
Getting Started with the R-Java/Omegahat Interface

Duncan Temple Lang
John Chambers

December 13, 2005

Contents

1 Overview: The Penny Tour 1

2 Other Documents 3

3 Installation 3

4 Initializing the Java Virtual Machine 4

5 Executing Java Commands/Expressions 5

6 Calling Omegahat Evaluator Methods 7
6.1 Discovering Java Methods . 7

7 Basic Non-Primitive Conversion 9
7.1 Named Arguments . 10
7.2 Garbage Collection & Querying the Omegahat References . 11

8 Creating Java Objects 12

9 Creating Arrays 12

10 Advanced Converters 13

11 Foreign References 18
11.1 Default Handler . 19
11.2 Mutable State . 20
11.3 Dynamically Creating Interfaces . 21
11.4 Example . 21

11.4.1 What is the Class Compiler Doing? . 22
11.5 The .convert Argument and identity Method . 23

12 Omegahat expressions 23
12.1 Debugging . 25

13 C-level Programming Access 25
13.1 Native Java Methods . 25
13.2 C routines in R . 25

1

December 13, 2005 2

14 Installation Details & Customization 26
14.1 Requirements . 26
14.2 Finding Java . 26
14.3 Compiling & Linking . 27

1. partially qualified class names.

2. .sigs argument

Abstract

This gives a brief outline of how one uses the .Java() interface from R/S to Java provided as part of
the Omegahat project. We start by providing a little of the philosophy of underlying the interface and
how to think about it, specifically comparing it to the .C() and .Call() functions. Then we illustrate the
details. We start with the initialization of the Java Virtual Machine (JVM). Then we move from static
(class-specific) methods and how arguments are passed from R to Java. Then we move to creating Java
objects and invoking methods in these objects. We then discuss Java arrays. At this point, we focus on
how conversion of objects from R to Java and vice-versa is done and how it can be controlled by the user.

This and the other documents discussing the R-Java interface are continually updated. Updates and
additional information is available from the Omegahat Web-site http://www.omegahat.org. You should
check http://www.omegahat.org/RSJava.

1 Overview: The Penny Tour

The R-Java interface is an inter-language communication mechanism and is similar to the ability to call C ,
C++ and Fortran routines from R. One can interactively invoke Java methods from R and pass R objects to
these methods. When calling C and Fortran, one identifies the (global) routine by name and parameterizes
the call by passing different arguments. Unlike C and Fortran, Java is an object oriented language. This
means that methods are usually not global, but are associated with an object – an instance of a particular
class. Thus, one must identify not only the method and its arguments, but also the Java object on which the
method is to be invoked. For this R-Java interface to be useful, therefore, we must be able to create Java
objects from R and be able to refer to them from R and call their methods from R and have these evaluated
within Java. This is a major difference between the Java interface and the corresponding C , C++and Fortran
versions: the Java interface provides a mechanism for creating, managing and identifying persistent objects
in the foreign language (Java) from R. It does so by managing these objects in databases similar to the
elements of R’s variable search path. These foreign objects are represented in R as references (also known
as pointers or handles).

Java objects are created from R via the .JNew() (also known as .JavaConstructor()) (and .JavaArray-
Constructor()) function. The particular constructor method of the Java class being instantiated is identified
by the types of the R arguments. One can invoke methods on a Java object via the .Java() function. This
expects the reference to the Java object, the name of the method and arguments to that method. Again,
like R but unlike C , a Java class can have several different methods with the same name. The types of the
R arguments identify which Java method to invoke.

The .Java() function returns the value of the Java method call. If this is an object we understand how
to convert to an R object, we do so and the value of the object lives in R. Otherwise, it is a reference to
a Java object managed by the Omegahat interpreter and is available for future Java method calls either as
the target or an argument. The R-Java interface provides a basic set of facilities for converting Java objects
to R objects. The obvious conversion of primitives are available and are displayed in table 1. Java scalars
are mapped to R vectors of length 1, and arrays of Java primitives are mapped to the appropriate vector of
length n, where n is the length of the Java array.

One can use the $ operator to do the equivalent of a call to .Java(). Given an R object, jobj, which
is a reference to a Java object, the expression jobj$methodName(arg1, arg2,) is equivalent to
.Java(jobj, "methodName", arg1, arg2,)

The powerful addition the R-Java provides is the ability to add (and remove) converters for different
Java classes. One can register different C (or C++) routines that each take a Java object of particular class

http://www.omegahat.org
http://www.omegahat.org/RSJava

December 13, 2005 3

Java R
double numeric()
float numeric()
int integer()
String character()
char character()
byte character()
long integer()
boolean logical()

Table 1: Conversion of primitives between R to Java

associated with that converter and return an R object. (In the next version, we will allow users to specify R
functions to perform this conversion.)

The only aspect we are missing in this setup is how R objects are passed to Java. Well, primitive R
objects (e.g. the basic vector types: logical, numeric, integer, character) are converted according to table 1.
In some circumstances, we will have to specify which of several like-named methods that we wish to invoke
due to the method overloading supported by Java. For example, we might wish to call a method that expects
an array of boolean values rather than one that expects a single boolean value. The .Java() function allows
one to specify target Java types for the different arguments. The .sigs influences both how the R objects are
converted to Java and also the method selection performed by Omegahat.

Converting non-primitive objects pose a potential challenge. What Java class should be used to represent
a list? a data frame? a graphics device? The answer is that it depends on the context and the Java method
or constructor being invoked. In some cases, it is not desirable to transfer the contents of an R object to a
Java. One such reason is that there is no suitable Java class readily available. A second reason is that one
wishes the R and Java engines to “share” an object and thus we want to pass a reference to the R object.

In order to support this concept of passing R objects by reference, the R-Java interface provides a
convenient mechanism for mapping R objects to a Java class named RForeignReference. This provides the
basic mechanism by which Java methods can be implemented by calling R functions on that object. These R
functions can query and even change the state of the R object (i.e. the objects have mutable state) and then
return control to Java. The underlying Omegahat classes even provide a dynamic mechanism for compiling
and loading new Java classes that implement any collection of Java interfaces by calling a corresponding R
function. This allows an R user to rapidly program Java classes entirely within their familiar R environment.

Finally, since the entire interface mechanism rests on the embedded Omegahat interpreter, one has
access from R to all the functionality with an interactive Omegahat session. This means that instead of
invoking Java methods, one can create more complex and compound Java expressions and pass these to
the Omegahat evaluator via the .OmegahatExpression() function. Additionally, this allows one to perform
substitute()-like tricks to parameterize an expression with Omegahat variables, but from R. This string-based
style of programming is convenient, and has proven effective in a variety of settings. The R-Tcl/Tk package is
such an example. However, it does complicate debugging and restrict the types of computations that can be
performed to those that are expressible via strings. In this way, it does not produce ideal software engineering.
Rather than using the .OmegahatExpression(), we encourage users to employ the .Java() function and avoid
static methods where possible. (This allows others to use the same R and Java code but to use derived
classes with slight changes in implementation, making use of the power of inheritance.)

The Omegahat interpreter does provide numerous methods which can be used to query the state of the
Java environment and the connection to R. For example, one can ask it for a list of all Java classes it
considers are convertible to R. Also, one can query the collection of references it currently manages. Like
R’s and S’s capabilities for allowing the user to query available functions and methods for different classes,
the Omegahat interpreter provides the getMethods() method. This returns a list describing the different
methods in a Java class. The R programmer can use this to discover more about a particular object or class.
The evaluator also maintains a list of all available classes and can resolve partially qualified class names (see
expandClassName()).

December 13, 2005 4

2 Other Documents

The installation of the R package includes this and other documents and of course, the online per-function
documentation.

Examples.pdf some examples of using the .Java() interface, including some of the more advanced
topics such as GUIs, callbacks to R functions, dynamic compilation, etc.

Features.pdf a description of some of the features of this interface and a comparative discussion
of other inter-system interface approaches such as CORBA, XML and other S-Java
interfaces.

Internals.pdf an early document that provides some examples of how the interface is used and
how the internal mechanisms effect this interface.

Howto.pdf this document that attempts to give a brief tutorial to get people started and how
they might use the R-Java interface.

FAQ.html a collection of questions and answers that might arise when things haven’t been
installed correctly, won’t run, or give apparently odd answers.

README Short version of requirements, installation instructions, etc.
examples/ a collection of example R scripts that illustrate different aspects of the interface’s

features. See the README file in that directory for more information.

Table 2: R-Java Documents

You can find where these documents are located via the R expression

[R]
system.file("Docs", pkg="Java")

This R-Java interface has been in existence for almost 2 years. Obviously it has evolved since its earliest
implementation and the addition of converters, references, dynamic compilation, and other features have
been added incrementally. A result of this history is the presence of many different documents that provide
some insight into the philosophy and the generality of the the interface.

