
The qcmetrics infrastructure for quality control and
automatic reporting

Laurent Gatto∗

Computational Proteomics Unit†

University of Cambridge, UK

October 13, 2015

Abstract

The qcmetrics package is a framework that provides simple data containers for quality metrics
and support for automatic report generation. This document briefly illustrates the core data
structures and then demonstrates the generation and automation of quality control reports for
microarray and proteomics data.

Keywords: Bioinformatics, Quality control, reporting, visualisation

∗lg390@cam.ac.uk
†http://cpu.sysbiol.cam.ac.uk

1

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
mailto:lg390@cam.ac.uk
http://cpu.sysbiol.cam.ac.uk

qcmetrics 2

Contents

1 Introduction 2

2 The QC classes 3
2.1 The QcMetric class . 3
2.2 The QcMetrics class . 5

3 Creating QC pipelines 6
3.1 Microarray degradation . 6
3.2 A wrapper function . 9
3.3 Proteomics raw data . 10
3.4 Processed 15N labelling data . 14

4 Report generation 20
4.1 Custom reports . 20
4.2 New report types . 24

5 QC packages 24
5.1 A simple RNA degradation package . 24
5.2 A QC pipeline repository . 25

6 Conclusions 25

1 Introduction

Quality control (QC) is an essential step in any analytical process. Data of poor quality can at best
lead to the absence of positive results or, much worse, false positives that stem from uncaught faulty
and noisy data and much wasted resources in pursuing red herrings.

Quality is often a relative concept that depends on the nature of the biological sample, the experimental
settings, the analytical process and other factors. Research and development in the area of QC has
generally lead to two types of work being disseminated. Firstly, the comparison of samples of variable
quality and the identification of metrics that correlate with the quality of the data. These quality metrics
could then, in later experiments, be used to assess their quality. Secondly, the design of domain-specific
software to facilitate the collection, visualisation and interpretation of various QC metrics is also an
area that has seen much development. QC is a prime example where standardisation and automation
are of great benefit. While a great variety of QC metrics, software and pipelines have been described
for any assay commonly used in modern biology, we present here a different tool for QC, whose main
features are flexibility and versatility. The qcmetrics package is a general framework for QC that can
accommodate any type of data. It provides a flexible framework to implement QC items that store
relevant QC metrics with a specific visualisation mechanism. These individual items can be bundled
into higher level QC containers that can be readily used to generate reports in various formats. As a
result, it becomes easy to develop complete custom pipelines from scratch and automate the generation

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/bioc/html/qcmetrics.html

qcmetrics 3

of reports. The pipelines can be easily updated to accommodate new QC items of better visualisation
techniques.

Section 2 provides an overview of the framework. In section 3, we use microarray (subsection 3.1)
and proteomics data (subsection 3.3) to demonstrate the elaboration of QC pipelines: how to create
individual QC objects, how to bundle them to create sets of QC metrics and how to generate reports in
multiple formats. We also show how the above steps can be fully automated through simple wrapper
functions in section 3.2. Although kept simple in the interest of time and space, these examples are
meaningful and relevant. In section 4, we provide more detail about the report generation process, how
reports can be customised and how new exports can be contributed. We proceed in section 5 to the
consolidation of QC pipelines using Rand elaborate on the development of dedicated QC packages with
qcmetrics.

2 The QC classes

The package provides two types of QC containers. The QcMetric class stores data and visualisation
functions for single metrics. Several such metrics can be bundled into QcMetrics instances, that can
be used as input for automated report generation. Below, we will provide a quick overview of how to
create respective QcMetric and QcMetrics instances. More details are available in the corresponding
documentations.

2.1 The QcMetric class

A QC metric is composed of a description (name in the code chunk below), some QC data (qcdata)
and a status that defines if the metric is deemed of acceptable quality (coded as TRUE), bad quality
(coded as FALSE) or not yet evaluated (coded as NA). Individual metrics can be displayed as a short
textual summary or plotted. To do the former, one can use the default show method.

library("qcmetrics")

qc <- QcMetric(name = "A test metric")

qcdata(qc, "x") <- rnorm(100)

qcdata(qc) ## all available qcdata

[1] "x"

summary(qcdata(qc, "x")) ## get x

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.2150 -0.4942 0.1139 0.1089 0.6915 2.4020

show(qc) ## or just qc

Object of class "QcMetric"

Name: A test metric

Status: NA

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/bioc/html/qcmetrics.html

qcmetrics 4

Data: x

status(qc) <- TRUE

qc

Object of class "QcMetric"

Name: A test metric

Status: TRUE

Data: x

Plotting QcMetric instances requires to implement a plotting method that is relevant to the data at
hand. We can use a plot replacement method to define our custom function. The code inside the
plot uses qcdata to extract the relevant QC data from object that is then passed as argument to
plot and uses the adequate visualisation to present the QC data.

plot(qc)

Warning in x@plot(x, ...): No specific plot function defined

plot(qc) <-

function(object, ...) boxplot(qcdata(object, "x"), ...)

plot(qc)

−
2

−
1

0
1

2

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html

qcmetrics 5

2.2 The QcMetrics class

A QcMetrics object is essentially just a list of individual QcMetric instances. It is also possible to set a
list of metadata variables to describe the source of the QC metrics. The metadata can be passed as an
QcMetadata object (the way it is stored in the QcMetrics instance) or directly as a named list. The
QcMetadata is itself a list and can be accessed and set with metadata or mdata. When accessed, it
is returned and displayed as a list.

qcm <- QcMetrics(qcdata = list(qc))

qcm

Object of class "QcMetrics"

containing 1 QC metrics.

and no metadata variables.

metadata(qcm) <- list(author = "Prof. Who",

lab = "Big lab")

qcm

Object of class "QcMetrics"

containing 1 QC metrics.

and 2 metadata variables.

mdata(qcm)

$author

[1] "Prof. Who"

##

$lab

[1] "Big lab"

The metadata can be updated with the same interface. If new named items are passed, the metadata
is updated by addition of the new elements. If a named item is already present, its value gets updated.

metadata(qcm) <- list(author = "Prof. Who",

lab = "Cabin lab",

University = "Universe-ity")

mdata(qcm)

$author

[1] "Prof. Who"

##

$lab

[1] "Cabin lab"

##

$University

[1] "Universe-ity"

The QcMetrics can then be passed to the qcReport method to generate reports, as described in more

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html

qcmetrics 6

details below.

