
Visualising very long data vectors
with the Hilbert curve

Description of the Bioconductor packages

HilbertVis and HilbertVisGUI.

Simon Anders

European Bioinformatics Institute,
Hinxton, Cambridge, UK

sanders@fs.tum.de

2009-06-29

1 Introduction

In a number of different fields, intermediate results often take the form of extremely long data
vectors with many millions of entries. In order to grasp the overall statistical structure and the
distribution of features, specialdef visualisation techniques can be most helpful. The Bioconduc-
tor package “HilbertVis” offers such a tool.

In the present vignette, the package is demonstrated with random example data. To see
the use of HilbertVis with real biological data (namely ChIP-Seq data), see the publication
[And08b] or the vignette [And08a].

2 The problem

The command makeRandomTestData (which is provided only for demonstration purposes) pro-
duces a very long vector filled with random data

> library(HilbertVis)

> vec <- makeRandomTestData()

This is a very long vector, with 10,000,000 entries:

> length(vec)

[1] 10000000

An obvious first way to inspect it is to make a needle plot it with a command like

plot(vec, type="h")

1

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

−
40

0
−

20
0

0
20

0

Figure 1: A simple plot of the example data vector, made with the function plotLongVector.

1500000 1520000 1540000 1560000 1580000 1600000

−
10

0
0

50
10

0

Figure 2: Zooming into a randomly chosen region of the data of Fig. 1.

This command takes very long to complete because so many needles are plotted on top of
each other. The following command produces the same output in a more reasonable speed

> plotLongVector(vec)

From an inspection of this plot (Fig. 1), we may only conclude that the data vector contains a
lot of peaks which seem to be distributed densely but randomly. But are all these peaks similar?
Are they really evenly distributed? Are the individual needles in the plot single peaks, or several
peaks which are plotted on top of each other?

The straight-forward solution is to zoom in and plot a region picked at random:

> start <- 1500000

> plotLongVector(vec[start + 0:100000], offset=start)

In order to see whether this region (Fig. 2) is now typical, and whether all peaks look like these,
we would have to make many more such plots.

2

−300

−200

−100

0

100

200

300

Figure 3: Hilbert curve plot of the example data vector from Fig. 1

3 Hilbert curves

The problem with Fig. 1 is that each pixel corresponds to several thousands of vector elements.
Even if we made the figure much wider and print it finer, the horizontal axis can only hold a
very limited amount of discernible values. The idea of the Hilbert curve visualisation is to use
the space in both the horizontal and vertical direction in order to show more details.

The Hilbert curve plot is an approach to display an as detailed picture of the whole data
vector as possible by letting each pixel of a large square represent a quite short part of the
chromosome, coding with its colour for the maximum value in this short stretch, where the
pixels are arranged such that neighbouring parts of the data vector appear next to each other
in the square. Furthermore, parts which are not directly neighbouring but are in close distance
should not be separated much in the square either. Fig. 3 shows our data vector visualised in
this way.

In order to understand this plot you need to know how the pixels are arranged to fulfill the

3

0 1

0

1

●

● ●

●

0 1 2 3

0

1

2

3

● ●

●●

●

● ●

● ●

● ●

●

●●

● ●

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

●

● ●

● ● ●

●●

● ●

●●●

●●

●

● ●

●●

●

● ●

● ●

● ●

●

●●

● ● ● ●

●●

●

● ●

● ●

● ●

●

●●

● ●

●

●●

●●●

● ●

●●

● ● ●

● ●

●

0 2 4 6 8 1215

0
2
4
6
8

10
12
14

● ●

●●

●

● ●

● ●

● ●

●

●●

● ● ●

● ●

● ● ●

●●

● ●

●●●

●●

●

●

● ●

● ● ●

●●

● ●

●●●

●●

●●●

● ●

●

●●

●●

●●

●

● ●

●●

●

● ●

● ● ●

●●

● ●

●●●

●●

●

● ●

●●

●

● ●

● ●

● ●

●

●●

● ● ● ●

●●

●

● ●

● ●

● ●

●

●●

● ●

●

●●

●●●

● ●

●●

● ● ●

● ●

● ●

● ●

● ● ●

●●

● ●

●●●

●●

●

● ●

●●

●

● ●

● ●

● ●

●

●●

● ● ● ●

●●

●

● ●

● ●

● ●

●

●●

● ●

●

●●

●●●

● ●

●●

● ● ●

● ●

●

●●

● ●

●

●●

●●

●●

●

● ●

●●●

●●

●●●

● ●

●●

● ● ●

● ●

●

●

●●

●●●

● ●

●●

● ● ●

● ●

● ● ●

●●

●

● ●

● ●

● ●

●

●●

● ●

Figure 4: The first four levels of the Hilbert curve fractal.

