
Examples of the Omegahat R-Java Interface

Duncan Temple Lang

December 13, 2005

Contents

1 Filename Filters 2

2 Network Access 2

3 Data Management & Garbage Collection 2

4 Polymorphic (Overloaded) Functions 3

5 Callbacks 3

6 Data Frames 5

7 Mouse Events 5

8 Graphics & Graphics Devices 7
A simple use of the .Java() mechanism is to present the user with a graphical interface for selecting a file,

for example, when no argument is provided to source(). In JavaT M we can use the class JFileChooser to
provide the display of a directory and allow the user to select a file or investigate other directories associated
with the “current” directory. Similarly, we may have a menu for selecting one of many options (a graphical
menu()), such as a a type of algorithm, smoother, etc. Also we may allow the user specify a parameter (e.g.
bandwidth) using a slider before the computations are initialized. These are all characterized by blocking
calls from S/R, waiting for user input.

It cannot be overemphasized that these are simple examples of the mechanism and careful GUI design is
needed for each scenario to be useful. One of the uses for having the .Java() interface and the Ω̂ language
is to allow people to quickly experiment with GUIs and see what works.

We focus on the first of these examples. The others are similar in spirit on the S/R details. The basic
steps are to create the JFileChooser, specifying the directory of interest, and then to display it in a window.
Finally, we wait for the user to interact with the dialog and either dismiss it or select a file by clicking on
the Open button. We test for the latter case and retrieve the selected file from the JFileChooser.

Since there are several steps, we can turn this into an Ω̂ function. See below.

[*]
dir = "";
chooser = new JFileChooser(dir);
f = new JFrame();
ok = chooser.showOpenDialog(f);
value = null;
if(ok == JFileChooser.APPROVE_OPTION) {
value = chooser.getSelectedFile();

}

1

December 13, 2005 2

To obtain the same results in S/R, we can use the following calls. We can ignore the test for whether
selected Open or not since calling getSelectedFile() simply returns null if the user selected Cancel.

[getFile.s]
chooser <- .JavaConstructor("JFileChooser")
f <- .JavaConstructor("JFrame")
.Java(chooser,"showOpenDialog", f)
file <- .Java(chooser,"getSelectedFile")
.Java(file,"toString")

source(file);

Since there are several steps in the JFileChooser, we can turn this into an Ω̂ function.

[getFile.omg]
getFile = function(dir = "") {
chooser = new JFileChooser(dir);
f = new JFrame();
ok = chooser.showOpenDialog(f);
value = null;
if(ok == JFileChooser.APPROVE_OPTION) {
value = chooser.getSelectedFile();

}
}

Of course, we can also create an R/S function. See file.choose.

1 Filename Filters

We can extend the example above by specifying a file filter to focus on files which match a particular
characteristic. The most obvious of these are extensions, but we can have more elaborate ones such as those
that only identify large files, or files whose first starts with \#\!.

As usual, with

2 Network Access

JavaT M provides an extensive array of network access classes. These allow us to add URL connections,
sockets, etc. to S1 Suppose we want to read the contents of a URL which we know to be pure text (as
opposed to an image, etc.). There are several ways to do this. The simplest is to find a JavaT M class that
does this and returns an array of String objects. We have one of these in StatDataURL.java.

[url.s]
u <- .JavaConstructor("StatDataURL", "http://www.omegahat.org/Scripts/AwtButton")
els <- paste(.Java(u, "getContents"),collapse="\n")

The code underlying this can be done directly from S but involves significantly more expressions.
This is an example of where it is more convenient to do a little Java programming and call the higher

level method from S/R rather than performing all the calls via the .Java().

1R already has some of these features.

December 13, 2005 3

3 Data Management & Garbage Collection

One problem with remote references is that one side of the interface cannot really know about the continued
use of an object and so values must be stored until explicitly released by the “owner”. We can definitely help
in this regard with some heuristics, but it is not possible to be absolutely certain that an object will not be
used in the future in general contexts.

In some situations it is easy to identify temporary values. From S/R, we can examing the arguments
to .Java() calls and determine if those that are themselves .Java() or .JavaConstructor() calls are named
arguments. If they are, they will be assigned into the permanent “JavaT M” database and are explicitly being
assigned for future use.

For example, in the call below, the .JavaConstructor() of the JFrame is not permanently assigned and so
there is no way to refer to it in future calls.

[*]
.Java(chooser,"showOpenDialog", .JavaConstructor("JFrame"))

In such cases, we can diagnose this at the S/R call and release the anonymous reference explicitly within
the .Java().

4 Polymorphic (Overloaded) Functions

Different from IDL and the CORBA interfaces, JavaT M allows method overloading, meaning that we may
have more than one object

Having Ω̂ handle this by having fuzzier matching does not help. Almost immediately this breaks. Instead,
in the case that there is more than one possible method, we can have Ω̂ identify all the matching methods
and return these or popup a selection dialog allowing the user to select the most appropriate one.

