
25%- and the 75%-quantile are shown as grey lines. The grey lines in the background show the
original profiles of the different clusters.

> tssAnno[watson,]$end <- tssAnno[watson,]$start

> crick <- which(tssAnno$strand == -1)

> tssAnno[crick,]$start <- tssAnno[crick,]$end

Then we use the getProfiles() function to obtain the profiles over 500 bp upstream and down-
stream around the transcription start site. The function constructs a list with the profiles and
stores information about the border (like TSS, TTS, start, stop codon, etc.), as well as the length
of the flanking upstream and downstream areas (500 bp here).

> profile <- getProfiles(rpb3_loess_ratio, probeAnnoChr1, tssAnno, 500, 500, feature="TSS", borderNames="TSS", method="basewise")

Further on, we use the plotProfiles() function generate a plot of the mean ChIP profiles and a
profileplot (as described in the previous section) of the annotated features (see figure 10).

> clust <- rep(1, dim(tssAnno)[1])

> names(clust) <- tssAnno$name

> plotProfiles(profile, cluster=clust)

5.5 Peak-finding with CMARRT

Starr implements the CMARRT [5] agorithm for identification of bound regions. CMARRT ex-
tends the standard moving average approach commonly used in the analysis of ChIP-chip data
by incorporating the correlation structure in identifying bound regions for data from tiling ar-
rays. Probes are declared as bound using adjusted p-values for multiple comparisons under the
Gaussian approximation. The main function is cmarrt.ma which computes the p-values for each
probe by taking into account the correlation structure. CMARRT is developed using the Gaussian
approximation approach and thus it is important to check if this assumption is violated.

12

Figure 10: Visualization of the ChIP profiles along the transcription start site (TSS). On left left
side the mean profile of the ChIP signals are shown. I.e., the mean signal at each available position
is plotted. The profileplot on the rigtht side gives a more detailed view of the intensity profiles.

> peaks <- cmarrt.ma(rpb3_loess_ratio, probeAnnoChr1, chr=NULL, M=NULL, frag.length=300)

The function plotcmarrt produces the diagnostic plots (histogram of p-values and normal QQ
plots) for comparing the distribution of standardized MA statistics under correlation and indepen-
dence. If the distribution of the standardized moving average statistics S∗i is correctly specified,
the quantiles of S∗i for unbound probes fall along a 45 degree reference line against the quantiles
from the standard Gaussian distribution. In addition, the p-values obtained should be a mixture of
uniform distribution between 0 and 1 and a non-uniform distribution concentrated near 0. Figure
shows the summary statistics.

> plotcmarrt(peaks)

The list of bound regions is obtained using the function cmarrt.peak for a given error rate
control which adjusts the p-values for multiple comparisons.

> peaklist <- cmarrt.peak(peaks, alpha = 0.05, method = "BH", minrun = 4)

> str(peaklist)

List of 2

$ cmarrt.bound:List of 6

..$ Chr : chr [1:34] "chr1" "chr1" "chr1" "chr1" ...

..$ Start : num [1:34] 30173 32317 32393 33997 34249 ...

..$ Stop : num [1:34] 30657 32393 32861 34253 34313 ...

..$ n.probe: int [1:34] 116 14 112 59 11 196 211 7 138 17 ...

..$ min.pv : num [1:34] 0.00108 0.01045 0.00101 0.00507 0.00932 ...

..$ ave.pv : num [1:34] 0.00573 0.01148 0.00426 0.00874 0.01107 ...

$ indep.bound :List of 6

..$ Chr : chr [1:41] "chr1" "chr1" "chr1" "chr1" ...

..$ Start : num [1:41] 11305 14601 14621 23833 24001 ...

13

Figure 11: Normal quantile-quantile plots (qqplot) and histograms of p-values. The right panels
show the qqplot of Si and distribution of p-values under correlation structure. The bottom left
panel shows that if the correlation structure is ignored, the distribution of S∗i for unbound probes
deviates from the standard Gaussian distribution. The top left panel shows that if the correlation
structure is ignored, the distribution of p-values for unbound probes deviates from the uniform
distribution for larger p-values.

14

..$ Stop : num [1:41] 11577 14637 14657 23905 24037 ...