3 Installation

One installs the R package via the shell command

[Install]
R INSTALL -c Java_1.0.tar.gz

Note that the -c argument is needed since it creates some extra files (a symbolic link, specifically) after
the standard R installation is performed. See the FAQ.html file in the Docs/ directory for more information.
Also, details about customizing the installation are given in Section 14 below and in the README file in the
package’s tar file.

The configuration script relies on a recent addition to the R INSTALL script. The changes makes the
location into which the package is being installed available to the configuration script and make procedures.
If you have a very recent copy of R (the development version 1.2.0 or higher) the changes will be available
and all will work as indicated above. If you are using an older version, you should set the shell variable
R_PACKAGE_DIR before invoking the R INSTALL. The value of this variable should be either

• the value specified via the -l argument with /Java appended, or

• if the -l is omitted, $R_HOME/library/Java

So for example, if you would have issued the command

December 13, 2005 5

[]
R INSTALL -c -l ${HOME}/Rpackages Java_1.0.tar.gz

then set the value of R_PACKAGE_DIR to $HOME/Rpackages/Java.
Given that the package has been installed, one can make the functions available to the R session via a

call to the function library().

[Library]
library(Java)

4 Initializing the Java Virtual Machine

In order to execute Java commands, one must first create a Java Virtual Machine in which these commands
are interpreted. This is done via the .JavaInit() function. This not only initializes the JVM, but also the
necessary support for executing Java expressions from R/S. This is done by creating an embedded Omegahat
interpreter.

In many cases, no arguments need be supplied to .JavaInit(). A simple invocation such as

[]
.JavaInit()

is sufficient to gain access to all of the core Java and Omegahat classes.
Just as when running the regular java command, we can specify arguments that customize the specific

instance of the JVM. These include the classpath and system properties (usually passed as -Dname=value).
The .JavaInit() allows the caller to specify a list of JVM parameters via its config argument. The default
version of this list is stored in the R object .javaConfig. The list is expected to have any or all of the elements
named classPath, properties and libraryPath. (The library path is for use when loading JNI code from
Java classes via the loadLibrary() method of the System class. The default will suffice unless you are using
JNI and if that is the case, you know what this means!) Unless one specifies a second argument (default),
the values specified in the config list are prefixed to the defaults in .javaConfig.

The classpath element in the config argument should be a character vector in which each element
identifies a directory, a jar file or a URL. In other words, it is not a colon separated string that one usually
provides to Java via the -classpath argument or the CLASSPATH variable.

[]
.JavaInit(list(classPath=c("/home/duncan/MyJavaClasses",

"/home/duncan/Java/colt.jar")))

If no classPath entry is passed to .JavaInit(), we use the value in the CLASSPATH environment variable
and split it into the individual components.

The default values in .javaConfig are computed and fixed when the R library is installed These contain
the entries of the default classpath necessary to locate the classes used to run the embedded Omegahat
interpreter and also the system properties that control how that interpreter is created and behaves (e.g.
class names for components, etc.).

One can specify additional system properties using this mechanism. The properties are given via named
character vectors.

[]
.JavaInit(list(properties=c(RVersion=paste(version$major, version$minor,sep="."),

myProperty="understood by some class")))

December 13, 2005 6

One can control how the Omegahat interpreter behaves by specifying values for properties it uses. For
example, the interpreter looks for Omegahat scripts by searching in elements of a path given by the property
OmegahatScriptSearchPath. One can specify this as a colon-separated (actually this is platform dependent)
list of directories, jar files, URLs, etc.

[]
.JavaInit(list(properties=

c(OmegahatScriptSearchPath="/home/duncan:/tmp/scripts.jar")))

Properties that are understood by the JVM’s initialization can also be supplied.

[]
.JavaInit(list(properties=c("JAVA_COMPILER"="NONE")))

Note that to satisfy R/S, we must quote the name of the property in this example to “escape” the
underscore in the property name.

Obviously, we can specify both properties and classPath elements simultaneously, e.g.

[]
.JavaInit(list(properties=c("JAVA_COMPILER"="NONE"),

classPath="/home/duncan/Java/colt.jar"))

5 Executing Java Commands/Expressions

Now that the JVM is running and the Omegahat interpreter is available, we can invoke Java commands. We
start with simple ones and gradually increase the utility and complexity, illustrating the different aspects of
the interface.

First, we’ll invoke a static method. The Java class System provides a method getProperty(). This
provides access to a collection of global name-value pairs. Both the names and the corresponding values are
strings. These properties provide information about the classpath in effect, the version of the JVM, Java
language, the directory separator, the current directory, and so on.

To call this method, we use the .Java() function. This expects an object on which to invoke a method
and the name of the method. In this case, the object is the class System. Because of the way the Omegahat
interpreter works, we can specify just the name of the class.

The name of the method is "getProperty".
The next arguments are the ones that are to be passed to the Java method. In this case, it is a single

string naming the property to be retrieved. Let’s get the value of the java.class.path property.
At this point, we have all the necessary components of the call and issue it with the following R expression:

[]
.Java("System", "getProperty", "java.class.path")

The result is an R character vector of length 1 - a string. It will probably be something like (but with
different directories!)

[]
[1] "/home/duncan/bode/Rpackages/Java/org/omegahat/Jars/Environment.jar:
/home/duncan/bode/Rpackages/Java/org/..:
/home/duncan/bod\e/Rpackages/Java/org/omegahat/Jars/antlr.jar:
/home/duncan/bode/Rpackages/Java/org/omegahat/Jars/jas.jar:
/home/duncan/bode/Rpackages/Java/org/omegahat/Jars/jhall.jar"

December 13, 2005 7

How does this command work? Well, the first argument is the object on which to invoke the method.
In this case, it is a static method and so we pass the name of the class. The full name of the class is
java.lang.System, but we can specify a partially qualified class name thanks to the Omegahat interpreter.
(More on partial class names in a moment.) The second argument is the name of the method to be invoked.
And finally, we give a list of arguments via the · · · argument to .Java(). In this example, there is only one
argument – the name of the property whose value we want.

The Omegahat interpreter resolves the object whose method is to be invoked, in this case the class
System(). Not finding an object/variable in its databases (like the R/S search path) named System, it looks
for a class with that name and finds java.lang.System.

When the arguments are passed to Java from R via the internal C code, they are converted to Java
objects. Table 1 shows how the basic types are converted from R to Java values. In this example, the
character vector ("java.class.path") is converted to a Java String.

At this point, Omegahat has control and performs the complex task of finding the most appropriate
method named getProperty() in the class System that takes a single argument of class String. There are
in fact only two getProperty() methods in this class

[]
public static java.lang.String java.lang.System.getProperty(java.lang.String)
public static java.lang.String java.lang.System.getProperty(java.lang.String,

java.lang.String)

and only one takes a single argument. Hence, the match is done relatively easily.
Finally, Omegahat decides how to return the value of this method to the R engine. Again, in this case,

it is simple since the object is a String and is converted to an R character vector of length 1.
The first time you call the .Java() function, you may notice that things are very slow. This is because

the Omegahat has to typically resolve a class (e.g. System in our example) and to do this correctly it must
construct a list of all possible classes. On subsequent calls this list has already been computed and these will
execute quickly.

You can avoid the construction of these class lists (and the delay) by giving the fully qualified class name
(java.lang.System).

To illustrate using different types, but still in the context of static methods, we can use the Java’s random
number. The class Math provides a method random(). We call it with no arguments and it returns a numeric
vector of length 1 corresponding to the double return type of that method.

[]
.Java("Math", "random")
[1] 0.1194042

While we have concentrated on invoking methods, we can also access fields in a Java class (or object). The
Omegahat interpreter determines whether the name given in the second argument of the .Java() function
call identifies a method or a field. In the case of a field, the Omegahat interpreter returns its value. (It
checks whether the fields is publically accessible.)

The following example illustrates how we can access the (static) field PI in the class Math. (Of course,
we could have asked R, but where would the fun be in that!)

[]
.Java("Math", "PI") [1]
3.141593

6 Calling Omegahat Evaluator Methods

Before we turn our attention to creating new Java objects and invoking their methods, we can discuss
invoking non-static methods without having to create new objects. In calling .JavaInit(), one causes the

December 13, 2005 8

Omegahat interpreter to be instantiated. The evaluator can be referenced in a call to .JavaInit() by the string
"__Evaluator" (with two underscores). The evaluator itself provides many utilities and is a specialized
version of the basic interactive Omegahat evaluator tailored for this inter-system communication. It has
many methods/functions that make managing the session easy as well as being useful in their own right.
We do not want to change the focus of this document to explain the Omegahat interpreter. Instead, see the
different online tutorials, API documents, etc. at http://www.omegahat.org. Additionally, it is convenient
to experiment either in an interactive Omegahat session or from R. (These are almost the same.) One can
inquire what methods a class has by using the evaluator’s own getMethods() method. This takes the name
of a class and returns a list containing a description of the different method supported by that class.