3 Creating QC pipelines

3.1 Microarray degradation

We will use the refA Affymetrix arrays from the MAQCsubsetAFX package as an example data set
and investigate the RNA degradation using the AffyRNAdeg from affy [1] and the actin and GAPDH
3′

5′
ratios, as calculated in the yaqcaffy package [2]. The first code chunk demonstrate how to load the

data and compute the QC data1.

library("MAQCsubsetAFX")

data(refA)

library("affy")

deg <- AffyRNAdeg(refA)

library("yaqcaffy")

yqc <- yaqc(refA)

We then create two QcMetric instances, one for each of our quality metrics.

qc1 <- QcMetric(name = "Affy RNA degradation slopes")

qcdata(qc1, "deg") <- deg

plot(qc1) <- function(object, ...) {
x <- qcdata(object, "deg")

nms <- x$sample.names

plotAffyRNAdeg(x, col = 1:length(nms), ...)

legend("topleft", nms, lty = 1, cex = 0.8,

col = 1:length(nms), bty = "n")

}
status(qc1) <- TRUE

qc1

Object of class "QcMetric"

Name: Affy RNA degradation slopes

Status: TRUE

Data: deg

qc2 <- QcMetric(name = "Affy RNA degradation ratios")

qcdata(qc2, "yqc") <- yqc

plot(qc2) <- function(object, ...) {
par(mfrow = c(1, 2))

yaqcaffy:::.plotQCRatios(qcdata(object, "yqc"), "all", ...)

1The pre-computed objects can be directly loaded with load(system.file("extdata/deg.rda", package =

"qcmetrics")) and load(system.file("extdata/deg.rda", package = "qcmetrics")).

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/data/experiment/html/MAQCsubsetAFX.html
http://bioconductor.org/packages/release/bioc/html/affy.html
http://bioconductor.org/packages/release/bioc/html/yaqcaffy.html

qcmetrics 7

}
status(qc2) <- FALSE

qc2

Object of class "QcMetric"

Name: Affy RNA degradation ratios

Status: FALSE

Data: yqc

Then, we combine the individual QC items into a QcMetrics instance.

maqcm <- QcMetrics(qcdata = list(qc1, qc2))

maqcm

Object of class "QcMetrics"

containing 2 QC metrics.

and no metadata variables.

With our QcMetrics data, we can easily generate quality reports in several different formats. Below,
we create a pdf report, which is the default type. Using type = "html" would generate the equivalent
report in html format. See ?qcReport for more details.

qcReport(maqcm, reportname = "rnadeg", type = "pdf")

The resulting report is shown below. Each QcMetric item generates a section named according to the
object’s name. A final summary section shows a table with all the QC items and their status. The
report concludes with a detailed session information section.

In addition to the report, it is of course advised to store the actual QcMetrics object. This is most
easily done with the Rsave/load and saveRDS/readRDS functions. As the data and visualisation
methods are stored together, it is possible to reproduce the figures from the report or further explore
the data at a later stage.

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html

Quality control report generated with qcmetrics

October 13, 2015

1 Affy RNA degradation slopes

Object of class "QcMetric"
Name: Affy RNA degradation slopes
Status: TRUE
Data: deg

RNA degradation plot

5' <−−−−−> 3'
 Probe Number

M
ea

n
In

te
ns

ity
 :

sh
ift

ed
 a

nd
 s

ca
le

d

0 2 4 6 8 10

0
10

20
30

40
50

AFX_1_A2.CEL
AFX_2_A5.CEL
AFX_3_A1.CEL
AFX_4_A4.CEL
AFX_5_A2.CEL
AFX_6_A1.CEL

1

2 Affy RNA degradation ratios

Object of class "QcMetric"
Name: Affy RNA degradation ratios
Status: FALSE
Data: yqc

●

1.
5

2.
0

2.
5

beta−actin 3'/5'

AFX_6_A1.CEL

CV: 0.38

●

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

GAPDH 3'/5'

AFX_6_A1.CEL

CV: 0.11

2

3 QC summary

##
Attaching package: ’xtable’
##
The following object is masked from ’package:RforProteomics’:
##
display

name status
1 Affy RNA degradation slopes TRUE
2 Affy RNA degradation ratios FALSE

4 Session information

• R version 3.2.2 Patched (2015-08-16 r69094), x86_64-w64-mingw32

• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

• Other packages: AnnotationDbi 1.32.0, Biobase 2.30.0, BiocGenerics 0.16.0, BiocParallel 1.4.0,
IRanges 2.4.0, MAQCsubsetAFX 1.7.0, MSnbase 1.18.0, ProtGenerics 1.2.0, Rcpp 0.12.1,
RforProteomics 1.7.2, S4Vectors 0.8.0, affy 1.48.0, gcrma 2.42.0, genefilter 1.52.0, knitr 1.11, mzR 2.4.0,
qcmetrics 1.8.0, simpleaffy 2.46.0, xtable 1.7-4, yaqcaffy 1.30.0

• Loaded via a namespace (and not attached): BiocInstaller 1.20.0, BiocStyle 1.8.0, Biostrings 2.38.0,
Category 2.36.0, DBI 0.3.1, GSEABase 1.32.0, MALDIquant 1.13, MASS 7.3-44, Matrix 1.2-2,
Nozzle.R1 1.1-1, R.methodsS3 1.7.0, R.oo 1.19.0, R.utils 2.1.0, R6 2.1.1, RBGL 1.46.0,
RColorBrewer 1.1-2, RCurl 1.95-4.7, RJSONIO 1.3-0, RSQLite 1.0.0, RUnit 0.4.29, XML 3.98-1.3,
XVector 0.10.0, affyio 1.40.0, annotate 1.48.0, biocViews 1.38.0, bitops 1.0-6, codetools 0.2-14,
colorspace 1.2-6, digest 0.6.8, doParallel 1.0.8, evaluate 0.8, foreach 1.4.3, formatR 1.2.1,
futile.logger 1.4.1, futile.options 1.0.0, ggplot2 1.0.1, graph 1.48.0, grid 3.2.2, gridSVG 1.4-3,
gtable 0.1.2, highr 0.5.1, htmltools 0.2.6, httpuv 1.3.3, impute 1.44.0, interactiveDisplay 1.8.0,
interactiveDisplayBase 1.8.0, iterators 1.0.8, lambda.r 1.1.7, lattice 0.20-33, limma 3.26.0, magrittr 1.5,
mime 0.4, munsell 0.4.2, mzID 1.8.0, pander 0.5.2, pcaMethods 1.60.0, plyr 1.8.3,
preprocessCore 1.32.0, proto 0.3-10, reshape2 1.4.1, rpx 1.6.0, scales 0.3.0, shiny 0.12.2, splines 3.2.2,
stringi 0.5-5, stringr 1.0.0, survival 2.38-3, tools 3.2.2, vsn 3.38.0, zlibbioc 1.16.0