4

requirements just outlined as well as possible. To my knowledge, the first to come up with the
solution also used here was D. A. Keim in Ref. [Kei96] (where he used the technique to visualise
long time-series data of stock-market prices). He went back to an old idea of Peano [Pea90] and
Hilbert [Hil91], space-filling curves. Peano astonished the mathematics community at the end of
the 19th century by presenting a continuous mapping of a line to a square, i.e., showed that a
line can be folded up such that it passes through every point within a square, thus blurring the
seemingly clear-cut distinction between one- and two-dimensional objects. Such a space-filling
curve is a fractal, i.e., it has infinitely many corners and repeats its overall form in all levels of its
details. Fig. 4 shows the first four level of the construction of Hilbert’s variant of Peano’s curve.
Observe how at level k a line of length 22k passes through each “pixel” of a square of dimension
2k × 2k, and how this curve is produced connecting four copies (in different orientations) of the
curve at the previous level, k − 1.

For Fig. 3, a Hilbert curve at level 9 has been used, i.e., the image has 29 × 29 = 262, 144
pixels. As vec has a length of 10 million elements, each pixel now represents around 38 elements.
While we were unsure about how to interpret the needle-like peaks in Fig. 1, Fig. 3 gives a much
clearer idea. Each of small blue or blue-red features is one peak, and its area is the width of the
peak. (The colour gives the height.)

We can now see a feature of the data vector that was not noticeable in Figs. 1 and 2: While
most of the peaks have an area of of one to ten pixels corresponding to peak width up to approx.
400), there is a region, in the lower left-hand corner, with much wider peaks. This spatial
inhomogeneity is very obvious in the Hilbert plot but easy to miss with more conventional plots.

Before I show an example with biological data, I explain in the next section how the plots in
this section were made.

4 Usage

Figure 4 has been produced with the function plotHilbertCurve which is provided just for
demonstration purposes. Typically, it takes one parameter, the level of the curve. Here it is used
within a loop to arrange the four plots in the figure.

> library(grid)

> pushViewport(viewport(layout=grid.layout(2, 2)))

> for(i in 1:4) {

+ pushViewport(viewport(

+ layout.pos.row=1+(i-1)%/%2, layout.pos.col=1+(i-1)%%2))

+ plotHilbertCurve(i, new.page=FALSE)

+ popViewport()

+ }

To get the Hilbert plot of a data vector (Fig. 3), use the function hilbertImage:

> hMat <- hilbertImage(vec)

hMat is now a matrix of dimensions 29× 29 (i.e., 512× 512) that contains the intensity values
for the plot. The function hilbertImage takes some optional arguments, for example level, in
case you want another level (i.e. another matrix size) than the default 9.

To plot the matrix, we could just pass it to the standard functions image or levelplot.
The function showHilbertImage is a convenient wrapper around levelplot that sets a suitable
colour palette and supresses labels and tickmarks:

> showHilbertImage(hMat)

5

Figure 5: The graphical user interface provided by HilbertVisGUI.

If you look at such an image on screen, you will notice that the image function does not
display one matrix element as one pixel but rather scales the image according to the window
size. This typically results in distracting artifacts, and hence, it is preferable to use the display

function from the EBImage package that allows to suppress scaling. The ’mode’ argument of
showHilbertImage allows to use the EBImage package instead of the lattice package to display
the matrix:

> showHilbertImage(hMat, mode="EBImage")

5 Interactive tool for data exploration

Everything so far only required the package HilbertVis. Provided you have GTK+ and gtkmm
installed on your system (see Appendix for more explanation) you can also install HilbertVisGUI

6

which provides a graphical tool to interactively explore Hilbert curve plots (Fig. 5).
To start the tool, load the package

> library(HilbertVisGUI)

and simply write

> hilbertDisplay(vec)

First notice the red pointer in the field labelled“Displayed part of sequence”. As you move the
mouse cursor through the Hilbert plot the pointer shows you where in the data vector (“sequence”)
you are. This visual feed-back helps to understand how the Hilbert curve “folds” the vector into
the image. You can also read off the precise coordinate corresponding to the pixel under the
mouse cursor (or rather: the midpoint of the range of coordinates (“bin”) represented by this
pixel) in the line above the gauge.