How do we invoke a method on the evaluator itself? We use the .Java() function and specify the string
"__Evaluator" (or alternatively NULL)

We can ask the evaluator to return the fully qualified name of a class that we specify by name. The
method expandClassName() provided by the evaluator does this. Again, it is a simple method invocation.
We pass it a string identifying the class of interest.

[]
.Java("__Evaluator","expandClassName", "JFrame")
[1] "javax.swing.JFrame"

6.1 Discovering Java Methods

We can also ask what methods a class has. The evaluator’s getMethods() method returns a list of each
of whose elements contain a description of a Java method, providing its name, the number and type of its
arguments and its return type. (We will talk more about reflectance later. See Section ??.)

[*]
m <- .Java("__Evaluator","getMethods", "OmegaInterfaceManager")

There are R functions which simplify this and operate not only on class names, but also Java references.
The functions getJavaMethods() and getJavaConstructors() return a list describing the different methods or
constructors respectively.

[*]
getJavaMethods("OmegaInterfaceManager")
getJavaConstructors("util.Vector")
v <- .JNew("util.Vector", as.integer(10))
getJavaMethods(v)

We can find the names of the different methods by extracting the name element within each element of
the list.

[*]
nms <- sapply(m, function(x) x$name)
nms

Let’s look at the method we just called. We extract all the elements whose name element is "getMethods".
This returns a list of length two corresponding to the overloaded methods with the same name in the
evaluator’s class. Note that we called the second one (in the output below). We know this by looking at
the Parameters element of each and noting that the first expects a Class object, while the second expects
a String.

http://www.omegahat.org

December 13, 2005 9

[]
m[nms == "getMethods"]

[[1]]
[[1]]$name
[1] "getMethods"

[[1]]$"Declaring class"
[1] "org.omegahat.Interfaces.NativeInterface.OmegaInterfaceManager"

[[1]]$Parameters
[1] "java.lang.Class"

[[1]]$Modifiers
public

1

[[1]]$Exceptions
character(0)

[[1]]$"Return type"
[1] "[Ljava.lang.reflect.Method;"

[[2]]
[[2]]$name
[1] "getMethods"

[[2]]$"Declaring class"
[1] "org.omegahat.Interfaces.NativeInterface.OmegaInterfaceManager"

[[2]]$Parameters
[1] "java.lang.String"

[[2]]$Modifiers
public

1

[[2]]$Exceptions
[1] "java.lang.ClassNotFoundException"

[[2]]$"Return type"
[1] "[Ljava.lang.reflect.Method;"

7 Basic Non-Primitive Conversion

As a last detoure before we turn to creating Java objects, we discuss how non-primitive objects are returned
to R. The Omegahat evaluator offers a mechanism for finding files by searching different directories and
append different extensions. (This is implemented in the FileLocator class.) This method is findFile()
and it is a reasonably intelligent facility that can look inside jar files as well as directories. We will ask it to
find the file OmegaInit in the Environment.jar file and assign the result to an R variable, f.

December 13, 2005 10

[]
f <- .Java("__Evaluator", "findFile", "OmegaInit")

What should the contents of f be? A file name? the jar file name and the expanded name of the entry
within the jar file? If it is either of these, how can we use this, e.g to read the contents of the file, find its
date, etc. without being forced to re-locate it? There is no clear answer to these questions, but a general
mechanism allows us to give a clear and unambiguous approach.

The object returned by this particular method call is a Java object of class org.omegahat.Environment.IO.ArchiveEntry.
Since there is no clear way to convert it to an R object, the Omegahat interpreter stores the value in one of
its databases. It then creates a proxy object that contains sufficient information to identify the real object
now stored away and returns that proxy. The low-level C code that implements the R-Java bridge knows
how to convert these special Java proxy objects and create R objects from them.

So now we know what the R object f should look like. It is a reference to a Java object and looks like
the following.

[]
f
$key
[1] "2"

$className
[1] "org.omegahat.Environment.IO.ArchiveEntry"

attr(,"class")
[1] "AnonymousOmegahatReference"

It contains information about the class of the Java object to which it refers. This is in the className
field. It also contains the key or name by which Omegahat knows it. This is the name used to store the real
object to which this proxy refers (e.g. the ArchiveEntry from the earlier find() method call).

The class of this variable is AnonymousOmegahatReference. This indicates that not only is it a reference
to an object managed by Omegahat, but also that it was not given a name by the R call that created
it. Instead, Omegahat has generated a unique name and stored it in a special database – the anonymous
database.

We could have forced Omegahat to use a particular name for the result of an object. We do this by
providing a value for the argument .name. In this case, Omegahat stores the resulting object in its default
database using the name specified by the R call and returns an object of class NamedOmegahatReference.

[*]
f <- .Java("__Evaluator", "findFile", "OmegaInit", .name="myFile")

Is there an advantage to using named references rather than anonymous ones? There is little or no
difference in speed. One benefit is that you can then use the name directly as the first argument in a call to
.Java(), such as

[]
.Java("myFile", "size")
[1] 369

Additionally, when using .OmegahatExpression() which allows one to evaluate an Omegahat or Java
expression one can refer to the variable by name rather than having to substitute it on the R side. (See
Section 12 for more details.)

December 13, 2005 11

Perhaps the most important use of named references is that by specifying a name, Omegahat will not
attempt to convert the resulting object. This is useful when we want to avoid the conversion of an object
that we will use in a subsequent Java call. For example, we may want to display the names of all the objects
stored in the default Omegahat database (the named objects themselves) in a Swing JList. The array of
names is retrieved by calling the evaluator’s objects() method. Then pass this to the JList constructor.
We can avoid the conversion from Java to R and then again from R to Java by specifying any name as the
value of the .name argument when calling the objects() method.

[]
x <- .Java("__Evaluator", "objects", .name="anyName")
.JavaConstructor("JList", x)

To make certain you understand the conversion mechanism, take a moment to consider what the same
code would do if the .name argument was not specified.

We should note that one can obtain the same effect using the .convert argument without specifying a
unique name that doesn’t conflict with an existing entry. See Section 11.5.

Another important use of the .name argument is when we must guarantee that we are using the same
Java object in different calls, rather than two different Java objects that have the same values. For example,
suppose we wish to create two new Java objects and have them share a single array of String objects. If we
convert the same R object on two occasions, we will not obtain the same Java object, but just a duplicate.
In this way, we will not be (easily) able to pass the same Java object to the two new objects. Storing an
object in the Omegahat database and referring to it in subsequent calls will guarantee that it is the same
object.

Perhaps one of the major disadvantages of using the .name argument is the potential to conflict with
another name. For example, suppose you use a function which decides to store a Java object using the
name "x" and then call another function that also uses this name. In this case, the second assignment will
overwrite the earlier one and the Omegahat database will contain the second object. The first will have
disappeared. This is very similar to the problems that are encountered in S when people use frame 1 to store
objects created in one function call that are needed in other function calls (e.g. the model and trellis code).

In summary, use the .convert argument to suppress Omegahat’s conversion to an R object unless you
are using the .OmegahatExpression() and need to refer to the object as an Omegahat variable in a string
version of the Omegahat expression. Even in this case, you can use the substitute()-like functionality of
.OmegahatExpression(). Basically, don’t use the .name() argument from within a function. Use it only
as part of a user-level interactive command where the user is responsible for the entire management and
selection of Omegahat names.

7.1 Named Arguments

As we have seen, we can avoid unnecessary conversion of by explicitly storing the return value in the named
Omegahat database. This also allows the use of unique Java references within Omega where necessary.
The same logic applies to arguments passed from R to Java methods and constructors via the .Java()
and .JavaConstructor() functions. Again, suppose we want to create two separate lists but with the same
String array as the argument for both. We could transfer the object from R to Java in one step and the call
.JavaConstructor() to create the two lists and refer to the previously created String array in both. However,
the R-Java interface provides a simpler mechanism. One can optionally provide names for the arguments
given in the · · · argument of .Java() (and .JavaConstructor()). For each of these named arguments, the
Omegahat assigns the resulting Java object to the named database and makes it available in exactly the
same way as it does named return values.

In our example, we could then achieve the same result with just two inter-system calls. Suppose that x is
the character vector that we want to convert to a Java String array and share between both lists. Then we
pass this as the argument to the first constructor of the JList and give it a name – myName. Then, entirely
within R, we create an object representing a named Omegahat reference with myName as the key. We use the
function omegahatReference() to create this locally generated version of the reference. Then, we pass this
reference as the argument to the second constructor.

