Multiple Co-Inertia Analysis via the NIPALS Method


[Up] [Top]

Documentation for package ‘nipalsMCIA’ version 1.4.4

Help Pages

block_preproc Block-level preprocessing
block_weights_heatmap block_weights_heatmap
cc_preproc Centered Column Profile Pre-processing
col_preproc Centered Column Profile Pre-processing
data_blocks NCI-60 Multi-Omics Data
deflate_block_bl Deflation via block loadings
deflate_block_gs Deflation via global scores
extract_from_mae Extract a list of harmonized data matrices from an MAE object
get_colors Assigning colors to different omics
get_metadata_colors Assigning colors to different values of a metadata column
get_tv Computes the total variance of a multi-omics dataset
global_scores_eigenvalues_plot global_scores_eigenvalues_plot
global_scores_heatmap Plotting a heatmap of global factors scores (sample v. factors)
gsea_report Perform biological annotation-based comparison
metadata_NCI60 NCI-60 Multi-Omics Metadata
NipalsResult An S4 class to contain results computed with 'nipals_multiblock()'
NipalsResult-class An S4 class to contain results computed with 'nipals_multiblock()'
nipals_iter NIPALS Iteration
nipals_multiblock Main NIPALS computation loop
nmb_get_bl Accessor function for block loadings
nmb_get_bs Accessor function for block scores
nmb_get_bs_weights Accessor function for block score weights
nmb_get_eigs Accessor function for eigenvalues
nmb_get_gl Accessor function for global loadings
nmb_get_gs Accessor function for global scores
nmb_get_metadata Accessor function for metadata
ord_loadings Ranked global loadings dataframe
predict_gs Prediction of new global scores based on block loadings and weights
projection_plot projection_plot
simple_mae Create an MAE object from a list of data matrices and column data
vis_load_ord Visualize ranked loadings
vis_load_plot Visualize all loadings on two factor axes