
Visualisation, transformations and arithmetic operations for
grouped genomic intervals

Thomas Carroll1∗

1 Bioinformatics Facility, MRC Clincal Sciences Centre;

∗thomas.carroll (at)imperial.ac.uk

November 5, 2015

Abstract

The soGGi package provides tools to summarise sequence data, genomic signal and motif
occurrence over grouped genomic intervals as well to perform complex subsetting, arithmetic
operations and transformations on these genomic summaries prior to visualisation.

As with other Bioconductor packages such as CoverageView and seqPlots. soGGi plots average
signal across groups of genomic regions. soGGI provides flexibity in both its data aquisition and
visualisation. Single or paired-end BAM files, bigWigs, rleLists and PWM matrices can be provided
as input alongside a GRanges object or BED file location. soGGi can plot summarises across actual
size and normalised features such as genomic intervals of differing length (as with genes). The
use of normalised size plots for genes can however obsure high resolution events around the TSS.
To address this, combination plots can be created within soGGI allowing for fine detail at the
edges of normalised regions.

Arithmetic operation and transformations can be easily performed on soGGi objects allowing for
rapid operations between profiles such as the substraction of input signal or quantile normalisation
of replicates within a group.

soGGi integrates the ggplot2 package and add functionality to rapidly subset, facet and colour
profiles by their overlaps with GenomicRanges objects or grouping by metadata column IDs.

The plotting, arithmetic and tranformation functions within soGGi allow for rapid evaluation
of groups of genomic intervals and provide a toolset for user-defined analysis of these summaries
over groups.

1

Visualisation, transformations and arithmetic operations for grouped genomic intervals 2

Contents

1 Standard workflow 2
1.1 The soggi function . 2
1.2 Plotting profiles . 4

2 Transformations and arithmetic operations 6
2.1 Simple arithmetic operations on grouped profiles . 6

3 Creating GRanges combinations for plotting 8
3.1 Grouping genomic interval sets and plotting results . 9

1 Standard workflow

1.1 The soggi function

The regionPlot() function is used to summarise signal, reads or PWM occurrence over grouped
genomic intervals. Input can be BAM, bigWig or a PWM matrix and the regions to summarise over a
character string of path to BED file or a GRanges object. The full set of soggi function arguments can
be found in help pages.

In this example, signal coverage is summarised from a BAM file using the defaults. The default style
of region plot is to produce a normalised by size region plot.

library(soGGi)

chipExample <- regionPlot("pathToBAM/mybam.bam",myGRangesObject,format="bam")

A pre-computed data set is included in the package containing averages profiles created with command
above for DNAse, Pol2, H3k9ac and H3k3me3. The object itself cantains all counts along interval
region windows in assays slots and information of the samples in metadata slot accessible by assays()

and metadata() respectively.

library(soGGi)

data(chipExampleBig)

chipExampleBig

class: ChIPprofile

dim: 201 300

metadata(2): names AlignedReadsInBam

assays(10): '' '' ... '' ''

rownames: NULL

rowRanges metadata column names(5): name biotype Feature giID giID.1

colnames(300): Start-1 Start-2 ... End+99 End+100

colData names(0):

Visualisation, transformations and arithmetic operations for grouped genomic intervals 3

This object contains 10 sets of profiles for 200 genes. The object can be subset using [[to select
samples of interest.

chipExampleBig[[1]]

class: ChIPprofile

dim: 201 300

metadata(2): names AlignedReadsInBam

assays(1): ''

rownames: NULL

rowRanges metadata column names(5): name biotype Feature giID giID.1

colnames(300): Start-1 Start-2 ... End+99 End+100

colData names(0):

chipExampleBig$highdnase

class: ChIPprofile

dim: 201 300

metadata(2): names AlignedReadsInBam

assays(1): ''

rownames: NULL

rowRanges metadata column names(5): name biotype Feature giID giID.1

colnames(300): Start-1 Start-2 ... End+99 End+100

colData names(0):

