
Analysis of High Throughput Flow Cytometry Data
using plateCore

Errol Strain, Florian Hahne, Perry Haaland

October 13, 2015

Contents

1 Overview 1

2 Introduction 2
2.1 Background . 2
2.2 Bioconductor Flow Tools . 2

3 Installation and Getting Started 3

4 Creating a flowPlate 4

5 Compensation and Background Correction 7

6 Gating 9

7 Displaying Data 12

8 Extracting Results 14

9 Quality Assessment 16

10 Example: PBMC Large Panel Study 19

1 Overview

plateCore is a Bioconductor packaged created to make processing and analysis of large,
complex flow datasets in R easier. High throughput flow studies are often run in a 96
or 384-well plate format, with a number of different samples, controls, and antibodies-
dye conjugates present on the plate. Analyzing the output from the cytometer requires

1

keeping track of the contents of each well, matching sample wells with control wells,
gating each well/channel separately, making the appropriate plots, and summarizing
the results. plateCore extends the flowCore and flowViz packages to work on flow-

Plate objects that represent these large flow datasets. For those familiar with flowCore
and flowViz , the gating (filtering), transformation, and other data manipulations for
flowPlates are very similar to flowSets.

In this document we show how setup a plateCore analysis and provide examples for
a publicly available dataset. The peripheral blood mononucleocyte (PBMC) dataset is
a collection of five 96-well plates that have been stained with 189 different antibody-
dye conjugates. The goal is to identify cells that are positively stained relative to some
corresponding negative control.

2 Introduction

2.1 Background

plateCore was created to address the need for robust methods to analyze data from BD
FACS�CAP experiments. The current version of FACS�CAP has 200+ antibody-dye
conjugates on a single 96-well plate, where the antibodies are specific for different human
cell surface markers or proteins. The output from an experiment is a per cell measure-
ment of protein/marker expression for each antibody. FACS�CAP is designed to be a
tool for screening a large number of surface markers on different types of human tissue
or blood samples. Analyzing the data requires objective, high throughput approaches
to gating and summarizing large amounts of flow data.

In addition to BD FACS�CAP, plateCore also works for any other type of plate-
based flow data, or any collection of samples that can be organized into a flowPlate

object. flowPlates are simply a convenient way to structure the data and manage the
annotation for a set of related flow samples. Once the data is in plateCore, it’s also
easy to summarize results across multiple experiments and to integrate flow results with
other types of data using Bioconductor and access statistical methods in R.

2.2 Bioconductor Flow Tools

plateCore is built on top of flowCore and flowViz , and the functionality implemented
for flowPlates is a subset of what is available for flowSets. Getting your data into a
flowSet is the best way to start exploratory analysis, and also gives you access to other
flow packages such as flowQ , flowStats , and flowClust . Once the layout of the experiment
has been standardized, loading the data into plateCore allows users to automate portions
of the analysis, and makes summarizing the data and extracting the results easier.

2

http://www.bd.com/technologies/discovery_platform/BD_FACS_CAP.asp
http://www.bd.com/technologies/discovery_platform/BD_FACS_CAP.asp

3 Installation and Getting Started

Install the plateCore package and load the sample data containing a plate dataset, com-
pensation files, and a table decsribing the layout of the experiment.

> library(plateCore)

> data(plateCore)

> ls()

[1] "compensationSet" "pbmcPlate" "wellAnnotation"

The pbmcPlate is actually one of the 5 plates that make up the Peripheral Blood
Mononucleocyte Cell (PMBC) dataset in the Section 10. This particular plate has 96
wells and is stained in the FL1.H (FITC), FL2.H (PE), FL3.H (PerCP.Cy5.5), and FL4.H
(APC) channels. flowCore was used to read in the raw FCS files, and the pbmcPlate

is a flowSet resulting from read.flowset() operation. flowSets are modeled on the
microarray data structures used in Bioconductor. The pbmcPlate is comprised of an
exrs expression matrix, along with the associated phenoData.

> pbmcPlate

A flowSet with 96 experiments.

column names:

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H Time

The wellAnnotation data.frame describes the layout of the plate and the content
of each well. Stained wells have a row for each of the channels of interest, while un-
stained wells only have a single row. The information in well annotation is similar to the
pData matrix for phenoData(AffyBatch). For pData all information about a sample is
contained on a single row, which makes it difficult to handle a multiplexed flow dataset
since each channel essentially requires multiple columns to describe the contents of a
well. The wellAnnotation format is easier to create and maintain, and plateCore han-
dles organizing the relevant information into a pData object and incorporating it into a
flowSet.