December 13, 2005 12

[]
x <- letters
list1 <- .JavaConstructor("JList", myName = x)
r <- omegahatReference("myName")
list2 <- .JavaConstructor("JList", r)

Currently, there is no direct way in R to effect the other approach whereby we convert the object, get a
reference to it and then create two JList objects. Instead, we use the .Java() method and explicitly assign
the object to the Omegahat database. This can be done with the following command:

[]
ref <- .Java("__Evaluator", "identity", x, .name="myName")

Then we can use this reference as the argument to each of the constructor methods.

7.2 Garbage Collection & Querying the Omegahat References

We know about the way Omegahat stores objects in its local databases and the resulting named and anony-
mous references in R. One difficulty with this reference approach is that Omegahat cannot determine when
the R session has no use for an object. (There are some exceptions, but this is true in general.) As a result,
the R user is responsible for releasing the objects he or she no longer needs. This is similar to R objects that
are assigned and no longer used.

The Omegahat evaluator allows one to obtain the names of the different references it is managing. One
of the objects() methods takes a single boolean argument which indicates that it should return the names
from the anonymous reference database (false) or the regular named database (true).

[*]
the anonymous reference database

.Java("__Evaluator", "objects", T)

the named reference database
.Java("__Evaluator", "objects", F)

Additionally, one can obtain a complete listing of the references in each of these two databases. These
listings include the class of the object to help one identify it. The evaluator method that gives these listings
is getReferences(). Again, it expects a boolean value as its only argument - true for named references
and false for anonymous references.

[*]
.Java("__Evaluator", "objects", F)

8 Creating Java Objects

At this point, we have discussed how to invoke methods and access fields. We have even had a brief example
of how to find out about the available methods. But now we turn our attention to the power of the R-Java
interface and the ability to create instances of arbitrary Java classes. We first focus on Java classes and then
discuss Java arrays. The two functions of interest are .JavaConstructor() and .JavaArrayConstructor().

The .JavaConstructor() takes a class identifier and a collection arguments that are passed to an appro-
priate constructor of that class. This is very similar to the .Java() function except that there is no need to
specify the method name. This is because the constructors have an implied name. The class identifier given
as the first argument to .JavaConstructor() can be either of the following:

December 13, 2005 13

• a string giving the (potentially partially qualified) name of a class. The class names is resolved and
expanded by the Omegahat evaluator.

• a Java object returned from a previous call to .Java() that returned a Class object.

The arguments passed via the · · · argument of the .JavaConstructor() are handled exactly as they are in
the .Java() function. They are converted to Java objects and the passed to the Omegahat interpreter along
with the class identifier. The appropriate constructor is identified and the newly created object returned. If
no converter is found to convert this new object to an R object, an reference to Java objects is returned to
the R engine. As with the .Java() function, if a value is passed for the .name argument, a named reference
is returned and one can refer to that object in subsequent .Java() and .JavaConstructor() calls with that
same string. If no .name argument is specified, an anonymous reference is returned and one should use the
resulting R object to identify the object in future calls.

The following commands illustrate many of the different aspects of using .JavaConstructor(). We start
by creating a Swing button (JButton). We invoke that class’ constructor that expects a string giving the
text to display within in the button. The result is an object that cannot be meaningfully converted by the
Omegahat evaluator to an R object. Accordingly, it is returned as a reference. Since there is no .name
argument, we get a anonymous reference to a Java object and assign that reference to the R variable b.

Next, we want to display that button in a window. We can use the Omegahat convenience class
GenericFrame. We create an instance of this class and give it a reference to the button and a logical value
(F) that indicates that we do not want the window to be immediately displayed when it is created. These
are the arguments to the constructor. The .name means that the Omegahat evaluator assigns the resulting
GenericFrame instance to its regular/default database and returns a reference to it.

Note how the R variable b is passed from R to Omegahat in this second constructor. Omegahat resolves
this reference using the name and database identifies stored in it.

The second pair of expressions access the newly created object. The first invokes a method in the
button, changing its background color. (Note how we access the static field in the class Color.) The second
expression illustrates how we can use the name "myWindow" to refer to an object create previously with the
.name argument.

[*]
b <- .JavaConstructor("JButton", "A button")
.JavaConstructor("GenericFrame", b, F, .name="myWindow")

.Java(b, "setBackground", .Java("Color", "red"))
.Java("myWindow", "setVisible", T)

9 Creating Arrays

One can create arrays of objects, including arrays of arrays or multi-dimensional arrays. We currently use
a different function – .JavaArrayConstructor() – for this purpose. This takes the name of the class of the
element type for the array and the length of each dimension. For example, we can create an array of String
objects with length 3 as follows.

[]
.JavaArrayConstructor("String", 3)

We can create a two-dimensional array consisting of 4 arrays, each of length 3 to contain Class objects.

[]
.JavaArrayConstructor("Class", c(4, 3))

December 13, 2005 14

Ragged arrays and arrays all of whose dimensions are not known at creation time can be created by
specifying the length of a particular dimension as 0. (Unfortunately, omitting a value as in c(4,) does not
work due to the definition of the c() function.) So the following commands create an array of String arrays
in which the first element has 3 entries and the second has length 4.

[]
r <- .JavaArrayConstructor("String", dim=c(2,0))
.JavaSetArrayElement(r, .JavaArrayConstructor("String", dim=3),1)
.JavaSetArrayElement(r, .JavaArrayConstructor("String", dim=4),2)

Unfortunately, in this release, there is no simple way to initialize the contents of a nested array. This is
because of the ambiguity of conversion.

We can access the elements of the two-way array above using .JavaSetArrayElement() and .JavaGetAr-
rayElement(). First we set the second value of the first array (i.e. 1,2). Then we retrieve the value of that
same element. And then we get the top-level elements of the two-dimensional array. Each of these are arrays
themselves and automatically converted to character vectors.

[]
.JavaSetArrayElement(r, "A test", 1,2)
.JavaGetArrayElement(r, 1, 2)
.JavaGetArrayElement(r, 1)
.JavaGetArrayElement(r, 2)

10 Advanced Converters

The R-Java/Omegahat interface understands how to convert certain basic R types to Java values and vice-
versa. Table 1 shows the relationships between the different R and Java types. But we have also seen an
example of how we converted Java Method information to R when we invoked the getMethods() method of
the evaluator (see 6.1).

How does R know how to convert Java Method objects? The answer is, of course, we told it? Specifically,
we wrote a C routine that takes a Java Method() object and converts generates an appropriate R object.
The R-Java interface allows the R user to manage the list of such converters. The function getJavaConvert-
erDescriptions() allows the user to see both how many converters are currently registered and also obtain a
description of each of these.

There are two sets of converters: from Java to R and from R to Java. The getJavaConverterDescriptions()
by default returns descriptions of both sets of converters. The default set of converters is given below.

[]
getJavaConverterDescriptions()
$fromJava
[1] "Converts any Java InterfaceReference"
[2] "class == java.lang.reflect.Method"
[3] "class == java.lang.reflect.Constructor"
[4] "instanceof java.util.Properties"

$toJava
[1] "RFunctionListener"

December 13, 2005 15

The descriptions attempt to indicate on what type of object they operate. Consider the fromJava
list. The first entry indicates that the associated converter will handle an object that is derived from the
Omegahat reference class InterfaceReference. This uses the equivalent of the isAssignableFrom() method
in Java to determine whether an object can be assigned to a variable of a particular class - in this case
InterfaceReference.

The next two descriptions indicate that they are prepared process objects that are of class Method and
Constructor, respectively. They will not process objects of classes derived from these classes. (This is not
an issue since these are final classes and so cannot be extended.)

The final description indicates that the converter will process any object for which the Java expression

[]
obj instanceof Properties

returns true. For the class Properties, this is the same as the isAssignableFrom() comparison. How-
ever, if the class were an interface rather than Properties, it would match any class that implemented that
interface.

These descriptions indicate that there are two aspects to conversion. First, a converter must determine
whether it is capable of processing a particular object. If it is, then it must perform the actual conversion.
We separate these two actions into different routines: the matching routine and the conversion routine.
Additionally, we provide implementations of the 3 basic types of conversion: instance of, assignable from an
class equality.

When an object is being returned from Omegahat, that system determines whether the object is convert-
ible or not. and passes it the internal routines to convert. It then iterates over the list of converters until the
matching routine of one of them indicates that the associated converter will perform the conversion. Then
the basic converter engine calls that converter and the result is an appropriate R object.