Similarly profile objects can be concatenated or bound together using c and rbind.

c(chipExampleBig[[1]],chipExampleBig[[2]])

class: ChIPprofile

dim: 201 300

metadata(2): names AlignedReadsInBam

assays(2): '' ''

rownames: NULL

rowRanges metadata column names(5): name biotype Feature giID giID.1

colnames(300): Start-1 Start-2 ... End+99 End+100

colData names(0):

rbind(chipExampleBig[[1]],chipExampleBig[[2]])

class: ChIPprofile

dim: 402 300

metadata(2): names AlignedReadsInBam

assays(1): ''

rownames: NULL

rowRanges metadata column names(5): name biotype Feature giID giID.1

colnames(300): Start-1 Start-2 ... End+99 End+100

colData names(0):

Visualisation, transformations and arithmetic operations for grouped genomic intervals 4

Figure 1: Example profile plot. The plot generated by plotRegion() function on a single sample
soGGi object. The x-axis shows the normalised length and the y-axis shows the coverage in windows.
A Clear peak around the TSS can be observed for this Pol2 ChIP-seq profile.

1.2 Plotting profiles

The plotRegion() function is used to produce profile plots. plotRegion() uses ggplot2 to generate
plots and so returned object can be highly customisable using ggplot2 methods.

plotRegion(chipExampleBig[[3]])

When dealing with objects with multiple samples, the arguments groupBy and colourBy specify whether
to facet or colour by Sample/Group respectively.

library(ggplot2)

plotRegion(chipExampleBig,colourBy="Sample", groupBy="Sample", freeScale=TRUE)

Here some samples can be seen to be noisy. Windsorisation can be applied when plotting using the
outliers argument.

library(ggplot2)

plotRegion(chipExampleBig,colourBy="Sample", outliers=0.01, groupBy="Sample",freeScale=TRUE)

The plotRegion() can also be used to group genomic intervals while plotting using the gts argument.
The gts argument either takes a GRanges object or a list of character vectors and the summariseBy

Visualisation, transformations and arithmetic operations for grouped genomic intervals 5

Figure 2: Multi-Sample profile plot. Here multiple samples are plotted simultaneously. Enrichment
around TSS can be seen for all profiles with H3k9ac showing more enrichment in the gene body.

argument to specify metadata to use.

library(GenomicRanges)

subsetsCharacter <- list(first25 = (as.vector(rowRanges(chipExampleBig[[1]])$name[1:25])), fourth25 = as.vector(rowRanges(chipExampleBig[[1]])$name[76:100]))

subsetsGRanges <- GRangesList(low=(rowRanges(chipExampleBig[[1]])[1:25]), high=rowRanges(chipExampleBig[[2]])[76:100])

plotRegion(chipExampleBig[[1]],gts=subsetsCharacter,summariseBy = "name")

plotRegion(chipExampleBig[[1]],gts=subsetsGRanges)

Visualisation, transformations and arithmetic operations for grouped genomic intervals 6

Figure 3: Multi-Sample profile plot with windsorisation. This multi-sample plot has windsorisation
applied to outliers. The resulting plot is smoother than that seen in figure 2.

2 Transformations and arithmetic operations

2.1 Simple arithmetic operations on grouped profiles

Common arithmetic operations and tranformations can be used with soGGi profile objects allowing for
further analysis post summarisation and iteratively over visualisations.

Here we summarise RNApol2 high and low and compare between replicates.

pol_Profiles <- c((chipExampleBig$highPol+chipExampleBig$midPol)

, (chipExampleBig$highPol_Rep2+chipExampleBig$midPol_Rep2))

plotRegion(pol_Profiles,colourBy="Sample",outliers=0.01, groupBy="Sample", freeScale=TRUE)

Common normalisations, log transformations and other mathematical functions such as mean() are also
implemented to allow for the comparison within and between profiles.