By clicking onto the image, you can zoom into the image. The program will select that quarter
of the displayed curve that contains your mouse click and display it. The left gauge (labelled
“full sequence”) represents the full data vector, with the currently displayed part highlighted in
red.

If you pass several vectors to hilbertDisplay, you can use the buttons labelled “Previous”
and “Next” to switch back and forth between the data vectors in order to compare them.

By switching the “Effect of the left mouse button” to “Linear plot”, you can get an ordinary
1D plot of the region around the pixel you clicked on. Click onto a peak and observe how you
can inspect the peak’s shape in the plot.

To do the linear plot, hilbertDisplay calls the R function simpleLinPlot defined as well
in the HilbertVisGUI package. This is a simple wrapper around the function plotLongVector

discussed earlier. You may want to have a look at its definition.
You can replace this function by supplying your own plotting function as the argument

plotFun to hilbertDisplay. Your function must take two arguments that should be called
data and info, as above, and will be filled in by hilbertDisplay with the displayed vector and
information about where the user clicked and which part of the vector is being displayed. Try
the following example to see the format of this data:

> dumpDataInsteadOfPlotting <- function(data, info) {

+ str(data)

+ print(info)

+ }

> hilbertDisplay(vec, plotFunc=dumpDataInsteadOfPlotting)

Zoom in a bit, then switch to ”linear plot”and click somewhere. dumpDataInsteadOfPlotting
will be called and output such as the following appears on your R console:

num [1:10000000] 0 0 0 0 0 0 0 0 0 0 ...

$binLo

[1] 9555093

$bin

[1] 9555112

$binHi

[1] 9555131

7

$dispLo

[1] 7500001

$dispHi

[1] 10000001

$seqIdx

[1] 1

$seqName

[1] "vec"

The function hilbertDisplay has a number of useful optional arguments which are explained
in its help page. Have a look there for details.

6 Three-channel Hilbert plots

Let us construct a second data vector that differs from vec only in a subtle way:

> vec2 <- vec

> vec2[7000000 : 8000000] <- vec[7010000 : 8010000]

If we compared the Hilbert plots of vec and vec2 side-by-side we might miss the difference.
Loading them both into the interactive tool, with

> hilbertDisplay(vec, vec2)

makes spotting the difference easier: When clicking the“Previous”and“Next”buttons one notices
that most peaks stay put while a few move a bit.

Another possibility is to overlay these two plots, displaying vec in red and vec2 in green.
The function hilbertDisplayThreeChannels start the interactive tool in this mode. Different
from hilbertDisplay, this function expects the values for the channel to be normalised to
values between 0 (corresponding to black) and 1 (corresponding to the channel’s colour in full
saturation). Hence, we divide both vectors by the maximum of vec.

> hilbertDisplayThreeChannel(

+ vec / max(vec), vec2 / max(vec), rep(0, length(vec)))

The third argument is the vector for the blue channel. As we don’t have a third vector, we simply
pass a vector of the same length, filled with zeroes only.

In this display style, those peaks common to both vectors appear in yellow, while the those
different are red and green (Fig. 6).

It might be desirable to have also a non-interactive version of this functionality. This can
be done by calling hilbertImage for each data vector and then using the functionality of the
EBImage package to overlay the three images in three colour channels. As the API of EBImage

is due to be overhauled soon I do not describe this here as it would be outdated soon.

7 Reading in GFF and wiggle data

An important use for the HilbertVis package is genomic data. Imagine a vector the length of
a human chromosome that gives for each base pair a score of some genome-position-dependent

8

Figure 6: A three-channel plot (only using the red and the green channel).

quantity. Such data is typically displayed as a “wiggle track” in genome browsers such as the
UCSC browser at http://genome.ucsc.edu/ [KSF+02].

The common formats to supply data for wiggle tracks are the General Feature Format (GFF)
[DH+00], and the wiggle track format [Wig]. The function makeWiggleVector is supplied to
read in such files and provide their content as a “wiggle vector”, i.e., a vector with one element
per base pair that gives the score value for this base pair. Such a wiggle vector can then be
visualised in the same way as the data vector vec in the examples above. For details, see the
help page for makeWiggleVector.