3

qcmetrics 9

3.2 A wrapper function

Once an appropriate set of quality metrics has been identified, the generation of the QcMetrics instances
can be wrapped up for automation.

rnadeg

function (input, status, type, reportname = "rnadegradation")

{

suppressPackageStartupMessages(library("affy"))

suppressPackageStartupMessages(library("yaqcaffy"))

if (is.character(input))

input <- ReadAffy(input)

qc1 <- QcMetric(name = "Affy RNA degradation slopes")

qcdata(qc1, "deg") <- AffyRNAdeg(input)

plot(qc1) <- function(object) {

x <- qcdata(object, "deg")

nms <- x$sample.names

plotAffyRNAdeg(x, cols = 1:length(nms))

legend("topleft", nms, lty = 1, cex = 0.8, col = 1:length(nms),

bty = "n")

}

if (!missing(status))

status(qc1) <- status[1]

qc2 <- QcMetric(name = "Affy RNA degradation ratios")

qcdata(qc2, "yqc") <- yaqc(input)

plot(qc2) <- function(object) {

par(mfrow = c(1, 2))

yaqcaffy:::.plotQCRatios(qcdata(object, "yqc"), "all")

}

if (!missing(status))

status(qc2) <- status[2]

qcm <- QcMetrics(qcdata = list(qc1, qc2))

if (!missing(type))

qcReport(qcm, reportname, type = type, title = "Affymetrix RNA degradation report")

invisible(qcm)

}

<environment: namespace:qcmetrics>

It is now possible to generate a QcMetrics object from a set of CEL files or directly from an affybatch

object. The status argument allows to directly set the statuses of the individual QC items; these can
also be set later, as illustrated below. If a report type is specified, the corresponding report is generated.

maqcm <- rnadeg(refA)

status(maqcm)

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html

qcmetrics 10

[1] NA NA

check the QC data

(status(maqcm) <- c(TRUE, FALSE))

[1] TRUE FALSE

The report can be generated manually with qcReport(maqcm) or directly with the wrapper function
as follows:

maqcm <- rnadeg(refA, type = "pdf")

3.3 Proteomics raw data

To illustrate a simple QC analysis for proteomics data, we will download data set PXD00001 from the
ProteomeXchange repository in the mzXML format [3]. The MS2 spectra from that mass-spectrometry
run are then read into R2 and stored as an MSnExp experiment using the readMSData function from
the MSnbase package [4].

library("RforProteomics")

msfile <- getPXD000001mzXML()

library("MSnbase")

exp <- readMSData(msfile, verbose = FALSE)

The QcMetrics will consist of 3 items, namely a chromatogram constructed with the MS2 spectra
precursor’s intensities, a figure illustrating the precursor charges in the MS space and an m

z
delta plot

illustrating the suitability of MS2 spectra for identification (see ?plotMzDelta or [5]).

qc1 <- QcMetric(name = "Chromatogram")

x <- rtime(exp)

y <- precursorIntensity(exp)

o <- order(x)

qcdata(qc1, "x") <- x[o]

qcdata(qc1, "y") <- y[o]

plot(qc1) <- function(object, ...)

plot(qcdata(object, "x"),

qcdata(object, "y"),

col = "darkgrey", type ="l",

xlab = "retention time",

ylab = "precursor intensity")

qc2 <- QcMetric(name = "MS space")

qcdata(qc2, "p2d") <- plot2d(exp, z = "charge", plot = FALSE)

plot(qc2) <- function(object) {
2In the interest of time, this code chunk has been pre-computed and a subset (1 in 3) of the exp instance is distributed

with the package. The data is loaded with load(system.file("extdata/exp.rda", package = "qcmetrics")).

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/bioc/html/MSnbase.html

qcmetrics 11

require("ggplot2")

print(qcdata(object, "p2d"))

}

qc3 <- QcMetric(name = "m/z delta plot")

qcdata(qc3, "pmz") <- plotMzDelta(exp, plot = FALSE,

verbose = FALSE)

plot(qc3) <- function(object)

suppressWarnings(print(qcdata(object, "pmz")))

Note that we do not store the raw data in any of the above instances, but always pre-compute the
necessary data or plots that are then stored as qcdata. If the raw data was to be needed in multiple
QcMetric instances, we could re-use the same qcdata environment to avoid unnecessary copies using
qcdata(qc2) <- qcenv(qc1) and implement different views through custom plot methods.

Let’s now combine the three items into a QcMetrics object, decorate it with custom metadata using
the MIAPE information from the MSnExp object and generate a report.

protqcm <- QcMetrics(qcdata = list(qc1, qc2, qc3))

metadata(protqcm) <- list(

data = "PXD000001",

instrument = experimentData(exp)@instrumentModel,

source = experimentData(exp)@ionSource,

analyser = experimentData(exp)@analyser,

detector = experimentData(exp)@detectorType,

manufacurer = experimentData(exp)@instrumentManufacturer)

The status column of the summary table is empty as we have not set the QC items statuses yet.

qcReport(protqcm, reportname = "protqc")

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html

Quality control report generated with qcmetrics

October 13, 2015

1 Metadata

data PXD000001

instrument LTQ Orbitrap Velos

source nanoelectrospray

analyser orbitrap

detector inductive detector

manufacurer Thermo Scientific

1

2 Chromatogram

Object of class "QcMetric"
Name: Chromatogram
Status: NA
Data: x y

500 1000 1500 2000 2500 3000 3500

0e
+

00
1e

+
08

2e
+

08
3e

+
08

4e
+

08

retention time

pr
ec

ur
so

r
in

te
ns

ity
2

3 MS space

Object of class "QcMetric"
Name: MS space
Status: NA
Data: p2d

Loading required package: ggplot2

600

900

1200

1500

1000 2000 3000
retention.time

pr
ec

ur
so

r.m
z

charge

2

3

4

5

6

3

4 m/z delta plot

Object of class "QcMetric"
Name: m/z delta plot
Status: NA
Data: pmz

peg A RN
D

C EG HI/L K/Q M FPS T WYV

0.00

0.01

0.02

0.03

50 100 150 200
m/z delta

D
en

si
ty

Histogram of Mass Delta Distribution

4

5 QC summary

name status
1 Chromatogram
2 MS space
3 m/z delta plot

6 Session information

• R version 3.2.2 Patched (2015-08-16 r69094), x86_64-w64-mingw32

• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

• Other packages: AnnotationDbi 1.32.0, Biobase 2.30.0, BiocGenerics 0.16.0, BiocParallel 1.4.0,
IRanges 2.4.0, MAQCsubsetAFX 1.7.0, MSnbase 1.18.0, ProtGenerics 1.2.0, Rcpp 0.12.1,
RforProteomics 1.7.2, S4Vectors 0.8.0, affy 1.48.0, gcrma 2.42.0, genefilter 1.52.0, ggplot2 1.0.1,
knitr 1.11, mzR 2.4.0, qcmetrics 1.8.0, simpleaffy 2.46.0, xtable 1.7-4, yaqcaffy 1.30.0