In this example the profiles are log2 transformed with zeros being assigned the minimum value for that
region.

log2Profiles <- log2(chipExampleBig)

Visualisation, transformations and arithmetic operations for grouped genomic intervals 7

Figure 4: DNAse grouped genomic intervals plot. This plots shows the plot for DNAse signal
across normalised regions with separate profiles for each group of genomic intervals defined in gts. .

plotRegion(log2Profiles,colourBy="Sample",outliers=0.01, groupBy="Sample",freeScale=TRUE)

From this log2 transformed data we can look at the difference between Pol2 profiles

log2Polhigh <- mean(log2Profiles$highPol, log2Profiles$highPol_Rep2)

log2Polmid <- mean(log2Profiles$midPol, log2Profiles$midPol_Rep2)

diffPol <- log2Polhigh-log2Polmid

diffh3k9ac <- log2Profiles$highk9ac-log2Profiles$midk9ac

plotRegion(c(diffPol,diffh3k9ac),colourBy="Sample",outliers=0.01, groupBy="Sample", freeScale=TRUE)

Quantile normalisation of allow windows in regions between samples can allow for better better visual
comparison of changes between conditions when dealing with larger numbers of replicates. Here for
demonstration we apply it two samples but with real data higher sample numbers would be recom-
mended.

normHighPol <- normalise(c(chipExampleBig$highPol, chipExampleBig$highPol_Rep2), method="quantile",normFactors = 1)

normMidPol <- normalise(c(chipExampleBig$midPol, chipExampleBig$midPol_Rep2), method="quantile",normFactors = 1)

Visualisation, transformations and arithmetic operations for grouped genomic intervals 8

Figure 5: Plotting arithmetic results. This plot demonstrates the ability to plot the profiles
generated by the results of arithmetic operations. Here data is combined within replicate number and
results plotted.

normPol <-c(normHighPol$highPol, normHighPol$highPol_Rep2, normMidPol$midPol, normMidPol$midPol_Rep2)

plotRegion(normPol,colourBy="Sample",outliers=0.01, groupBy="Sample", freeScale=TRUE)

3 Creating GRanges combinations for plotting

A common operation in the analysis of summaries over genomic intervals is to compare between different
sets of grouped genomic intervals. soGGi includes helper functions to deal with grouped genomic
intervals.

The groupByOverlaps() function creates all combinations of grouped genomic intervals from GRanges-
Lists and so is useful to evaluate how summaries change over subclasses of genomic intervals (such as
over co-occuring peak sets)

The findconsensusRegions() and summitPipeline() functions identifies consensus regions be-
tween GRanges objects and re-summits consensus region sets respectively. This approach has been
previously implemented to identify reproducible peak sets between biological replciates.

Visualisation, transformations and arithmetic operations for grouped genomic intervals 9

Figure 6: Plotting log2 transformed profiles. This plots shows the resulting profiles after log2
transformation of ChIP-data across antibodies.

3.1 Grouping genomic interval sets and plotting results

In this example, two antibodies for the transcription factor Ikaros are used to plot the signal over common
and unique peaks for each antibody. First the peaks sets are defined using groupByOverlaps()

data(ik_Example)

ik_Example

$ha

GRanges object with 200 ranges and 2 metadata columns:

seqnames ranges strand | ID Score

<Rle> <IRanges> <Rle> | <factor> <factor>

[1] chr1 [5218713, 5219618] * | MACS_peak_4 60.84

[2] chr1 [6372427, 6373665] * | MACS_peak_7 438.68

[3] chr1 [6456792, 6457633] * | MACS_peak_9 96.87

[4] chr1 [7080191, 7080946] * | MACS_peak_15 57.82

[5] chr1 [9225736, 9227873] * | MACS_peak_17 166.57

...

[196] chr1 [36765816, 36767310] * | MACS_peak_130 127.4

[197] chr1 [36822798, 36824995] * | MACS_peak_131 1387.29

[198] chr1 [36995290, 36996196] * | MACS_peak_132 73.84

Visualisation, transformations and arithmetic operations for grouped genomic intervals 10

Figure 7: Plotting differentials. In this plot the log2 difference between high and low samples for
H3k9ac and Pol2 replicates is shown.