..$ n.probe: int [1:41] 63 4 4 13 4 6 6 84 186 64 ...

..$ min.pv : num [1:41] 1.22e-07 1.58e-02 1.64e-02 6.11e-03 1.17e-02 ...

..$ ave.pv : num [1:41] 0.002 0.0165 0.0196 0.0161 0.0162 ...

The list of bound regions obtained under independence (ignoring the correlation structure) is
for comparison. It is not recommended to use this list for downstream analysis.

5.6 Peak-finding and visualization using Ringo

In this section we shortly present how functions from the package Ringo can be used for peak
finding and visualization. For a detailed description of the following work-flow see the Ringo
vignette. Like it is recommended in the Ringo vignette, we first need to smooth the ChIP-chip
intensities and define a threshold y0 for enriched regions.

> rpb3_ratio_smooth <- computeRunningMedians(rpb3_loess_ratio, probeAnno=probeAnnoChr1, allChr = "chr1", winHalfSize = 80, modColumn="type")

> sampleNames(rpb3_ratio_smooth) <- paste(sampleNames(rpb3_loess_ratio),"smoothed")

> y0 <- apply(exprs(rpb3_ratio_smooth), 2, upperBoundNull)

The cutoff for maximum amount of base pairs at which enriched probes are condensed into
one ChIP enriched region is taken as the maximal transcript length. We use the Ringo function
findChersOnSmoothed() to identify ChIP enriched regions.

> distCutOff <- max(transcriptAnno$end - transcriptAnno$start)

> chers <- findChersOnSmoothed(rpb3_ratio_smooth, probeAnno=probeAnnoChr1, thresholds=y0, allChr="chr1", distCutOff=distCutOff, cellType="yeast", minProbesInRow = 10)

Then regions with a maximal distance of 500 bp upstream to a transcript are related to the
corresponding annotated features in the transcriptAnno. Below, five ChIP enriched regions that
could be associated to an annotated feature are shown. They are sorted by the highest smoothed
probe level in the enriched region.

> chers <- relateChers(chers, transcriptAnno, upstream=500)

> chersD <- as.data.frame.cherList(chers)

> chersD <- chersD[which(chersD$feature != ""),]

> chersD[order(chersD$maxLevel, decreasing=TRUE)[1:5],]

name chr start end cellType

18 yeast.Rpb3vsWT smoothed.chrchr1.cher18 chr1 61991 62759 yeast

33 yeast.Rpb3vsWT smoothed.chrchr1.cher33 chr1 75295 75627 yeast

25 yeast.Rpb3vsWT smoothed.chrchr1.cher25 chr1 66271 66691 yeast

20 yeast.Rpb3vsWT smoothed.chrchr1.cher20 chr1 63235 63551 yeast

27 yeast.Rpb3vsWT smoothed.chrchr1.cher27 chr1 67463 67635 yeast

antibody features maxLevel score

18 Rpb3vsWT smoothed YAL041W 1.448960 77.11857

33 Rpb3vsWT smoothed YAL036C 1.295026 24.94154

25 Rpb3vsWT smoothed YAL040C 1.167838 19.43413

20 Rpb3vsWT smoothed YAL041W 1.140376 16.56053

27 Rpb3vsWT smoothed YAL040C 1.113079 10.44618

Now we can plot the ChIP-enriched region, which was related to the feature with the maximal
signal within the enriched area. Figure 12 shows this region.

15

0

0.2

0.4

0.6

0.8

1

1.2

F
ol

d
ch

an
ge

 [l
og

]

●●●●●●
●●●●●●●●●●●●●●●●●

●●
●
●●●●●

●●●●●
●●
●●●●●●●●●●●

●●●●●●●●●●
●
●●●●●●●●●●●●

●●●●●●●

●

●●

●●
●●●●●●●●●●●●●●

●●●●●●●
●●
●
●●●
●●●●●●●●●●

●●●
●●●●●●●●●●

●
●●●●
●

●●●
●●
●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●

●●

●●●●●●
●●

●●●●●
●●●
●
●
●
●●
●

●●●●
●
●
●
●
●
●●●
●
●●●●●●●

●●●
●●●
●●●
●●●●
●●●●●●●

●●●●●●●
●
●●

●●
●
●
●
●●●●●●●●●

●●●●
●●●
●●
●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●
●●●
●●●
●
●●
●●
●●
●●●●●●