• Loaded via a namespace (and not attached): BiocInstaller 1.20.0, BiocStyle 1.8.0, Biostrings 2.38.0,
Category 2.36.0, DBI 0.3.1, GSEABase 1.32.0, MALDIquant 1.13, MASS 7.3-44, Matrix 1.2-2,
Nozzle.R1 1.1-1, R.methodsS3 1.7.0, R.oo 1.19.0, R.utils 2.1.0, R6 2.1.1, RBGL 1.46.0,
RColorBrewer 1.1-2, RCurl 1.95-4.7, RJSONIO 1.3-0, RSQLite 1.0.0, RUnit 0.4.29, XML 3.98-1.3,
XVector 0.10.0, affyio 1.40.0, annotate 1.48.0, biocViews 1.38.0, bitops 1.0-6, codetools 0.2-14,
colorspace 1.2-6, digest 0.6.8, doParallel 1.0.8, evaluate 0.8, foreach 1.4.3, formatR 1.2.1,
futile.logger 1.4.1, futile.options 1.0.0, graph 1.48.0, grid 3.2.2, gridSVG 1.4-3, gtable 0.1.2,
highr 0.5.1, htmltools 0.2.6, httpuv 1.3.3, impute 1.44.0, interactiveDisplay 1.8.0,
interactiveDisplayBase 1.8.0, iterators 1.0.8, labeling 0.3, lambda.r 1.1.7, lattice 0.20-33, limma 3.26.0,
magrittr 1.5, mime 0.4, munsell 0.4.2, mzID 1.8.0, pander 0.5.2, pcaMethods 1.60.0, plyr 1.8.3,
preprocessCore 1.32.0, proto 0.3-10, reshape2 1.4.1, rpx 1.6.0, scales 0.3.0, shiny 0.12.2, splines 3.2.2,
stringi 0.5-5, stringr 1.0.0, survival 2.38-3, tools 3.2.2, vsn 3.38.0, zlibbioc 1.16.0

5

qcmetrics 14

3.4 Processed 15N labelling data

In this section, we describe a set of 15N metabolic labelling QC metrics [6]. The data is a phospho-
enriched 15N labelled Arabidopsis thaliana sample prepared as described in [7]. The data was processed
with in-house tools and is available as an MSnSet instance. Briefly, MS2 spectra were search with the
Mascot engine and identification scores adjusted with Mascot Percolator. Heavy and light pairs were
then searched in the survey scans and 15N incorporation was estimated based on the peptide sequence
and the isotopic envelope of the heavy member of the pair (the inc feature variable). Heavy and
light peptides isotopic envelope areas were finally integrated to obtain unlabelled and 15N quantitation
data. The psm object provides such data for PSMs (peptide spectrum matches) with a posterior error
probability <0.05 that can be uniquely matched to proteins.

We first load the MSnbase package (required to support the MSnSet data structure) and example data
that is distributed with the qcmetrics package. We will make use of the ggplot2 plotting package.

library("ggplot2")

library("MSnbase")

data(n15psm)

psm

MSnSet (storageMode: lockedEnvironment)

assayData: 1772 features, 2 samples

element names: exprs

protocolData: none

phenoData: none

featureData

featureNames: 3 5 ... 4499 (1772 total)

fvarLabels: Protein_Accession

Protein_Description ... inc (21 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

pubMedIds: 23681576

Annotation:

- - - Processing information - - -

Subset [22540,2][1999,2] Tue Sep 17 01:34:09 2013

Removed features with more than 0 NAs: Tue Sep 17 01:34:09 2013

Dropped featureData's levels Tue Sep 17 01:34:09 2013

MSnbase version: 1.9.7

The first QC item examines the 15N incorporation rate, available in the inc feature variable. We also
defined a median incorporation rate threshold tr equal to 97.5 that is used to set the QC status.

incorporation rate QC metric

qcinc <- QcMetric(name = "15N incorporation rate")

qcdata(qcinc, "inc") <- fData(psm)$inc

qcdata(qcinc, "tr") <- 97.5

status(qcinc) <- median(qcdata(qcinc, "inc")) > qcdata(qcinc, "tr")

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/bioc/html/MSnbase.html
http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html

qcmetrics 15

Next, we implement a custom show method, that prints 5 summary values of the variable’s distribution.

show(qcinc) <- function(object) {
qcshow(object, qcdata = FALSE)

cat(" QC threshold:", qcdata(object, "tr"), "\n")
cat(" Incorporation rate\n")
print(summary(qcdata(object, "inc")))

invisible(NULL)

}

We then define the metric’s plot function that represent the distribution of the PSM’s incorporation
rates as a boxplot, shows all the individual rates as jittered dots and represents the tr threshold as a
dotted red line.

plot(qcinc) <- function(object) {
inc <- qcdata(object, "inc")

tr <- qcdata(object, "tr")

lab <- "Incorporation rate"

dd <- data.frame(inc = qcdata(qcinc, "inc"))

p <- ggplot(dd, aes(factor(""), inc)) +

geom_jitter(colour = "#4582B370", size = 3) +

geom_boxplot(fill = "#FFFFFFD0", colour = "#000000",

outlier.size = 0) +

geom_hline(yintercept = tr, colour = "red",

linetype = "dotted", size = 1) +

labs(x = "", y = "Incorporation rate")

p

}

15N experiments of good quality are characterised by high incorporation rates, which allow to deconvolute
the heavy and light peptide isotopic envelopes and accurate quantification.