Conversion involves both sides of the interface knowing about a class. Obviously, the R engine must know
how to convert a class before it can be converted. But equally importantly, the Omegahat engine must be
told that a class is considered convertible and whether derived classes or a class implementing an interface
that is considered convertible. This is achieved by Omegahat having a reference to ConvertiblClassifierInt
object. An object that implements this interface (see BasicConvertibleClassifer) maintains a table of classes
that it knows about and how matching should be done for that class. The default implementation of this
interface is a hash-table that stores the classes that are considered convertible and an integer indicating
which type of matching to perform when an object is being compared to that class entry. This classifier
works recursively when given an array. It looks at the type of element in the array and determines whether
that is convertible or not. (Note that nested arrays are not currently considered convertible.)

The key point is that when we add a C-level routine to convert a Java object to an R object, we must
also inform the Omegahat ConvertibleClassifierInt that this class is considered convertible and how (i.e. the
appropriate matching operation).

The 4 default converters registered when the JVM is initialized include a converter for the Properties.
This means that when the result of a Java method returns a Properties object, the appropriate converter
C routine will be called and create an R object. In this case, it creates a named character vector: the names
are the keys in the properties table and the values are the corresponding entries. This means that we can
retrieve any Properties table from Java including the System properties.

[]
jprops <- .Java("System","getProperties")
jprops[["user.home"]]
[1] "/home/duncan"

To register a converter in C code, one specifies the routine that does the conversion; a routine that
indicates whether it is prepared to process a given object; some user defined data object that is stored with
the converter and passed to it and the matching routine each time they are called (e.g. a class type against
which to compare the class of the object being converted) ; a description which is used to describe the current

December 13, 2005 16

converters as in getJavaConverterDescriptions(). Finally, the call to register a converter can indicate whether
the basic conversion mechanism should process arrays by calling this for each element or not. (Needs more
explanation!)

While conversion routines can be registered in C, they can also be specified in R via the setJavaCon-
verter(). This expects the same set of arguments as the C registration, but rather than receiving function
pointers, it expects the names of C routines for the conversion and matching routines. An example of such
a call is shown below and can be executed. (The function .RSJava.symbol() merely converts its argument
to match the C routine name - RS_JAVA_RealVariableConverter() in this case.) The matcher argument
identifies one of the built-in class comparators rather than the name of a C routine that performs the com-
parison of the object’s class and target class of the converter. The userObject is used to parameterize that
matching function. It specifies the name of a Java class which is expanded automatically to, in this case,
org.omegahat.DataStructures.Data.RealVariable. This is then stored with the matching routine and is used
by it to determine if the object being converted is assignable to an object of that class. This particular
converter translates the basic Omegahat RealVariable data structure to a numeric vector in R.

[*]
val <- setJavaConverter(.RSJava.symbol("RealVariableConverter"),

matcher="AssignableFrom",
autoArray=T,
description="Omegahat RealVariable to numeric vector",
userObject="RealVariable"
)

The final argument of the setJavaConverter() function is register. This is expected to be a logical value
indicating whether this function call should also notify the Omegahat ConvertibleClassifierInt that the class
for which the R converter is being registered should also be considered convertible by Omegahat. This is
a necessary step if Omegahat is to ever allow objects of this type to be passed to the low-level conversion
mechanism. If it does not know that the class is considered convertible, it will simply return a reference to
the object.

The default for the register argument is currently T. If the particular call to setJavaConverter() does not
specify the appropriate information for Omegahat to digest, one can register that the class is convertible in a
separate expression via the function setJavaConvertible(). This is a direct way to add the class to Omegahat’s
list of convertible classes. The arguments this expects are the name of the class and how classes related to
it are to be treated. This is the equivalent to the specification of the class matching for the converter itself:
instance of, assignable from, or direct equality of class.

The setJavaConvertible() function also allows one to remove a class from the list of classes considered
convertible. This allows one to instruct Omegahat not to attempt to convert a type of object. In this
way, we need not remove a converter from the C-level converter tables, but need only avoid attempting the
conversion. The following causes Omegahat to treat the javax.swing.JButton class as non-convertible and
will return a reference to any such object.

[]
setJavaConvertible("JButton", F)

Just as we can discover what converters are registered in the C code to convert between R and Java
objects, we can also query what Java classes Omegahat considers as convertible. We can ask the Omegahat
evaluator to give us this information using its getConvertibleClasses() methods.

[]
.Java("__Evaluator", "getConvertibleClasses")

This returns a character vector listing the Java classes that the Omegahat interpreter will attempt to
convert. We must also query how it performs the matching so as to determine how derived classes and those

December 13, 2005 17

that implement interfaces listed in this group are handled. This information is available from the evaluator’s
ConvertibleClassifierInt object which can be retrieved via the method getConvertibleClassifier(). The
matching mechanism for each of the classes in this list is available via methods in that class.

Writing a C-level converter relies on low-level JNI code. It is not very complicated, but requires some
experience and familiarity. It is similar to programming routines to be called from R or S via the .C() and
.Call() functions. However, there are at least 2 books to help in the endeavor and clarify issues. Also, there
are several different examples in the code. Additionally, one can call the converters for the basic types that
the R-Omegahat interface already performs. In this way, a converter need only access the appropriate fields
and call the necessary methods in the object being converted to get the primitive types and pass these to
existing code to create R objects. See the files ConverterExamples.c and Converters.c in the distribution.
Also, see Section ?? for more information about the different C routines to access the Java environment from
within C code loaded by R.

In spite of the fact that the converters are not hard to write, we understand that most people will not
relish the idea of compiling, linking, loading and debugging C code that connects two systems which the may
not understand that well. (Why ever not? It sounds ideal:-)) As a result, we have added the capability of
specifying functions for both the converter and the matching mechanism. At present, you must use functions
for both. You cannot use the built-in C routines to do the matching and an R function to perform the actual
conversion. (This will be changed in the future so that one can mix types). There is an example (reproduced
here) in the functionConverters.R file in the examples/ directory that is installed with the package code.

One uses the setJavaFunctionConverter() to register the pair of converter and matching functions. Each of
these functions expects two arguments. The first is the object to be converted. This comes as an anonymous
reference and one can use the .Java() to query its contents and perform other operations necessary to fulfill
the task of the function. The second argument is a string which gives the name of the class of the object to
be converted. This is the full class name.

The first example below shows how we might provide a silly conversion of a Swing button object. The
matching function compares the class name given to it with the string "javax.swing.JButton", the full
class name of the type we are prepared to convert with the other object. The converter function uses the
.Java() function to retrieve the text displayed on the button object and also its action command (the value
passed to an event). It returns these as the result of the conversion in the form of a character vector.

[]
setJavaFunctionConverter(function(x, className) {

print("This is a silly converter for a JButton")
val <- .Java(x,"getText")
val <- c(val,.Java(x,"getActionCommand"))
print(val)
return(val)

}, function(obj, className){
ok <- className == "javax.swing.JButton"
cat("In match:",ok,"\n")
return(ok)

})

setJavaConvertible("JButton")
.JavaConstructor("JButton", "testing")

A second example provides mutable state for the converter pair using a closure. We will use this to
provide a converter for the Omegahat class RealVariable. You can compare this with the native C-level
converter mentioned earlier. We create a closure definition which has an instance-specific variable n that
counts the number of times its been called. This closure generator is named realVariableConverterHandler.
We create an instance of it by calling the function and assigning it to rvCvt.

[]
realVariableConverterHandler <-

December 13, 2005 18

function() {
n <- 0
cvt <- function(obj, className) {

n
<<- n + 1

.Java(obj, "getValues")
}
matcher <- function(obj, className) {
return(className == "org.omegahat.DataStructures.Data.RealVariable")

}
return(list(converter=cvt, matcher=matcher, count = function(){ n }))

}

rvCvt <- realVariableConverterHandler()

At this point, we can call setJavaFunctionConverter(). It expects 2 two functions as separate argu-
ments. Thus, we extract each of the functions from the rvCvt. This still allows them to share the closure’s
environment and hence access n.

[]
setJavaFunctionConverter(rvCvt$converter, rvCvt$matcher)
setJavaConvertible("RealVariable")

And we can check how it works by creating an instance of the RealVariable class.

[]
.JavaConstructor("RealVariable", rnorm(10))

One result of this setup is that one can cache converted values for use in future conversion calls and also
ensure that one returns objects that are identical in reference and not just value. The converter closure can
return references to the same R object ensuring that modifications to it are visible to all that have access to
it. (Of course, those objects must be closures themselves.)

At present, the support for functions is new and so the error handling is not in place. These functions
should not generate an error. (You have been warned!!!!)

