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1 Introduction

The purpose of widgetTools is to provide a simple interface for users to build interactive
widgets. Although the underlying implementation of any widget built using widgetTools
is through the R tcltk package, users of widgetTools do not need to know all of the low-
level Tcl/Tk commands, because the widget functionality is encapsulated in S4 classes
which interact directly with standard R objects. For example, specifying the layout of
some widgets (e.g. buttons and text labels) on a window can be as simple as supplying
a list of lists, representing the list of rows of the grid of widgets, instead of using low
level Tcl/Tk options to place and align each widget manually.

The design of widgetTools follows the Model-View-Controller pattern, described in
[1]. This enables the separation of the information content of a widget (model) from the
visual representation (view) and the actions/event-handlers associated with the widget
(controller), in order to facilitate code reuse.

A basic primary widget class basicPW is implemented in order to create pWidget

objects (instances of this class) which contain the application data (i.e. the model).
A widget controller class widget is implemented to keep track of the various pWidget

objects (in a nested list structure) and their associated actions/event-handlers. Finally,
a widgetView class is implemented to store the low-level widget/window attributes, such
as the ID attribute of an object created using the tktoplevel or tkwidget function in
the R tcltk package. These widget IDs are used to update the visual representation of
the widget (view) if the internal data (model) changes.

The system is designed in such a way that users only have to deal with pWidget and
widget objects. widgetView will be managed by widget.
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2 Build a widget

The remainder of the vignette will be used to illustrate the construction of a dialog box
which allows the user to:

• browse for files (using the fileBrowser function from the tkWidgets package),

• read some text labels displayed on the dialog,

• enter some text,

• select an option from a set of radio buttons,

• select an option from a listbox, and

• make some yes/no decisions using checkbuttons (checkboxes).

.
The basic steps are as follows:

1. Define an R environment for creating an manipulating pWidget objects, (rather
than storing everything in the global environment).

2. Define several pWidget objects of different types (text label, text entry, button, list-
box, textbox, radiobutton and checkbutton (checkbox)) using the functions label,
entry, button, listBox, textBox, radioButton and checkButton respectively.

• Each of these functions creates a pWidget object (of class basicPW) with
appropriate slot values for the particular widget, e.g. the widget type slot
(wType) would be “list” for a listbox.

3. Define pWidgets, a list of lists of pWidget objects in order to define the layout
of widgets on the dialog, where the inner lists in the data structure correspond to
rows of widgets on the dialog.

4. Use the widget function to construct and display a dialog containing the widgets
in the pWidgets list

5. Use the wValue accessor function to extract the values specified by the user within
the dialog and store them in standard R objects.

Shorter examples of using some of the widgetTools functions can be found in the help
files for makeViewer and tooltip. The code shown in this vignette is a little longer, but
illustrates the use of almost all of the most common widget elements in one dialog box.

Defining an R environment in which to manipulate pWidget objects has several ad-
vantages. Not only does it avoid the risk of overwriting/masking existing objects in the
global workspace, but it has the advantage that objects from this environment can be
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obtained using the get function, thus avoiding the unnecessary copying of data in mem-
ory which would result from excessive passing (by value) of pWidget objects between
functions every time they needed to be updated.

> library(widgetTools)

> PWEnv <- new.env(hash = TRUE, parent = parent.frame(1))

Then, we can create the pWidget objects that define the widget elements that are
going to be rendered. A pWidget is an object of basicPW class defined below:

|-----------------------|

| basicPW |

|-----------------------|

| wName: string |

| wType: string |

| wValue: string |

| wWidth: string |

| wFuns: list |

| wPreFun: function |

| wPostFun: function |

| wView: widgetView |

| wEnv: environment |

| wNotify: list |

|-----------------------|

Where

• wName - a character string for the name to be associated with a given pWidget;

• wType - type of a Tk widget (”text” for text box, ”list” for list box, ”entry” for entry
box, ”button” for button, ”radio” for radiobutton, ”check” for checkbutton,”label”
for text label,...);

• wValue: an undefined data type used to store information that will be displayed
on the interface or updated using values obtained from the interface;

• wWidth - the physical width (in pixels) of the pWidget to be rendered. Applicable
to most pWidget objects;

• wFuns - functions that will be associated with the given pWidget and invoked when
a given operation to the pWidget takes place (e. g. clicked, get focused ...);
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• wPreFun - the function defining the operations to be performed on the text of the
pWidget before rendering the text;

• wPostFun - the function defining the operations to be performed on the text of the
pWidget upon existing;

• wView - a widgetView object associated with each pWidget that will be used for
updating the data displayed;

• wEnv - an R environment object where data updating and retrieval will take place;

• wNotify - a list of functions defining the actions to be performed when the value
of the pWidget changes.

The following code creates several pWidget objects of different types:

> label1 <- label(wName = "label1", wValue = "File Name: ", wEnv = PWEnv)

> entry1 <- entryBox(wName = "entry1", wValue = "Feed me using browse",

+ wEnv = PWEnv)

> browse2Entry1 <- function(){

+ tempValue <- tclvalue(tkgetOpenFile())

+ temp <- get(wName(entry1), env = PWEnv)

+ wValue(temp) <- paste(tempValue, sep = "", collapse = ";")

+ assign(wName(entry1), temp, env = PWEnv)

+ }

> button1 <- button(wName = "button1", wValue = "Browse",

+ wFuns = list(command = browse2Entry1), wEnv = PWEnv)

> list1 <- listBox(wName = "list1", wValue = c(Option1 = TRUE, Option2 = FALSE,

+ Option3 = FALSE), wEnv = PWEnv)