The second metric inspects the log2 fold-changes of the PSMs, unique peptides with modifications,
unique peptide sequences (not taking modifications into account) and proteins. These respective data
sets are computed with the combineFeatures function (see ?combineFeatures for details).

fData(psm)$modseq <- ## pep seq + PTM

paste(fData(psm)$Peptide_Sequence,

fData(psm)$Variable_Modifications, sep = "+")

pep <- combineFeatures(psm,

as.character(fData(psm)$Peptide_Sequence),

"median", verbose = FALSE)

modpep <- combineFeatures(psm,

fData(psm)$modseq,

"median", verbose = FALSE)

prot <- combineFeatures(psm,

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html

qcmetrics 16

as.character(fData(psm)$Protein_Accession),

"median", verbose = FALSE)

The log2 fold-changes for all the features are then computed and stored as QC data of our next QC
item. We also store a pair of values explfc that defined an interval in which we expect our median
PSM log2 fold-change to be.

calculate log fold-change

qclfc <- QcMetric(name = "Log2 fold-changes")

qcdata(qclfc, "lfc.psm") <-

log2(exprs(psm)[,"unlabelled"] / exprs(psm)[, "N15"])

qcdata(qclfc, "lfc.pep") <-

log2(exprs(pep)[,"unlabelled"] / exprs(pep)[, "N15"])

qcdata(qclfc, "lfc.modpep") <-

log2(exprs(modpep)[,"unlabelled"] / exprs(modpep)[, "N15"])

qcdata(qclfc, "lfc.prot") <-

log2(exprs(prot)[,"unlabelled"] / exprs(prot)[, "N15"])

qcdata(qclfc, "explfc") <- c(-0.5, 0.5)

status(qclfc) <-

median(qcdata(qclfc, "lfc.psm")) > qcdata(qclfc, "explfc")[1] &

median(qcdata(qclfc, "lfc.psm")) < qcdata(qclfc, "explfc")[2]

As previously, we provide a custom show method that displays summary values for the four fold-changes.
The plot function illustrates the respective log2 fold-change densities and the expected median PSM
fold-change range (red rectangle). The expected 0 log2 fold-change is shown as a dotted black vertical
line and the observed median PSM value is shown as a blue dashed line.

show(qclfc) <- function(object) {
qcshow(object, qcdata = FALSE) ## default

cat(" QC thresholds:", qcdata(object, "explfc"), "\n")
cat(" * PSM log2 fold-changes\n")
print(summary(qcdata(object, "lfc.psm")))

cat(" * Modified peptide log2 fold-changes\n")
print(summary(qcdata(object, "lfc.modpep")))

cat(" * Peptide log2 fold-changes\n")
print(summary(qcdata(object, "lfc.pep")))

cat(" * Protein log2 fold-changes\n")
print(summary(qcdata(object, "lfc.prot")))

invisible(NULL)

}
plot(qclfc) <- function(object) {

x <- qcdata(object, "explfc")

plot(density(qcdata(object, "lfc.psm")),

main = "", sub = "", col = "red",

ylab = "", lwd = 2,

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html

qcmetrics 17

xlab = expression(log[2]~fold-change))

lines(density(qcdata(object, "lfc.modpep")),

col = "steelblue", lwd = 2)

lines(density(qcdata(object, "lfc.pep")),

col = "blue", lwd = 2)

lines(density(qcdata(object, "lfc.prot")),

col = "orange")

abline(h = 0, col = "grey")

abline(v = 0, lty = "dotted")

rect(x[1], -1, x[2], 1, col = "#EE000030",

border = NA)

abline(v = median(qcdata(object, "lfc.psm")),

lty = "dashed", col = "blue")

legend("topright",

c("PSM", "Peptides", "Modified peptides", "Proteins"),

col = c("red", "steelblue", "blue", "orange"), lwd = 2,

bty = "n")

}

A good quality experiment is expected to have a tight distribution centred around 0. Major deviations
would indicate incomplete incorporation, errors in the respective amounts of light and heavy material
used, and a wide distribution would reflect large variability in the data.

Our last QC item inspects the number of features that have been identified in the experiment. We also
investigate how many peptides (with or without considering the modification) have been observed at
the PSM level and the number of unique peptides per protein. Here, we do not specify any expected
values as the number of observed features is experiment specific; the QC status is left as NA.

number of features

qcnb <- QcMetric(name = "Number of features")

qcdata(qcnb, "count") <- c(

PSM = nrow(psm),

ModPep = nrow(modpep),

Pep = nrow(pep),

Prot = nrow(prot))

qcdata(qcnb, "peptab") <-

table(fData(psm)$Peptide_Sequence)

qcdata(qcnb, "modpeptab") <-

table(fData(psm)$modseq)

qcdata(qcnb, "upep.per.prot") <-

fData(psm)$Number_Of_Unique_Peptides

The counts are displayed by the new show and plotted as bar charts by the plot methods.

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html

qcmetrics 18

show(qcnb) <- function(object) {
qcshow(object, qcdata = FALSE)

print(qcdata(object, "count"))

}
plot(qcnb) <- function(object) {

par(mar = c(5, 4, 2, 1))

layout(matrix(c(1, 2, 1, 3, 1, 4), ncol = 3))

barplot(qcdata(object, "count"), horiz = TRUE, las = 2)

barplot(table(qcdata(object, "modpeptab")),

xlab = "Modified peptides")

barplot(table(qcdata(object, "peptab")),

xlab = "Peptides")

barplot(table(qcdata(object, "upep.per.prot")),

xlab = "Unique peptides per protein ")

}

In the code chunk below, we combine the 3 QC items into a QcMetrics instance and generate a report
using meta data extracted from the psm MSnSet instance.

n15qcm <- QcMetrics(qcdata = list(qcinc, qclfc, qcnb))

qcReport(n15qcm, reportname = "n15qcreport",

title = expinfo(experimentData(psm))["title"],

author = expinfo(experimentData(psm))["contact"],

clean = FALSE)

Report written to n15qcreport.pdf

We provide with the package the n15qc wrapper function that automates the above pipeline. The
names of the feature variable columns and the thresholds for the two first QC items are provided as
arguments. In case no report name is given, a custom title with date and time is used, to avoid
overwriting existing reports.

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html

15N labelling experiment

Arnoud Groen

October 13, 2015

1 15N incorporation rate

Object of class "QcMetric"
Name: 15N incorporation rate
Status: TRUE
QC threshold: 97.5
Incorporation rate
Min. 1st Qu. Median Mean 3rd Qu. Max.
50.00 98.00 99.00 97.04 99.00 99.00

50

60

70

80

90

100

In
co

rp
or

at
io

n
ra

te

1

2 Log2 fold-changes

Object of class "QcMetric"
Name: Log2 fold-changes
Status: TRUE
QC thresholds: -0.5 0.5
* PSM log2 fold-changes
Min. 1st Qu. Median Mean 3rd Qu. Max.
-5.7640 -0.3164 0.2086 0.3536 0.8242 10.3700
* Modified peptide log2 fold-changes
Min. 1st Qu. Median Mean 3rd Qu. Max.
-5.7640 -0.3306 0.1946 0.3393 0.8001 10.3700
* Peptide log2 fold-changes
Min. 1st Qu. Median Mean 3rd Qu. Max.
-5.7270 -0.3285 0.1854 0.3317 0.7934 10.3700
* Protein log2 fold-changes
Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.4620 -0.3273 0.1942 0.3344 0.7902 10.3700