Another source of genomic data are aligned short reads from high-throughput sequencing
experiments. See [And08a] for an explanation how to deal with such data.

8 Rle vectors

Long data vectors with are step-wise constant are more suitably dealt with in run-length encoding
(RLE), i.e., instead of storing all values, one has two vectors, one that has the lengths of the
constant stretches, one with the corresponding values. The Rle class in the IRanges package
provides this functionality.

The functions hilbertDisplay and hilbertDisplayThreeChannel can both work with Rle

vectors as well as with ordinary vectors (since version 1.3.1 of HilbertVisGUI).

9

http://genome.ucsc.edu/

A Installation

The packages HilbertVis and HilbertVisGUI are meant to be used with the statistics program-
ming language R. While HilbertVis can be installed on any R system (with R version at least
2.7), you need to have gtkmm available on your system in order to install HilbertVisGUI. You
need HilbertVisGUI only if you want to use the interactive tool described in Section . Don’t
worry, it is very easy to install gtkmm and the installer will tell you what to do.

There is also a stand-alone version of HilbertVis that can be used independent of R. See
http://www.ebi.ac.uk/~anders/hilbert for more information.

A.1 Installing HilbertVis

To install HilbertVis, simply use the standard procedure explained on the Bioconductor web
site, i.e., type in an R session

source("http://bioconductor.org/biocLite.R")

biocLite("HilbertVis")

A.2 Installing HilbertVisGUI

The GUI component uses the gtkmm library, the C++ bindings for the GTK+ widget system. 1

Install HilbertVisGUI with biocLite, i.e., by typing

source("http://bioconductor.org/biocLite.R")

biocLite("HilbertVisGUI")

On platforms with binary packages (i.e., Linux and the like), the installer will check whether
gtkmm is available. If it cannot find it, it will display an explanation how to install it.

On platforms with binary packages (Mac and Windows), this explanation appears once you
load the package for the first time. You will be asked to simply download an automatic installer
from a given web address.

B Session Info

> sessionInfo()

R version 3.3.0 RC (2016-04-26 r70550)

Platform: x86_64-apple-darwin13.4.0 (64-bit)

Running under: OS X 10.9.5 (Mavericks)

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] grid stats graphics grDevices utils datasets methods

[8] base

other attached packages:

1See http://www.gtk.org/ for more information on the GTK+ project.

10

http://www.ebi.ac.uk/~anders/hilbert
http://www.gtk.org/

[1] HilbertVis_1.30.0 lattice_0.20-33

loaded via a namespace (and not attached):

[1] tools_3.3.0

C References

References

[And08a] S. Anders. Processing and visualisation of high-throughput sequencing with ShortRead
and HilbertVis. Vignette, to be distributed with Bioconductor package “ShortRead”
(2008).

[And08b] S. Anders. Visualisation of genomic data with space-filling curves. Submitted (2008).

[DH+00] R. Durbin, D. Haussler, et al. GFF (General Feature Format) specifications document.
http://www.sanger.ac.uk/Software/formats/GFF/GFF_Spec.shtml (2000).

[Hil91] D. Hilbert. Über stetige Abbildungen einer Linie auf ein Flächenstück. Mathematische
Annalen 38 (1891), 459.

[Kei96] D. A. Keim. Pixel-oriented visualization techniques for exploring very large data bases.
J. Comp. Graph. Stat. 5 (1996), 58.

[KSF+02] W. Kent, C. W. Sugnet, T. S. Furey, K. Roskin, T. H. Pringle, A. M. Zahler, D. Haus-
sler. The human genome browser at UCSC. Genome Res. 12 (2002), 996.

[Pea90] G. Peano. Sur une courbe qui remplit toute une aire plaine. Mathematische Annalen
36 (1890), 157.

[Wig] Wiggle track format (WIG). http://genome.ucsc.edu/goldenPath/help/wiggle.

html.

11

http://www.sanger.ac.uk/Software/formats/GFF/GFF_Spec.shtml
http://www.jstor.org/stable/1390753
http://genome.ucsc.edu/goldenPath/help/wiggle.html
http://genome.ucsc.edu/goldenPath/help/wiggle.html

	Introduction
	The problem
	Hilbert curves
	Usage
	Interactive tool for data exploration
	Three-channel Hilbert plots
	Reading in GFF and wiggle data
	Rle vectors
	Installation
	Installing HilbertVis
	Installing HilbertVisGUI

	Session Info
	References