> text1 <- textBox(wName = "text1", wValue = "Feed me something",

+ wEnv = PWEnv)

> label2 <- label(wName = "label2", wValue = "Select one: ", wEnv = PWEnv)

> radios1 <- radioButton(wName = "radios1", wValue = c(radio1 = TRUE,

+ radio2 = FALSE, radio3 = FALSE), wEnv = PWEnv)

> label3 <- label(wName = "label3", wValue = "Select one to many: ",

+ wEnv = PWEnv)

> checks1 <- checkButton(wName = "checks1", wValue = c(check1 = TRUE,

+ check22 = FALSE, check3 = FALSE), wEnv = PWEnv)

The fileBrowser function from the tkWidgets package is specified to be the action
associated with pushing the Browse button (button1). The file name returned by the
fileBrowser function is then displayed in the entry box (entry1) by assigning the
filename to the wName slot in entry1. All the data manipulations will be done within
the environment previously defined. At this time the environment does not contain the
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pWidget objects. They will be assigned to the environment by the system later. It
is important that the wName for each widget element be the same as the name of the
corresponding pWidget and to be unique. Values for list1, radios1, and checks1 are
named vectors. Names of the values will be displayed either as elements (for listboxes)
or text descriptions (for radio and check buttons) of the corresponding widget elements
to be rendered.

Event-handlers can be defined for each pWidget object, using the wFuns parameter
of the appropriate pWidget constructor function, e.g. button. In the case of a button,
the a function would be defined to be executed as the command for that button, and
it would be specified in the wFuns list passed to the button constructor function as
an attribute with name command. Any button defined is assumed to have a command
element in its wFuns list. List boxes, radio buttons, check buttons, and text entries will
have default functions defined for them to update their values when the corresponding
widget element is pressed or text is changed. If you want anything additional to that,
you will have to define a function and list that function in funs. Adding functions to the
wFuns list is not fully implemented right now but will be available later.

Radio buttons and check buttons are defined as groups with the name and value of
individual radio button or check button defined by the vector for value (see radios1

and checks1).
pWidget objects have set and get functions to access and modify the variables. For

example, we can get and set the value for the type of a pWidget:

> wName(label1)

[1] "label1"

> wName(label1) <- "YYY"

> wName(label1)

[1] "YYY"

> wName(label1) <- "label1"

To specify the layout of the widgets on the interface, the pWidget objects need to be
put in a list of lists in such a way that the inner lists in the data structure correspond to
rows in the grid of widgets on the interface. Each element (list) in the outer list will be
treated as a unit and rendered one after another vertically and each element (pWidget)
in the inner list will be treated as a unit and rendered one after another horizontally.
For example, if we want to have the first three pWidgets namely label1, entry1, and
button1 to appear in one row on top of the screen, list1 and text1 in one row below,
label2 and radios1 in another row, and label3 and checks1 in yet another row, we
will need to put the pWidgets in a list like the following. Naming of the lists for pWidget
groups is arbitrary.
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> pWidgets <- list(topRow = list(label1 = label1, entry1 = entry1,

+ button1 = button1), textRow = list(list1 = list1,

+ text1 = text1), radGroup = list(label2 = label2,

+ radios1 = radios1), chkGroup = list(label3 = label3,

+ checks1 = checks1))

When we have the list of pWidgets ready, we can proceed to create a widget object
that will construct a widgetView object to render the widget elements. A widget object
is defined as follows:

|-----------------------|

| widget |

|-----------------------|

| pWidgets: list |

| funs: list |

| preFun: function |

| postFun: function |

| wTitle: string |

| env: environment |

|-----------------------|

where

• pWidgets - a list of lists with each element being a pWidget object to appear on
the main interface represented by the widget object.;

• funs - a list of functions that will be associated with buttons on the interface to
be created. The name of a function in the list will be the text which appears on
the button and the function will be executed when the button is pressed;

• preFun - a function that will be executed when the Tk widget is constructed;

• postFun - a function that will be executed when the Tk widget is destroyed.

• wTitle - a character string for the title to be displayed in the title bar of the main
interface represented by the widget object.

• env - an R environment object within which the original values for the main widget

object will be stored and updating and retrieval of the values will take place

The following code constructs a widget object. In practice it is not necessary to use
if(interactive()){...}. This is only included so that this vignette can be constructed
automatically using Sweave without necessarily having a graphics device open.
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> if(interactive()){

+ aWidget <- widget(wTitle = "A test widget", pWidgets, funs = list(),

+ preFun = function() print("Hello"),

+ postFun = function() print("Bye"), env = PWEnv)

+ }

Now, we can change the values of the pWidget objects we have created through the
interface. Click the Browse button to select a file using the fileBrowser widget from
the tkWidgets package. After clicking the Finish button on the fileBrowser widget
(not shown), the File Name entry box on the test widget above will contain the file
name which was selected (and returned by the fileBrowser function). Try selecting
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an item from the list box, selecting a radio button, toggling the check buttons, and
typing in a few words in the text box. Then click the Finish button on the test widget,
and a widget object will be constructed. The widget object contains pWidget objects,
the value of whose elements will be modified depending what has been performed on
the interface we just played with. The values for entry1, list1, text1, radios1, and
checks1 now become:

> if(interactive()){

+ wValue(pWidgets(aWidget)[["topRow"]][["entry1"]])

+ wValue(pWidgets(aWidget)[["textRow"]][["list1"]])

+ wValue(pWidgets(aWidget)[["textRow"]][["text1"]])

+ wValue(pWidgets(aWidget)[["radGroup"]][["radios1"]])

+ wValue(pWidgets(aWidget)[["chkGroup"]][["checks1"]])

+ }
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