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

log2 fold − change

PSM
Peptides
Modified peptides
Proteins

2

3 Number of features

Object of class "QcMetric"
Name: Number of features
Status: NA
PSM ModPep Pep Prot
1772 1522 1335 916

PSM

ModPep

Pep

Prot

0

50
0

10
00

15
00

1 2 3 4

Modified peptides

0
20

0
60

0
10

00

1 3 5 8

Peptides

0
20

0
40

0
60

0
80

0

1 3 5 7 9

Unique peptides per protein

0
20

0
40

0
60

0

3

4 QC summary

name status
1 15N incorporation rate TRUE
2 Log2 fold-changes TRUE
3 Number of features

5 Session information

• R version 3.2.2 Patched (2015-08-16 r69094), x86_64-w64-mingw32

• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

• Other packages: AnnotationDbi 1.32.0, Biobase 2.30.0, BiocGenerics 0.16.0, BiocParallel 1.4.0,
IRanges 2.4.0, MAQCsubsetAFX 1.7.0, MSnbase 1.18.0, ProtGenerics 1.2.0, Rcpp 0.12.1,
RforProteomics 1.7.2, S4Vectors 0.8.0, affy 1.48.0, gcrma 2.42.0, genefilter 1.52.0, ggplot2 1.0.1,
knitr 1.11, mzR 2.4.0, qcmetrics 1.8.0, simpleaffy 2.46.0, xtable 1.7-4, yaqcaffy 1.30.0

• Loaded via a namespace (and not attached): BiocInstaller 1.20.0, BiocStyle 1.8.0, Biostrings 2.38.0,
Category 2.36.0, DBI 0.3.1, GSEABase 1.32.0, MALDIquant 1.13, MASS 7.3-44, Matrix 1.2-2,
Nozzle.R1 1.1-1, R.methodsS3 1.7.0, R.oo 1.19.0, R.utils 2.1.0, R6 2.1.1, RBGL 1.46.0,
RColorBrewer 1.1-2, RCurl 1.95-4.7, RJSONIO 1.3-0, RSQLite 1.0.0, RUnit 0.4.29, XML 3.98-1.3,
XVector 0.10.0, affyio 1.40.0, annotate 1.48.0, biocViews 1.38.0, bitops 1.0-6, codetools 0.2-14,
colorspace 1.2-6, digest 0.6.8, doParallel 1.0.8, evaluate 0.8, foreach 1.4.3, formatR 1.2.1,
futile.logger 1.4.1, futile.options 1.0.0, graph 1.48.0, grid 3.2.2, gridSVG 1.4-3, gtable 0.1.2,
highr 0.5.1, htmltools 0.2.6, httpuv 1.3.3, impute 1.44.0, interactiveDisplay 1.8.0,
interactiveDisplayBase 1.8.0, iterators 1.0.8, labeling 0.3, lambda.r 1.1.7, lattice 0.20-33, limma 3.26.0,
magrittr 1.5, mime 0.4, munsell 0.4.2, mzID 1.8.0, pander 0.5.2, pcaMethods 1.60.0, plyr 1.8.3,
preprocessCore 1.32.0, proto 0.3-10, reshape2 1.4.1, rpx 1.6.0, scales 0.3.0, shiny 0.12.2, splines 3.2.2,
stringi 0.5-5, stringr 1.0.0, survival 2.38-3, tools 3.2.2, vsn 3.38.0, zlibbioc 1.16.0

4

qcmetrics 20

4 Report generation

The report generation is handled by dedicated packages, in particular knitr [8] and markdown [9].

4.1 Custom reports

Templates

It is possible to customise reports for any of the existing types. The generation of the pdf report is
based on a tex template, knitr-template.Rnw, that is available with the package3. The qcReport

method accepts the path to a custom template as argument.

The template corresponds to a LATEX preamble with the inclusion of two variables that are passed to the
qcReport and used to customise the template: the author’s name and the title of the report. The former
is defaulted to the system username with Sys.getenv("USER") and the later is a simple character.
The qcReport function also automatically generates summary and session information sections. The
core of the QC report, i.e the sections corresponding the the individual QcMetric instances bundled in
a QcMetrics input (described in more details below) is then inserted into the template and weaved, or
more specifically knit’ted into a tex document that is (if type=pdf) compiled into a pdf document.

The generation of the html report is enabled by the creation of a Rmarkdown file (Rmd) that is then
converted with knitr and markdown into html. The Rmd syntax being much simpler, no Rmd template
is needed. It is possible to customise the final html output by providing a css definition as template

argument when calling qcReport.

Initial support for the Nozzle.R1 package [10] is available with type nozzle.

QcMetric sections

The generation of the sections for QcMetric instances is controlled by a function passed to the qcto

argument. This function takes care of transforming an instance of class QcMetric into a character

that can be inserted into the report. For the tex and pdf reports, Qc2Tex is used; the Rmd and html

reports make use of Qc2Rmd. These functions take an instance of class QcMetrics and the index of
the QcMetric to be converted.

qcmetrics:::Qc2Tex

function (object, i)

{

c(paste0("\\section{", name(object[[i]]), "}"), paste0("<<",

name(object[[i]]), ", echo=FALSE>>="), paste0("show(object[[",

i, "]])"), "@\n", "\\begin{figure}[!hbt]", "<<dev='pdf', echo=FALSE, fig.width=5, fig.height=5, fig.align='center'>>=",

paste0("plot(object[[", i, "]])"), "@", "\\end{figure}",

3You can find it with system.file("templates", "knitr-template.Rnw", package = "qcmetrics").

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://cran.fhcrc.org/web/packages/knitr/index.html
http://cran.fhcrc.org/web/packages/markdown/index.html
http://cran.fhcrc.org/web/packages/knitr/index.html
http://cran.fhcrc.org/web/packages/markdown/index.html
http://cran.fhcrc.org/web/packages/Nozzle.R1/index.html

qcmetrics 21

"\\clearpage")

}

<environment: namespace:qcmetrics>

qcmetrics:::Qc2Tex(maqcm, 1)

[1] "\\section{Affy RNA degradation slopes}"

[2] "<<Affy RNA degradation slopes, echo=FALSE>>="

[3] "show(object[[1]])"

[4] "@\n"

[5] "\\begin{figure}[!hbt]"

[6] "<<dev='pdf', echo=FALSE, fig.width=5, fig.height=5, fig.align='center'>>="

[7] "plot(object[[1]])"

[8] "@"

[9] "\\end{figure}"

[10] "\\clearpage"

Let’s investigate how to customise these sections depending on the QcMetric status, the goal being to
highlight positive QC results (i.e. when the status is TRUE) with (or ,), negative results with (or
/) and use # if status is NA after the section title4.

Below, we see that different section headers are composed based on the value of status(object[[i]])
by appending the appropriate LATEX symbol.