●●●
●●●●●●●●●●

●
●●●●●●●●●

●

●

●●●
●●

●

●●●●●

●●

●●●●●●●●●●●●●●

●

●

●●●●●

●●●

●

●

●●
●●
●●●●
●●●●
●
●●
●●●

●●●●●●●

●

●●

●●
●
●
●●
●●●●
●
●●●●
●●●●●
●
●●●●
●
●●●●
●
●
●●●
●●●●●●●●

●●●●●●●
●●●
●●●●●●●●●●●●

●●
●●
●

●●●●●●●●●●●●●
●●●●●●●

●●●●

●●
●●●
●●●

●

●
●●
●
●●●●
●●●●
●
●
●●●●●●●●●●●●●

●●●
●●
●
●●
●●●●

●

●●●●●●

●●

Rpb3vsWT smoothed

YAL044C

57500 58000 58500 59000

Chromosome chr1 coordinate [bp]

Figure 12: One of the identified Rpb3-antibody enriched regions on chromosome 1

6 Concluding Remarks

The package Starr facilitates the analysis of ChIP-chip data, in particular that of Affymetrix. It
provides functions for data import, normalization and analysis. Besides that, high-level plots for
quality assessment and the analysis of ChIP-profiles and ChIP-signals are available. Functions for
smoothing operations, peak-finding, and quality control plots can be applied.

This vignette was generated using the following package versions:

� R version 3.3.0 RC (2016-04-25 r70549), x86_64-w64-mingw32

� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

� Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, utils

� Other packages: Biobase 2.32.0, BiocGenerics 0.18.0, Matrix 1.2-6, RColorBrewer 1.1-2,
Ringo 1.36.0, Starr 1.28.0, affxparser 1.44.0, affy 1.50.0, lattice 0.20-33, limma 3.28.0

� Loaded via a namespace (and not attached): AnnotationDbi 1.34.0, BiocInstaller 1.22.0,
DBI 0.4, IRanges 2.6.0, MASS 7.3-45, RSQLite 1.0.0, Rcpp 0.12.4.5, S4Vectors 0.10.0,
XML 3.98-1.4, affyio 1.42.0, annotate 1.50.0, colorspace 1.2-6, genefilter 1.54.0,
ggplot2 2.1.0, gtable 0.2.0, munsell 0.4.3, plyr 1.8.3, preprocessCore 1.34.0, pspline 1.0-17,
scales 0.4.0, splines 3.3.0, stats4 3.3.0, survival 2.39-2, tools 3.3.0, vsn 3.40.0, xtable 1.8-2,
zlibbioc 1.18.0

Acknowledgments

I thank Michael Lidschreiber, Andreas Mayer and Kemal Akman for their help. Further on, I
want to thank the reviewer for useful comments on the package.

16

References

[1] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18(36):333–340, 1975.

[2] M. J. Buck and J. D. Lieb. Chip-chip: considerations for the design, analysis, and application
of genome-wide chromatin immunoprecipitation experiments. Genomics, 83(3):349–360, 2004.

[3] L. David, W. Huber, M. Granovskaia, J. Toedling, C. J. Palm, L. Bofkin, T. Jones, R. W.
Davis, and L. M. Steinmetz. A high-resolution map of transcription in the yeast genome. Proc
Natl Acad Sci U S A, 103(14):5320–5325, 2006.

[4] S. Falcon, M. Morgan, and R. Gentleman. An Introduction to Bioconductor’s
ExpressionSet Class. http://wiki.biostat.berkeley.edu/b̃ullard/courses/Tmexico-
08/resources/ExpressionSetIntroduction.pdf, February 2007.

[5] P. F. Kuan, H. Chun, and S. Keles. Cmarrt: a tool for the analysis of chip-chip data from
tiling arrays by incorporating the correlation structure. Pac Symp Biocomput, pages 515–526,
2008.

[6] J. Toedling, O. Sklyar, T. Krueger, J. J. Fischer, S. Sperling, and W. Huber. Ringo - an
R/Bioconductor package for analyzing ChIP-chip readouts. BMC Bioinformatics, 8:221, 2007.

17