If we can register converters, we must also be able to remove them. This allows us to temporarily change
how conversion is done by inserting a new converter, using it and then removing it and restoring the previous
one. The removeJavaConverter() allows one to remove an entry from the an internal list of converters, either
the “from Java to R” or “from R to Java” lists. This currently takes the index of the particular converter in
the list to be removed.

[]
> getJavaConverterDescriptions(F)
[[1]]
[1] "Converts any Java InterfaceReference"
[2] "class == java.lang.reflect.Method"
[3] "class == java.lang.reflect.Constructor"
[4] "instanceof java.util.Properties"
> removeJavaConverter(3)
class == java.lang.reflect.Constructor

2
> getJavaConverterDescriptions(F)
[[1]]

December 13, 2005 19

[1] "Converts any Java InterfaceReference"
[2] "class == java.lang.reflect.Method"
[3] "instanceof java.util.Properties"

One can also pass the description of the converter to identify it. This has the advantage that subsequent
identifiers don’t change when we remove an entry. (This happens for example if we wanted to remove
converters indexed 2 and 3. Having removed 2, the element 3 becomes 2 and we would remove 2 again.)

[]
> getJavaConverterDescriptions(F)
[[1]]
[1] "Converts any Java InterfaceReference"
[2] "class == java.lang.reflect.Method"
[3] "class == java.lang.reflect.Constructor"
[4] "instanceof java.util.Properties"
> removeJavaConverter(getJavaConverterDescriptions(F)[[1]][3])
[[1]]
[1] "Converts any Java InterfaceReference"
[2] "class == java.lang.reflect.Method"
[3] "instanceof java.util.Properties"

11 Foreign References

A significantly more complete example of this is given in the Examples.pdf and Overview.pdf files in the
same directory as this one. Please read these.

We have discussed R objects that are references to Java objects. We now turn our attention to the
flips-side of this communication mechanism: Java objects that are references to R objects. Just as there is
no obvious way to represent an arbitrary Java object as an R object, there is a similar disparity in converting
non-primitive R objects to Java objects. On some occasions, there is no available Java class to which we
can convert the R object. On other occasions, we simply do not want to convert the object but have the
same unique reference to be shared by both R and Java. In the same way as we store Java objects locally
in Omegahat and export a reference to these to R, the R-Omegahat interface has a mechanism by which we
export R objects to Java by storing them within R and exporting a reference to them.

We export an object to the Java/Omegahat system in two steps. The first step is to register it with a
foreign reference manager. This is done via the function foreignReference(). Effectively, we are checking in
our object and being given a receipt for it. The receipt can be copied, but always identifies the same object.
The second step is to pass the reference (or receipt) as an argument in one of the R-Java interface functions
(i.e. .Java(), .JavaConstructor(), .JavaArrayConstructor(), etc.) The conversion mechanism recognizes the
R object (by its class) and creates an appropriate representation on the Java/Omegahat side that still points
to the R object.

Java is not quite as liberal as R is regarding what values can be passed to functions as arguments. Java
is a strongly-typed language meaning that the types of a methods arguments are specified at compile time.
To call a method, we must have an object of the appropriate class (or actually type to include primitives).
Simply passing a generic R foreign reference to a Java method will not work. Instead, we must convert it to
a Java object which is both a reference to an R object and also an object of the appropriate Java class to
satisfy the strong typing.

An example may help. We return to the editing of an R data frame via a Java GUI. To pass the data
frame to the DataFrameViewer, we must create a Java object that implements the interface DataFrameInt.
This object must also maintain a reference to the R object by storing the name by which the foreign reference
manager knows it. What we need to have happen is that this Java object should implement the methods

December 13, 2005 20

require by the interface DataFrameInt by calling the corresponding function in R which has access to the
data frame (either as part of a closure or passing the data frame as an explicit argument).

There is nothing magical about a Java method calling an R function. Again, it is part of the low-level
communication mechanism that bridges the R-Java systems. The Omegahat class RForeignReference is an
abstract class that anyone can inherit from and which provides a method which uses native code to call an
R function. One gives this method the collection of arguments and the name of the function. This calls the
R function and returns the result of the call to Java. Additional methods in this class help in converting the
Java arguments to R objects and equivalently, converting the return value to Java. One can write new Java
classes by extending this one and implementing different Java interfaces. Then, one can create instances of
these classes using an R foreign reference as an argument to the main constructor, arming that object with
knowledge of which R object on which to call the function.

Again, we return to the example of the data frame. Suppose we create a new Java class which extends
RForeignReference and also implements the methods in the interface DataFrameInt. Each of these methods
collects their arguments and calls the inherited eval() method with its own method name and these argu-
ments. The native methods calls the appropriate R function. It does this by passing the request to a central
R broker. This resolves the R reference passed to it by the RForeignReference. Then it looks to see if this
is a list containing functions. If so, it looks for the function there by comparing the name of the method
passed to it from the Java method call. If it finds one, it calls that function, passing it the arguments given
it to it from the Java method.

This object that is a list a functions is usually the value exported as an R foreign reference. It is typically
created as a closure with its own data instances. This is how we setup the data frame that we exported in this
running example. We create a closure that has access to the data frame and has a function for each of the
different methods in the Java interface DataFrameInt. When the Java methods is called, the corresponding
R function is invoked and this has access to the closure’s instance of the data frame. The R code for creating
the closure looks something like the following:

[]
dataFrameClosure <- function(data) {

following are methods specified in
the DataFrameInt interface (inherited
from BasicDataFrameInt

getVariableNames <- function() {
colnames(data)

}
numObservations <- function() {
dim(data)[1]

}

return(list(numObservations=numObservations, getVariableNames=getVariableNames))
}

11.1 Default Handler

The R object that manages the exported references and brokers the incoming function call requests from
the Java method calls can be found by calling the R function getJavaHandler(). This is also a closure and
maintains a list containing the different objects that are exported. It also has several functions which allow
one to manipulate that list: creating, adding and removing objects, resolving references and dispatching
function calls to the appropriate function and object.

December 13, 2005 21

11.2 Mutable State

By passing an R object that is a closure instance, subsequent calls from Java (and also R) to the functions
within that closure can cause its contents to be changed. These changes are visible to all other functions
and methods that call the closure’s functions in the future. This means that we can use the mutable state
of an R object in much the same way as a Java object.

An example of where this mutability is useful is when we export a data frame from R to Java. Within
the Java framework, we display the contents of the data frame in a data-grid or spreadsheet-like editor. The
user can edit individual cells. The Java editor assigns such modifications by invoking a method in the Java
data frame representation. Since this calls the corresponding R function which has access to the original
data frame on the R side, the changes are made to that one instance of the data values. In this way, we can
edit the data in one system and have the changes available to us as they occur in the other system

An example of how all of this R foreign reference material can be used is below. Here, we create a Java
GUI consisting of a button in a window. We arrange that when the user clicks on the button, an R function
is called. This function counts the number of times the button was clicked. It does this by having a count
value associated with, created as part of a closure. This is the handler() function below and cb is the instance
of this closure.

We connect this closure instance with the button and the user action callback by creating an instance
of the Omegahat class RManualFunctionActionListener. This takes a reference to the R object as the only
argument to its constructor. This allows it to identify that R object when calling the actionPerformed()
function in R. The Java object’s own actionPerformed() method is called when the button is clicked on by
the user. This connection is established when we register the RManualFunctionActionListener as a listener
for this button’s events via the the call to addActionListener(). And that is all there is.

[Button Callback]
handler <- function() {
n <- 0
actionPerformed <- function(event) {
n

<<- n + 1
print(event)
print(n)

}
return(actionPerformed)

}

cb <- handler()
ref <- foreignReference(cb,"btnCB")

l <- .JavaConstructor("org.omegahat.R.Java.RManualFunctionActionListener", ref)

b <- .JavaConstructor("javax.swing.JButton","Click me")
f <- .JavaConstructor("GenericFrame",b,T)

.Java(b,"addActionListener", l)

11.3 Dynamically Creating Interfaces

Even though it is relatively simple given the template above, it is tedious to have to manually generate Java
classes to act as proxies for R objects or functions. Given the template above, one would think that we could
automate the task, and indeed we can. Omegahat provides a class – ForeignReferenceClassGenerator – that
provides this dynamic, automated compilation. One supplies it with

December 13, 2005 22

1. one or more interfaces to be implemented (either as strings or Class objects),

2. the name of the class to create, and

3. optionally, the name of the class from which the new class will inherit methods. By default, this is
RForeignReference.