Qc2Tex2

function (object, i)

{

nm <- name(object[[i]])

if (is.na(status(object[[i]]))) {

symb <- "$\\Circle$"

}

else if (status(object[[i]])) {

symb <- "{\\color{green} $\\CIRCLE$}"

}

else {

symb <- "{\\color{red} $\\CIRCLE$}"

}

sec <- paste0("\\section{", nm, "\\hspace{2mm}", symb, "}")

cont <- c(paste0("<<", name(object[[i]]), ", echo=FALSE>>="),

paste0("show(object[[", i, "]])"), "@\n", "\\begin{figure}[!hbt]",

"<<dev='pdf', echo=FALSE, fig.width=5, fig.height=5, fig.align='center'>>=",

paste0("plot(object[[", i, "]])"), "@", "\\end{figure}",

"\\clearpage")

c(sec, cont)

4The respective symbols are CIRCLE, smiley, frownie and Circle from the LATEX package wasysym.

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html

qcmetrics 22

}

<environment: namespace:qcmetrics>

To use this specific sectioning code, we pass our new function as qcto when generating the report. To
generate smiley labels, use Qc2Tex3.

qcReport(maqcm, reportname = "rnadeg2", qcto = Qc2Tex2)

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html

Quality control report generated with qcmetrics

October 13, 2015

1 Affy RNA degradation slopes

Object of class "QcMetric"
Name: Affy RNA degradation slopes
Status: TRUE
Data: deg

RNA degradation plot

5' <−−−−−> 3'
 Probe Number

M
ea

n
In

te
ns

ity
 :

sh
ift

ed
 a

nd
 s

ca
le

d

0 2 4 6 8 10

0
10

20
30

40
50

AFX_1_A2.CEL
AFX_2_A5.CEL
AFX_3_A1.CEL
AFX_4_A4.CEL
AFX_5_A2.CEL
AFX_6_A1.CEL

1

2 Affy RNA degradation ratios

Object of class "QcMetric"
Name: Affy RNA degradation ratios
Status: FALSE
Data: yqc

●

1.
5

2.
0

2.
5

beta−actin 3'/5'

AFX_6_A1.CEL

CV: 0.38

●

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

GAPDH 3'/5'

AFX_6_A1.CEL

CV: 0.11

2

Quality control report generated with qcmetrics

October 13, 2015

1 Affy RNA degradation slopes ,

Object of class "QcMetric"
Name: Affy RNA degradation slopes
Status: TRUE
Data: deg

RNA degradation plot

5' <−−−−−> 3'
 Probe Number

M
ea

n
In

te
ns

ity
 :

sh
ift

ed
 a

nd
 s

ca
le

d

0 2 4 6 8 10

0
10

20
30

40
50

AFX_1_A2.CEL
AFX_2_A5.CEL
AFX_3_A1.CEL
AFX_4_A4.CEL
AFX_5_A2.CEL
AFX_6_A1.CEL

1

2 Affy RNA degradation ratios /

Object of class "QcMetric"
Name: Affy RNA degradation ratios
Status: FALSE
Data: yqc

●

1.
5

2.
0

2.
5

beta−actin 3'/5'

AFX_6_A1.CEL

CV: 0.38

●

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

GAPDH 3'/5'

AFX_6_A1.CEL

CV: 0.11

2

qcmetrics 24

4.2 New report types

A reporting function is a function that

• Converts the appropriate QC item sections (for example the Qc2Tex2 function described above)
• Optionally includes the QC item sections into addition header and footer, either by writing these

directly or by inserting the sections into an appropriate template. The reporting functions that are
available in qcmetrics can be found in ?qcReport: reporting tex for type tex, reporting pdf

for type pdf, . . . These functions should use the same arguments as qcReport insofar as possible.
• Once written to a report source file, the final report type is generated. knit is used to convert

the Rnw source to tex which is compiled into pdf using tools::texi2pdf. The Rmd content is
directly written into a file which is knitted and converted to html using knit2html (which call
markdownTOHTML).

New reporting abc functions can be called directly or passed to qcReport using the reporter

argument.

5 QC packages

5.1 A simple RNA degradation package

While the examples presented in section 3 and in particular the wrapper function in section 3.2 are
flexible and fast ways to design QC pipeline prototypes, a more robust mechanism is desirable for
production pipelines. The Rpackaging mechanism is ideally suited for this as it provides versioning,
documentation, unit testing and easy distribution and installation facilities.

While the detailed description of package development is out of the scope of this document, it is of
interest to provide an overview of the development of a QC package. Taking the wrapper function, it
could be used the create the package structure

package.skeleton("RnaDegQC", list = "rnadeg")

The DESCRIPTION file would need to be updated. The packages qcmetrics, affy and yaqcaffy would
need to be specified as dependencies in the Imports: line and imported in the NAMESPACE file. The doc-
umentation file RnaDegQC/man/rnadeg.Rd and the (optional) RnaDegQC/man/RnaDegQC-packge.Rd
would need to be updated.

Alternatively, the rnadeg function could be modularised so that QC items would be created and returned
by dedicated constructors like makeRnaDegSlopes and makeRnaDegRatios. This would provide other
developers with the means to re-use some components of the pipeline by using the package.

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/bioc/html/affy.html
http://bioconductor.org/packages/release/bioc/html/yaqcaffy.html

qcmetrics 25

5.2 A QC pipeline repository

The wiki on the qcmetrics github page5 can be edited by any github user and will be used to cite,
document and share QC functions, pipelines and packages, in particular those that make use of the
qcmetrics infrastructure.

6 Conclusions

Rand Bioconductor are well suited for the analysis of high throughput biology data. They provide first
class statistical routines, excellent graph capabilities and an interface of choice to import and manipulate
various omics data, as demonstrated by the wealth of packages6 that provide functionalities for QC.

The qcmetrics package is different than existing Rpackages and QC systems in general. It proposes a
unique domain-independent framework to design QC pipelines and is thus suited for any use case. The
examples presented in this document illustrated the application of qcmetrics on data containing single
or multiple samples or experimental runs from different technologies. It is also possible to automate the
generation of QC metrics for a set of repeated (and growing) analyses of standard samples to establish
lab memory types of QC reports, that track a set of metrics for controlled standard samples over time.
It can be applied to raw data or processed data and tailored to suite precise needs. The popularisation
of integrative approaches that combine multiple types of data in novel ways stresses out the need for
flexible QC development.

qcmetrics is a versatile software that allows rapid and easy QC pipeline prototyping and development
and supports straightforward migration to production level systems through its well defined packaging
mechanism.