[199] chr1 [37044729, 37045925] * | MACS_peak_135 193.63

[200] chr1 [37356201, 37357028] * | MACS_peak_138 66.39

seqinfo: 21 sequences from an unspecified genome; no seqlengths

##

$endo

GRanges object with 200 ranges and 2 metadata columns:

seqnames ranges strand | ID Score

<Rle> <IRanges> <Rle> | <factor> <factor>

[1] chr1 [4695718, 4695917] * | MACS_peak_2 98.76

[2] chr1 [4775045, 4775288] * | MACS_peak_3 100.91

[3] chr1 [4775403, 4775658] * | MACS_peak_4 50.4

[4] chr1 [4775664, 4776101] * | MACS_peak_5 150.6

[5] chr1 [4797674, 4798084] * | MACS_peak_6 651.89

...

[196] chr1 [24740900, 24741101] * | MACS_peak_211 301.48

[197] chr1 [30929613, 30929871] * | MACS_peak_220 106.95

[198] chr1 [30930510, 30931164] * | MACS_peak_221 1604.65

[199] chr1 [31005552, 31005763] * | MACS_peak_222 174.71

Visualisation, transformations and arithmetic operations for grouped genomic intervals 11

Figure 8: Quantile normalisation. In this toy example, data has been quantiled normalised within
groups and the results plotted. This demonstrates the uniformity in data following quantile normalisa-
tion.

[200] chr1 [31006685, 31007192] * | MACS_peak_223 529.42

seqinfo: 21 sequences from an unspecified genome; no seqlengths

peakSetCombinations <- groupByOverlaps(ik_Example)

peakSetCombinations

$endo

GRanges object with 100 ranges and 1 metadata column:

seqnames ranges strand | grangesGroups

<Rle> <IRanges> <Rle> | <factor>

[1] chr1 [4695718, 4695917] * | endo

[2] chr1 [4775045, 4775288] * | endo

[3] chr1 [4775403, 4775658] * | endo

[4] chr1 [4775664, 4776101] * | endo

[5] chr1 [4797674, 4798084] * | endo

...

[96] chr1 [21534723, 21534898] * | endo

[97] chr1 [21635845, 21636030] * | endo

Visualisation, transformations and arithmetic operations for grouped genomic intervals 12

[98] chr1 [21705049, 21705198] * | endo

[99] chr1 [21739213, 21739804] * | endo

[100] chr1 [21757663, 21757886] * | endo

seqinfo: 21 sequences from an unspecified genome; no seqlengths

##

$ha

GRanges object with 137 ranges and 1 metadata column:

seqnames ranges strand | grangesGroups

<Rle> <IRanges> <Rle> | <factor>

[1] chr1 [5218713, 5219618] * | ha

[2] chr1 [6372427, 6373665] * | ha

[3] chr1 [6456792, 6457633] * | ha

[4] chr1 [7080191, 7080946] * | ha

[5] chr1 [9225736, 9227873] * | ha

...

[133] chr1 [89527991, 89530046] * | ha

[134] chr1 [89768074, 89769026] * | ha

[135] chr1 [89837445, 89838176] * | ha

[136] chr1 [90598333, 90599360] * | ha

[137] chr1 [91540499, 91541383] * | ha

seqinfo: 21 sequences from an unspecified genome; no seqlengths

##

$`ha-endo`

GRanges object with 63 ranges and 1 metadata column:

seqnames ranges strand | grangesGroups

<Rle> <IRanges> <Rle> | <factor>

[1] chr1 [4847117, 4848878] * | ha-endo

[2] chr1 [5072908, 5073864] * | ha-endo

[3] chr1 [6204023, 6205748] * | ha-endo

[4] chr1 [6252357, 6253568] * | ha-endo

[5] chr1 [6395852, 6396924] * | ha-endo

...