The resulting byte-code that defines the new class can be written to a file for use in future sessions and/or
loaded into the running Omegahat session. Writing to a file (or stream) is done via the write() method of
the ForeignReferenceClassGenerator object. The dynamic loading of the class is performed by passing the
ForeignReferenceClassGenerator instance to the Omegahat evaluator’s dynamic class loader. The Omegahat
command

[]
evaluator().dynamicClassLoader().defineClass(gen)

illustrates how this is done.
The Omegahat ForeignReferenceClassGenerator class is a specialization of a general dynamic compilation

mechanism. See http://www.omegahat.org/DynamicCompilation.

11.4 Example

An example of how we can use this should help in understanding the power of this automation technique.
Suppose we wish to receive events from a collection of Swing JCheckBox objects when the user selects any of
them. (See http://java.sun.com/docs/books/tutorial/uiswing/components/example-swing/index.
htmlCheckBoxDemo.) We define an R function that responds to such event notifications. This function sets
the value of a variable within a closure to the action command (getActionCommand()) of the button which
generated the event.

[Checkbox Event]
checkbox <- function() {

the variable that holds the current setting.
Initial value is unset.
value <- NULL

itemStateChanged <- function(ev) {
btn <- .Java(ev,"getItem")
value

<<- .Java(btn,"getActionCommand")
}

return(list(itemStateChanged=itemStateChanged, value = function() value))
}

Given this function, we now have to have a Java class which is both an RForeignReference (for the eval()
method that calls an R function) and a Java java.awt.event.ItemListener. We can now create an instance
of ForeignReferenceClassGenerator to define the new class. We use the .JavaConstructor() to create the
compiler-instance, and give it the name of the interface to implement (java.awt.event.ItemListener) and
the name of the class to create. Since we are inheriting from the default base class RForeignReference we
need not specify any additional arguments. We store a reference to the compiler object via the R variable
compiler

[ItemListener]
compiler <- .JavaConstructor("ForeignReferenceClassGenerator",

"java.awt.event.ItemListener",
"RItemListener")

http://www.omegahat.org/DynamicCompilation
http://java.sun.com/docs/books/tutorial/uiswing/components/example-swing/index.html CheckBoxDemo
http://java.sun.com/docs/books/tutorial/uiswing/components/example-swing/index.html CheckBoxDemo

December 13, 2005 23

When this returns (without error!), the class has been compiled. We might write it to the file /tmp/RItemListener.class
via the R command

[*]
.Java(compiler, "write", .JavaConstructor("File","/tmp/RItemListener.class"))

We can make it available to the Omegahat session for immediate use. This is what we need in this
situation.

[*]
dyn <- .Java("__Evaluator","dynamicClassLoader")
.Java(dyn,"defineClass", compiler)

At this point, we have the necessary class and can create an R/Java listener using an closure instance
created from calling the checkbox() function and the newly created RItemListener class.

[*]
ref <- foreignReference(checkbox())
listener <- .JavaConstructor("RItemListener",ref)
.Java(jcheck, "addItemListener",listener)

In summary, all we had to do to create a suitable Java class to implement a Java interface with an R
closure instance was

1. create a ForeignReferenceClassGenerator,

2. pass this to the evaluator’s dynamic class loader,

In future versions, we can automate this. When one creates the Foreign Reference in R (via the foreign-
Reference()) function, one can specify the interfaces that one wishes to implement. These are given via the
targetClasses argument and stored in the reference. When the RForeignReference is created, it receives this
information. When attempting to locate an appropriate method, the Omegahat mechanism has licence to
match a parameter type that is in the list of potential target classes. It is at this stage that it defines an
appropriate class that implements that Java interface or class and creates a new instance of it.

This functionality is not in this release as it does interfere with the generality of the method dispatching.
As more feedback is received about how people are using the interface, we will hopefully understand more
about the appropriate default, implicit conversion.

11.4.1 What is the Class Compiler Doing?

What is that we really do manually? We start by defining a new class that extends RForeignReference.
Then, we “copy” the constructors from RForeignReference, modifying them to use the name of the new
class and to pass the arguments to the base class’ constructors. Then, we iterate over the methods in the
interface being implemented and define a corresponding method for each. The body of each of these methods
simply packages the arguments into an Omegahat List class and calls the inherited eval() method with
this argument collection, the name of the method, the signature of the method and the type of the expected
return value.

Because of reflectance, we can iterate over the methods of the interface being implemented programmat-
ically. Each Method definition (obtained via the getMethods() method) provides us with information about
its name, the number and types of its argument, return type (and what exceptions it throws). This is all
we need to know to create the instructions that collect the arguments into a List, compute the signature
and provide the method name and return type. The Jas classes then allow us to specify the instructions and
generate the Java byte-code.

The constructors are handled in a very similar fashion. We use reflectance to query the constructors in the
base class (e.g. RForeignReference by default). Again, we iterate over these and generate the appropriate
call to super() which passes the arguments to the inherited constructor.

December 13, 2005 24

11.5 The .convert Argument and identity Method

A slightly different use of the .convert is when we want to use a constructor for its computational side-effect
rather than creating a Java object for use in future Java method calls. For example, suppose we have a
converter from Java to an R representation for the class StatDataURL. When we create a StatDataURL,
on some occasions we just want the contents of the URL and on other occasions we want the Java object.
We use the .convert argument of the .JavaConstructor() to differentiate between these two circumstances.
In the first of these case, we give the value TRUE (the default) so that the default conversion is applied. When
we wish to prohibit this conversion, we specify the value FALSE for this argument and have the Omegahat
evaluator return an anonymous reference to the resulting object.

[]
setJavaConverter(function(x) {.Java(x,"getValues")},

match="Equals",userObject="StatDataURL")
contents <- .JavaConstructor("StatDataURL",

"http://www.omegahat.org", .convert=TRUE)
reference <- .JavaConstructor("StatDataURL",

"http://www.omegahat.org", .convert=FALSE)

The following creates an array and leaves it in the Omegahat database. Then we insert values into the
array’s elements by operating on the array with other Java methods. And finally we retrieve the elements
of the array as a character vector by using the identity() method of the Omegahat evaluator.

[]
r <- .JavaArrayConstructor("String", dim=c(3))

populate the first r.length elements with the
names of the states.

.Java("States","fillIn", r)

.Java("__Evaluator", "identity", r)

12 Omegahat expressions

It can be tedious to have to constantly type .Java and .JavaConstructor. It would be more convenient to
have a syntax that was more Java-like of the form

[]
obj.method(arg1, arg2, arg3)

Well, obviously we cannot use the dot (.) notation since this is a legitimate character in R. We can borrow
the idea we use in S version 4 which is to think of the $ operator as being the field or method accessor of a
Java object.

[]
obj$methodName(arg1, arg2, arg3)

Java fields can be accessed in a similar manner.

[]
col <- .Java("__Evaluator", "findClass", "Color")
col$red()
col$blue()

December 13, 2005 25

This syntax is in the spirit of both Java objects and also of accessing data and methods within a closure
instance.

Another syntax is that of Omegahat. The interactive Omegahat language is similar to both Java and
R and allows one to invoke Java commands dynamically, i.e. without compiling them first. The R-Java
interface provides access to the Omegahat evaluator and hence we can send it a string which contain valid
Omegahat expressions to evaluate. All of the functionality available via the .Java() is available within such
expressions, but some would argue more directly.

We can invoke an Omegahat expression using the .OmegahatExpression(). The first argument is a the
Omegahat expression as a string.

[]
.OmegahatExpression("System.getProperty(\"java.class.path\")")

While the input to evaluating an Omegahat expression is a string, the result is a real object in exactly
the same manner as the .Java() function returns its value. The usual conversions are performed. The result
of the example above is a character vector containing the class path. Other types of objects are converted
appropriately.

One of the difficulties with using string expressions to execute commands is that one has to construct
the string. This is easy in interactive use, but for programmatically generated commands can be trickier.
There is of course just the difficulty of pasting the appropriate elements together. This is rarely complex,
just tedious. The more challenging issue is how we reference local variables in such an expression so that
they will make sense in the foreign system – Omegahat. Fortunately, we are familiar with such a mechanism
- substitute(). One can reference local R variables in an Omegahat expression by listing them in the · · ·
argument. One gives each of these arguments a name by which it can be referenced in the expression string.
For example,

[]
.OmegahatExpression("new DataFrame(data)", data=mtcars)

This call creates the association between the Omegahat variable data used in the string expression and
the R variable mtcars. When evaluating the Omegahat expression, the evaluator will attempt to locate the
value of the variable data. This will be available in a special frame or database that is created for the
duration of the expression evaluation. The contents of this Omegahat database consist of the objects passed
via the · · · argument of .OmegahatExpression(). The names are those used in that function call for the
corresponding argument. In other words, in a call such as

[]
dyn <- .Java("__Evaluator", "dynamicClassLoader")
.OmegahatExpression("x = new Object[]{a, b, c}", a= 1:10, b=mtcars, c=dyn)

Omegahat creates a new frame with entries a, b and c. These contain the Java objects created by
converting the R objects.