5https://github.com/lgatto/qcmetrics
6http://bioconductor.org/packages/release/BiocViews.html# QualityControl

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
https://github.com/lgatto/qcmetrics
http://bioconductor.org/packages/release/BiocViews.html#___QualityControl

qcmetrics 26

Acknowledgements

Many thanks to Arnoud Groen for providing the 15N data and Andrzej Oles for helpful comments and
suggestions about the package and this document.

Session information

All software and respective versions used to produce this document are listed below.

• R version 3.2.2 Patched (2015-08-16 r69094), x86_64-w64-mingw32
• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils
• Other packages: AnnotationDbi 1.32.0, Biobase 2.30.0, BiocGenerics 0.16.0, BiocParallel 1.4.0,

IRanges 2.4.0, MAQCsubsetAFX 1.7.0, MSnbase 1.18.0, ProtGenerics 1.2.0, Rcpp 0.12.1,
RforProteomics 1.7.2, S4Vectors 0.8.0, affy 1.48.0, gcrma 2.42.0, genefilter 1.52.0,
ggplot2 1.0.1, knitr 1.11, mzR 2.4.0, qcmetrics 1.8.0, simpleaffy 2.46.0, xtable 1.7-4,
yaqcaffy 1.30.0
• Loaded via a namespace (and not attached): BiocInstaller 1.20.0, BiocStyle 1.8.0,

Biostrings 2.38.0, Category 2.36.0, DBI 0.3.1, GSEABase 1.32.0, MALDIquant 1.13,
MASS 7.3-44, Matrix 1.2-2, Nozzle.R1 1.1-1, R.methodsS3 1.7.0, R.oo 1.19.0, R.utils 2.1.0,
R6 2.1.1, RBGL 1.46.0, RColorBrewer 1.1-2, RCurl 1.95-4.7, RJSONIO 1.3-0, RSQLite 1.0.0,
RUnit 0.4.29, XML 3.98-1.3, XVector 0.10.0, affyio 1.40.0, annotate 1.48.0, biocViews 1.38.0,
bitops 1.0-6, codetools 0.2-14, colorspace 1.2-6, digest 0.6.8, doParallel 1.0.8, evaluate 0.8,
foreach 1.4.3, formatR 1.2.1, futile.logger 1.4.1, futile.options 1.0.0, graph 1.48.0, grid 3.2.2,
gridSVG 1.4-3, gtable 0.1.2, highr 0.5.1, htmltools 0.2.6, httpuv 1.3.3, impute 1.44.0,
interactiveDisplay 1.8.0, interactiveDisplayBase 1.8.0, iterators 1.0.8, labeling 0.3,
lambda.r 1.1.7, lattice 0.20-33, limma 3.26.0, magrittr 1.5, mime 0.4, munsell 0.4.2,
mzID 1.8.0, pander 0.5.2, pcaMethods 1.60.0, plyr 1.8.3, preprocessCore 1.32.0, proto 0.3-10,
reshape2 1.4.1, rpx 1.6.0, scales 0.3.0, shiny 0.12.2, splines 3.2.2, stringi 0.5-5, stringr 1.0.0,
survival 2.38-3, tools 3.2.2, vsn 3.38.0, zlibbioc 1.16.0

References

[1] L Gautier, L Cope, B M Bolstad, and R A Irizarry. affy – analysis of affymetrix genechip data
at the probe level. Bioinformatics, 20(3):307–315, 2004. doi:http://dx.doi.org/10.1093/

bioinformatics/btg405.

[2] L Gatto. yaqcaffy: Affymetrix expression data quality control and reproducibility analysis. R
package version 1.21.0.

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://dx.doi.org/http://dx.doi.org/10.1093/bioinformatics/btg405
http://dx.doi.org/http://dx.doi.org/10.1093/bioinformatics/btg405

qcmetrics 27

[3] P G A Pedrioli et al. A common open representation of mass spectrometry data and its application
to proteomics research. Nat. Biotechnol., 22(11):1459–66, 2004. doi:10.1038/nbt1031.

[4] L Gatto and K S Lilley. MSnbase – an R/Bioconductor package for isobaric tagged mass spec-
trometry data visualization, processing and quantitation. Bioinformatics, 28(2):288–9, Jan 2012.
doi:10.1093/bioinformatics/btr645.

[5] K M Foster, S Degroeve, L Gatto, M Visser, R Wang, K Griss, R Apweiler, and L Martens.
A posteriori quality control for the curation and reuse of public proteomics data. Proteomics,
11(11):2182–94, 2011. doi:10.1002/pmic.201000602.

[6] J Krijgsveld, R F Ketting, T Mahmoudi, J Johansen, M Artal-Sanz, C P Verrijzer, R H Plasterk,
and A J Heck. Metabolic labeling of c. elegans and d. melanogaster for quantitative proteomics.
Nat Biotechnol, 21(8):927–31, Aug 2003. doi:10.1038/nbt848.

[7] A Groen, L Thomas, K Lilley, and C Marondedze. Identification and quantitation of signal
molecule-dependent protein phosphorylation. Methods Mol Biol, 1016:121–37, 2013. doi:

10.1007/978-1-62703-441-8_9.

[8] Y Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC, 2013. ISBN 978-
1482203530. URL: http://yihui.name/knitr/.

[9] JJ Allaire, J Horner, V Marti, and N Porte. markdown: Markdown rendering for R, 2013. R
package version 0.6.3. URL: http://CRAN.R-project.org/package=markdown.

[10] N Gehlenborg. Nozzle.R1: Nozzle Reports, 2013. R package version 1.1-1. URL: http://CRAN.
R-project.org/package=Nozzle.R1.

http://bioconductor.org/packages/release/bioc/html/qcmetrics.html
http://dx.doi.org/10.1038/nbt1031
http://dx.doi.org/10.1093/bioinformatics/btr645
http://dx.doi.org/10.1002/pmic.201000602
http://dx.doi.org/10.1038/nbt848
http://dx.doi.org/10.1007/978-1-62703-441-8_9
http://dx.doi.org/10.1007/978-1-62703-441-8_9
http://yihui.name/knitr/
http://CRAN.R-project.org/package=markdown
http://CRAN.R-project.org/package=Nozzle.R1
http://CRAN.R-project.org/package=Nozzle.R1

	1 Introduction
	2 The QC classes
	2.1 The QcMetric class
	2.2 The QcMetrics class

	3 Creating QC pipelines
	3.1 Microarray degradation
	3.2 A wrapper function
	3.3 Proteomics raw data
	3.4 Processed 15N labelling data

	4 Report generation
	4.1 Custom reports
	4.2 New report types

	5 QC packages
	5.1 A simple RNA degradation package
	5.2 A QC pipeline repository

	6 Conclusions