[59] chr1 [24012021, 24013019] * | ha-endo

[60] chr1 [24684410, 24686139] * | ha-endo

[61] chr1 [24740575, 24741381] * | ha-endo

[62] chr1 [30929409, 30931590] * | ha-endo

[63] chr1 [31005112, 31007518] * | ha-endo

seqinfo: 21 sequences from an unspecified genome; no seqlengths

The output from groupByOverlaps() can then be used to subset precomputed profiles of HA and
Endogenous ChIP signal. Here we apply a log2 transformation to the data before plotting and cleaning

Visualisation, transformations and arithmetic operations for grouped genomic intervals 13

Figure 9: Signal over common and unique Ikaros peaks. This plot shows that, as expected,
common and unique peaks show different profiles for the Ikaros antibodies.

up profile with windsorisation

data(ik_Profiles)

ik_Profiles

class: ChIPprofile

dim: 4800 401

metadata(2): names AlignedReadsInBam

assays(2): '' ''

rownames: NULL

rowRanges metadata column names(3): ID Score giID

colnames(401): Point_Centre-200 Point_Centre-199 ... Point_Centre199

Point_Centre200

colData names(0):

log2Ik_Profiles <- log2(ik_Profiles)

plotRegion(log2Ik_Profiles,outliers=0.01,gts=peakSetCombinations, groupBy="Group",colourBy="Sample", freeScale=TRUE)

plotRegion(log2Ik_Profiles[[1]] - log2Ik_Profiles[[2]] ,outliers=0.01,gts=peakSetCombinations, groupBy="Group", colourBy="Sample", freeScale=FALSE)

This confirms that common and unique peaksets have different levels of the separate antibody signals.
This can be better demonstrated by subtracting to signal sets from each other and re-plotting over
groups as seen in the final example.

Visualisation, transformations and arithmetic operations for grouped genomic intervals 14

Figure 10: Differential Ikaros profiles over common and unique sets. The plot of difference
in log2 HA and Endogenous Ikaros signal over peaks shows the expected difference in Ikaros antibody
signaland uniformity of signal of common peaks.

toLatex(sessionInfo())

� R version 3.2.2 (2015-08-14), x86_64-w64-mingw32
� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils
� Other packages: BiocGenerics 0.16.1, GenomeInfoDb 1.6.1, GenomicRanges 1.22.1,

IRanges 2.4.1, S4Vectors 0.8.1, ggplot2 1.0.1, knitr 1.11, soGGi 1.2.1
� Loaded via a namespace (and not attached): Biobase 2.30.0, BiocParallel 1.4.0, BiocStyle 1.8.0,

Biostrings 2.38.0, GenomicAlignments 1.6.1, MASS 7.3-44, RColorBrewer 1.1-2, RCurl 1.95-4.7,
Rcpp 0.12.1, Rsamtools 1.22.0, ShortRead 1.28.0, SummarizedExperiment 1.0.1, XML 3.98-1.3,
XVector 0.10.0, bitops 1.0-6, chipseq 1.20.0, colorspace 1.2-6, digest 0.6.8, evaluate 0.8,
formatR 1.2.1, futile.logger 1.4.1, futile.options 1.0.0, grid 3.2.2, gtable 0.1.2, highr 0.5.1,
hwriter 1.3.2, labeling 0.3, lambda.r 1.1.7, lattice 0.20-33, latticeExtra 0.6-26, magrittr 1.5,
munsell 0.4.2, plyr 1.8.3, preprocessCore 1.32.0, proto 0.3-10, reshape2 1.4.1, rtracklayer 1.30.1,
scales 0.3.0, stringi 1.0-1, stringr 1.0.0, tools 3.2.2, zlibbioc 1.16.0

	1 Standard workflow
	1.1 The soggi function
	1.2 Plotting profiles

	2 Transformations and arithmetic operations
	2.1 Simple arithmetic operations on grouped profiles

	3 Creating GRanges combinations for plotting
	3.1 Grouping genomic interval sets and plotting results