Alternatively, good code writers will remove ambiguity in the S/R calls by specifying the .sig argument.
This is a list of strings specifying the JavaT M type to use for the different arguments. This aids the conversion
and also identifies the JavaT M method directly.

This needs to be reimplemented to support lists, . . .

5 Callbacks

As discussed in Dynamic Class Generation, it is very convenient to have seamless access to arbitrary JavaT M

classes and methods, but there is a potential asymmetry. We cannot use non-primitive local objects - S
and R values - as arguments in JavaT M method calls. If this were not surmountable, this would definitely
be a significant drawback. We would need to have conversion methods for each S and JavaT M type pairs.
These would not have to be implemented in C , but we can use the .JavaConstructor() and .Java() functions
themselves to transfer the sub-elements of an S object. However, the two languages are very different and
it is not possible in all cases to transfer data and preserve its semantic meaning. Instead, JavaT M requires
methods to be associated with data values in a class

An alternative is to use the same mechanism as we use in the CORBA interface.
This risks multiple communications across the interface between the two systems. For example, in S,

we may create a “variable” named x by generating 10 random numbers. We then add this to a JavaT M

DataFrame. This should be an object of class (actually, interface) VariableInt.

[*]
x = rnorm(10)
.JavaConstructor("DataFrame, x, .sig=c"VariableInt")

This signals the JavaT M conversion mechanism that it should look for a method that takes a numeric and
generates a VariableInt. If no explicit converter exists, we create a proxy or remote reference from the S side

http://www.omegahat.org/Environment/DynamicClassGeneration.html

December 13, 2005 4

and pass it to the JavaT M side of the interface (along with the target JavaT M class, if specified). This is the
same thing as being done in the Ω̂ databases when returning non-primitive objects. Basically, we store the
S/R object in a special place with a unique name and send across the name and other information used to
identify this object. The Ω̂ code then converts this reference into an object appropriate for the specified call.
In our example, this is VariableInt. It does so by generating a new class which implements the methods in
this interface. The body of each method simply gathers up the JavaT M arguments into a List and passes
them to an inherited eval() method along with the name of the method. This converts these arguments to
S objects via native methods and arranges to invoke an S/R call to a function with the same name as the
original JavaT M method being invoked with these arguments.

This is identical to the FunctionListener class mechanism and the dynamic class generation.
We can use the example above to more concrete about this. The call to .JavaConstructor() above creates

an S reference and stores it so that it won’t disappear after the S call is complete. The Ω̂ evaluator receives
this and the specification that it should be a VariableInt. So it performs the following calls to

• create a new class that is both an S remote reference and implements the specified interface

• instantiates an object of this new class with the specified reference.

[*]
Object call(SRemoteReference ref)
{
gen = new EvaluableInterfaceGenerator("VariableInt", "SReferenceVariableInt");
dynamicClassLoader().defineClass(gen);
obj = new SReferenceVariableInt(ref);
return(obj);
}

The VariableInt interface has a method value(int). The newly generated class SReferenceVariableInt
(which is not an interface) then implements this in the following manner.

[*]
public Object value(long which) {
FunctionCallArguments args = new FunctionCallArguments(1);
args.addArgument(which);
Object obj = eval(args, "value");
return(obj);
}

The eval() method is a native method. It passes the identifying information of the remote reference
stored in the object (the owner of the eval() method), the second argument identifying the method (value)
being called and the arguments to C code that invokes the appropriate expression in S/R.

It is simplest to think about this in R, I believe, and to provide the complete picture. While we can
perform most of the conversions automatically, we will explain things describing the manual steps. Rather
than passing the S/R object x to the call to .JavaConstructor(), we actually create a function closure that
provides the methods for VariableInt but in R and has access to the actual data.

[VariableInt.r]
VariableInt <- function(data) {
value <- function(which) {
data[which]

}
add <- function(obj, which) {
which <- which + 1
if(length(data) >= which) {

December 13, 2005 5

x <-data
x[which] <- obj
data

<<- x
} else
data

<<- c(data,obj)
obj
}

return(list(value=value, add=add, data=data))
}

6 Data Frames

Suppose we have a data frame in R and the we wish to make it available to an Java method. As usual, we
have two choices: a) to transfer the contents of the data frame to an appropriate Java object, or b) pass a
reference to the R object in the form of a Java interface which implements its methods via R function calls.

Of these two, a) may appear simpler. For example, suppose we chose to create an instance of the
DataFrame class in Omegahat. We can then use the .JavaConstructor() and .Java() methods to create such
an instance and transfer the elements of the R data frame. This is done in the following code.

[*]
data(mtcars)
jdata <- .JavaConstructor("DataFrame")
for(i in 1:ncol(mtcars))
.Java(jdata,"addVariable", names(mtcars)[i],

.JavaConstructor("RealVariable", mtcars[,i]))

We can then use this Java DataFrame in whatever manner we wish. This is a separate copy of the data
and any changes to the Java object will not be seen by the R object. One thing we might do is display the
data frame in an interactive table/grid. Omegahat has such a class – DataFrameViewer (and the utility
class DataFrameViewerWindow).