Unfortunately, the example above will not work as is. We somehow have to tell the R-Omegahat bridge
how to convert the R object mtcars to a Java object. We can use the dynamic compilation mechanism
above, but we must instruct it as to what type of interface we wish to implement in a new car. We use the
.sigs for this purpose. This not only instructs how to convert the object, but also which constructor the
Omegahat expression is actually invoking. The following illustrates the basic idea.

[]
.OmegahatExpression("new DataFrame(data)", data=mtcars, .sigs="DataFrameInt")

December 13, 2005 26

12.1 Debugging

There is not much explicit support for debugging Java calls from R and the R function callbacks. The
architecture does provide many facilities that one can use to monitor certain computations. This will be
outlined and enhanced in future releases.

13 C-level Programming Access

This R-Java interface is implemented using the Java Native Interface (JNI) that is part of the Java program-
ming environment. This is more frequently used to use code from Java via native methods. We use it in this
way to implement the callbacks to R functions in RForeignReference (one of its eval() method). However,
we use the JNI primarily in the other direction – to access Java from C. Since the Java VM is embedded
and initialized as part of this interface, R programmers can integrate other C-level code in either way – as
part of Java or part of R – that uses the JVM.

13.1 Native Java Methods

Using Java classes with native methods is no different than using them within a regular stand-alone Java
application. The user must call System.loadLibrary() to load the shared library containing the C routine(s)
(even if R has already loaded that same library). These C routines are passed a reference to the Java
environment (similar to thread-specific information) and with that can access all of the facilities in Java.

13.2 C routines in R

?? R users can use C routines that also manipulate the Java environment using the .C() and .Call() functions.
Developers may wish to write such routines for a couple of reasons. Firstly, while the .Java() and .JavaCon-
structor() functions are very general and provide complete access to the Java facilities, it is interpreted on
both sides of the connection: R and Omegahat.

speed Implementing calls to Java methods and constructors in C makes this faster for important data types.
This is an issue when converting data types between R and Java as discussed in Section 10.

Existing C Code One can use code in other C libraries and connect it to the Java facilities directly within
C . This avoids the indirect approach of writing an interface from R to this other library and then
connecting the R-level access to Java.

The C code that implements the R-Java interface c ontains both access to the basic internal Java variables
needed by any code communicating with Java and also many utility routines that make it easier to implement
JNI. These routines are in no way fixed and do not define an API that will necessarily be supported in the
future. However, others can use them to implement C code that access the JVM. They are unlikely to change
considerably and any changes will typically involve adding extra arguments to routines.

The best source of documentation for the C routines is the code itself. We have written the C-level code
using noweb, a literate programming tool that promotes writing code to be read easily by humans (and not
specifically in a format that the compute expects.) From this, one can generate output in Postscript, PDF,
HTML, etc. You can retrieve the code from the Omegahat CVS repository (http://www.omegahat.org/
Howto/CVSInstall.html). (You will need (some of) the noweb tools. If you are having difficulties, let us
know and we can make them available.)

A table of C routines and macros provided by the library is given in CRoutines.nw. Note that the
R library is actually linked against an intermediate Omegahat library which provides the basic embedded
Omegahat & Java facilities. This library can be used by any C level application, independently of R.

http://www.omegahat.org/Howto/CVSInstall.html
http://www.omegahat.org/Howto/CVSInstall.html

December 13, 2005 27

14 Installation Details & Customization

There are several variables and arguments that one can supply to customize the installation of the library.
The README file in the tar file (Java_1.0.tar.gz) provides the details in short form. In this section, we
discuss them in more detail.

14.1 Requirements

Firstly, one requires a Java run-time environment that is at least version 1.2 or 1.3 of Java. We have
successfully tested this on Solaris (SunOS 5.6 and 5.7) and Linux (2.2.14-5). For Solaris, we have used
the beta JDK1.3 from Sun (http://www.javasoft.com). For Linux, we have used IBM’s JDK1.3 (http:
//www.ibm.com/java/jdk) and also the JDK1.2 from Blackdown (http://www.blackdown.org). The IBM
version is preferrable for Linux as we have experienced some some difficulties with running GUIs in the
Blackdown version.

Other JVMs such as japhar have not been tested. Kaffe is supports Java 1.1 and so cannot be used
without (minor) modifications to the code. (Feel free to make them and let us know.)

14.2 Finding Java

The first thing the installation does is to look for an implementation of the Java runtime environment. This
is usually an executable application named java. The configuration finds the first such entry in the callers
path and from this, determines the location of the JDK installation. This is termed JAVA_HOME and is used
to find the different shared libraries and header files needed to compile and link the R code that implements
the interface.

Some people tend to have an old or inappropriate version of java in their path and use a more modern
version. For the configuration to succeed, one can alter one’s path and prepend the location of the directory
containing the desired java version. Alternatively, one can define the value of the environment variable
JAVA_HOME before invoking the R INSTALL script. The value should be the top-level directory of the JDK
installation. This directory will typically contain the directories include/, bin/, jre/ among others and is
usually the directory in which the JDK was un-tar’ed.

The configuration script tests the version of Java and complains if it is not at least Java 1.2 capable.
Note that version 0.52 of the package introduced an option for the configure script that allows one to treat
an unknown version as a warning and not a fatal error. This is activated via the -enable-force argument
and will merely warn about an unexpected JVM version and/or an unexpected vendor. When installing via
the R package, the argument can be specified as

R INSTALL --configure-args="--enable-force"

14.3 Compiling & Linking

The configuration script then attempts to find the location of the necessary JNI header files and shared
libraries. It does this by examining the creator or vendor of the JVM being used and the operating system
on which we are located. The directories containing the include files and libraries are computed via the
Java class jniBashParamters. The vendor of the JVM and from this the names of the actual JVM libraries
against which we link are computed via the Java class vendor.

One can enable the debugging support in the C code that implements the R-Java interface by specifying
the -enable-debug argument to the configure script. When used with R INSTALL, this is done via the
command

[]
R INSTALL --configure-args="--enable-debug" -c Java_1.0.tar.gz

One really does not want to do this. It generates an enormous amount of output. We will at some point
implement a debug level, so that one can control what types of messages are output based on an integer
value of degree.

http://www.javasoft.com
http://www.ibm.com/java/jdk
http://www.ibm.com/java/jdk
http://www.blackdown.org

December 13, 2005 28

The remainder of the configuration script computes derived flags and variables from the information previ-
ously computed earlier. Along with creating the necessary makefiles for the sub-library (libRSNativeJava.so
in the src/RSJava/), it also configures the R code to get the

The conclusion of the configuration file compiles the libRSNativeJava.so and installs it in the inst/libs//
directory. Additionally, it creates the JNI header files from the two Java classes RForeignReference and
RManualFunctionActionListener.

The configuration script also produces a cleanup script that will be run if R INSTALL is invoked with the
-c flag. This creates a symbolic link from the shared library Java.so that R will attempt to load in the call
library(Java) and the library libJava.so that Java will attempt to load when the class RForeignReference
is needed.

If one omits the -c flag when calling R INSTALL, one can invoke the cleanup script from the shell. It is
installed in the Java package directory as scripts/cleanup. This is shell script.

In addition to the cleanup script, the package installs two other shell scripts in the scripts/ directory.
These are named RJava.csh and RJava.bsh and are for users of csh/tcsh and Bourne (bash, sh) shells,
respectively. These modify the value of the LD_LIBRARY_PATH shell variable by appending the directories
containing the JDK shared libraries. This is necessary so that the (implicit) call to the R function dyn.load()
succeeds. The user must source one of these scripts before starting the R session. This is done via one of
the following commands (Bourne and C shell respectively):

[]
. RJava.bsh
source RJava.csh

In the future, we will add facilities to the configuration script that add these directories to the run-time
load path contained with the shared libraries we build. It currently does try, but cannot handle the secondary
dependencies.

	Overview: The Penny Tour
	Other Documents
	Installation
	Initializing the Java Virtual Machine
	Executing Java Commands/Expressions
	Calling Omegahat Evaluator Methods
	Discovering Java Methods

	Basic Non-Primitive Conversion
	Named Arguments
	Garbage Collection & Querying the Omegahat References

	Creating Java Objects
	Creating Arrays
	Advanced Converters
	Foreign References
	Default Handler
	Mutable State
	Dynamically Creating Interfaces
	Example
	What is the Class Compiler Doing?

	The .convert Argument and identity Method

	Omegahat expressions
	Debugging

	C-level Programming Access
	Native Java Methods
	C routines in R

	Installation Details & Customization
	Requirements
	Finding Java
	Compiling & Linking