Note that this doesn’t work now. The problem seems to lie with threads and the result is a major crash
of the JVM and hence R.

[*]
w <- .JavaConstructor("DataFrameViewerWindow", jdata)

We can at any time retrieve the values from the jdata object from within R. We use the methods of
DataFrame via the .Java() function.

[*]
v <- .Java(jdata, "get", "mpg")
.Java(v, "getValues")

And we can update individual values.

December 13, 2005 6

[*]
v <- .Java(jdata, "get", "mpg")
.Java(v, "add", pi, as.integer(3))

The second approach (b)) involves creating a Java class that implements the DataFrameInt interface
and calls R functions when any of its methods are called. We use the dynamic compiler (see the Howto
document) to do this. Then we create the foreign reference in R representing the local data frame and pass
this as the argument to the constructor.

7 Mouse Events

An example of tracking the mouse was raised in connection with the Tcl/Tk package in R. Here is a mecha-
nism for doing this in Java. We start by constructing a very simple window and canvas whose mouse motion
events we can monitor.

[*]
comp <- .JavaConstructor("JCanvas")

change the color to red.
.JavaConstructor("GenericFrame", comp, T)

.Java(comp,"setBackground",.Java("Color", "red"))

Next, we create and load a new class which implements the MouseMotionListener methods by calling
R functions.

[*]
compiler <- .JavaConstructor("ForeignReferenceClassGenerator",

"java.awt.event.MouseMotionListener",
"RMouseListener")

.Java(.Java("__Evaluator","dynamicClassLoader"), "defineClass", compiler)

Now we are ready to implement the R side of the listener. We define a closure function (mouseListener())
in which we have the x and y coordinates of the last reported mouse position and the function mouseMoved()
which is called to update these values. This function is called by the Java event notification mechanism and
passes it a Java MouseEvent object as the only argument. We use the .Java() to get the X and Y coordinates
from the event.

[*]
mouseListener <- function() {

x <- 1
y <- 1
mouseMoved <- function(ev) {
x

<<- .Java(ev, "getX")
y

<<- .Java(ev, "getY")
}
return(list(mouseMoved = mouseMoved,

where=function(){c(x,y)}))
}

December 13, 2005 7

Now we create an instance of this closure definition and export it by registering it with the foreign
reference manager. (This is done implicitly as part of the call to foreignReference().) And lastly, we register
it as a Java listener by creating an instance of the newly created class (RMouseListener) and call the
addMouseMotionListener() on the canvas.

[*]
l <- mouseListener()
r <- foreignReference(l)
.Java(comp,"addMouseMotionListener", .JavaConstructor("RMouseListener",r))

As it stands, this example is fine. However, it illustrates one of the difficulties that comes from integrating
event-driven, GUI tools into a console-based, read-eval-print program like R. Where and when do we process
the mouse location?

Let’s extend the example and have the R listener function (mouseMoved() above) display the values in a
label. (See mouseMotion.R in the examples directory.)

First, we create the graphical interface slightly different.

[*]
panel <- .JavaConstructor("JPanel")
.Java(panel,"setLayout", .JavaConstructor("BorderLayout"))
label <- .JavaConstructor("JLabel", "(,)")
comp <- .JavaConstructor("JPanel")
.Java(panel,"add","North", label)
.Java(panel,"add","Center", comp)
.JavaConstructor("GenericFrame", panel, T)

Next we define the closure to accept the JLabel reference as an argument. In this way, it is available
to the inner functions. We add a command to the end of that function that calls the setText() method of
that JLabel object, displaying the current coordinates of the mouse.

[*]
mouseListener <- function(jlabel) {

x <- 1
y <- 1
mouseMoved <- function(ev) {
x

<<- .Java(ev, "getX")
y

<<- .Java(ev, "getY")

.Java(jlabel, "setText", paste("(",x,", ",y,")", sep=""))
}
return(list(mouseMoved = mouseMoved,

where=function(){c(x,y)}))
}
l <- mouseListener(label)

The remainder of the script is the same as the earlier one. When we run this, the label is updated each
time and shows the (X, Y) pair.

8 Graphics & Graphics Devices

Given a Swing component, it is reasonably easy to draw on it. The full range of graphics functionality in
Java is available, including the 2D and 3D API.

December 13, 2005 8

[*]
canvas <- .JavaConstructor("JPanel")
.JavaConstructor("GenericFrame",canvas,T)

g <- .Java(canvas,"getGraphics")
.Java(g,"drawLine", 10,10, 100, 100, .sigs=rep("I", 4))
.Java(g,"drawArc", 10,10, 100, 100, 0, 180, .sigs=rep("I", 6))
.Java(g,"setColor", .Java("Color", "red"))

The book Java 2D Graphics illustrates many different things one can do with the 2D Graphics API,
including image manipulation, rotation, etc.

	Filename Filters
	Network Access
	Data Management & Garbage Collection
	Polymorphic (Overloaded) Functions
	Callbacks
	Data Frames
	Mouse Events
	Graphics & Graphics Devices