> head(wellAnnotation)

Well.Id Sample.Type Ab.Name Channel Negative.Control

1 A01 Isotype Isotype FL1-H A01

2 A01 Isotype Isotype FL2-H A01

3 A01 Isotype Isotype FL4-H A01

4 A02 Isotype Isotype FL1-H A02

5 A02 Isotype Isotype FL2-H A02

6 A02 Isotype Isotype FL4-H A02

3

The first column of the table contains a unique well identifier, which must correspond
to one of of the samples from pbmcPlate. The FCS output from the cytometer usually
contains the well id in the filename, and these filenames are what flowCore uses to
assign sample names to a flowSet. These well identifiers must be unique to a well,
which usually means using 3 character codes like ”A01”, ”B09”, ”H10”, etc. plateCore
assumes that the first character provides the row name and that second two characters
give the column on the plate. The second column in the annotation table gives the
sample type, currently either ”Unstained”, ”Test”,”Negative.Control”, or ”Isotype”. Each
well can only be a single sample type. The Ab.Name column contains either the name
of the antibody, or some other descriptor that will be useful for making plots. Looking
at well B05 in the FL4.H, we see that it is stained with an antibody named CDbd14.

> wellAnnotation[50,]

Well.Id Sample.Type Ab.Name Channel Negative.Control

50 B05 Test Cdbd14 FL4-H A03

The antibody names in this PBMC dataset were masked prior to public release, so
these names will not correspond to the standard CD names. The Channel column tells
which channel was used to detect fluoresence for the antibody-dye conjugate. Nega-
tive.Control information indicates which well is the negative control (e.g. isotype) for
test samples. The current version of plateCore only supports a single negative control
well for each test well, but multiple test wells can use the same negative control. Each
negative control well should be assigned as it’s own negative control for reasons that will
be explained in following sections.

Additional columns can be included in wellAnnotation and will be incorporated in
later results, but the 5 columns described here are the minimum for a flowPlate.

4 Creating a flowPlate

Making a flowPlate requires a flowset, a well annotation table, and a name for the
plate that is unique within the set of flow data under analysis. Later we may want
to combine information from multiple plates, so having a unique plate name identifier
(e.g. barcode) makes it easier to track the samples. Using the sample dataset from the
plateCore, a flowPlate can be built.

> pbmcFP <- flowPlate(pbmcPlate,wellAnnotation,plateName="PBMC.001")

Looking at the first pData entry from the pbmcPlate and from pbmcFP, we can see
how the wellAnnotation was incorporated into pData.

> pData(phenoData(pbmcPlate))[1,]

[1] "000001_0877408774.A01"

4

> pData(phenoData(pbmcFP))[1,]

name Well.Id plateName FL1.H

0877408774.A01 000001_0877408774.A01 A01 PBMC.001 Isotype

Sample.Type.FL1.H Negative.Control.FL1.H FL2.H

0877408774.A01 Isotype A01 Isotype

Sample.Type.FL2.H Negative.Control.FL2.H FL4.H

0877408774.A01 Isotype A01 Isotype

Sample.Type.FL4.H Negative.Control.FL4.H FL3.H Sample.Type.FL3.H

0877408774.A01 Isotype A01 <NA> <NA>

Negative.Control.FL3.H Sample.Type Row.Id Column.Id

0877408774.A01 <NA> <NA> A 01

The following examples use the lymphocyte population from pbmcFP, so we select
the cells of interest using a rectangleGate and norm2Filter. Details on how to use
Subset() can be found in the Gating section and in flowCore. The cells selected by this
gate are shown in Figure 1.

> rectGate <- rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))

> normGate <- norm2Filter("SSC-H","FSC-H",scale.factor=2.5)

> pbmcFP.lymph <- Subset(pbmcFP, rectGate & normGate)

5

FSC−H

S
S

C
−

H 0

200

400

600

800

1000

H09

200 400 600 800 1000

H10

200 400 600 800 1000

H11

0

200

400

600

800

1000

H12

Figure 1: Forward (FSC) and side-scatter (SSC) dotplots for the first four wells of the
PMBC plate. The lymphocyte population is shown in blue while monocytes are located
in the upper right corner. Lymphocytes were selected using the rectangleGate and
norm2Filter gates from flowCore.

6

5 Compensation and Background Correction

The compensation() function from flowCore is used to create a compensation matrix
for the sample data. Channel names in the compensation flowSet must match the
dataset under analysis, otherwise the matrix will not work correctly. Details about how
compensation() works can be found in flowCore. We can create a compensation matrix
using the sample data in plateCore and the spillover() from flowCore.

> comp.mat <- spillover(x=compensationSet,unstain=sampleNames(compensationSet)[5],

+ patt=".*H",fsc="FSC-H",ssc="SSC-H",method="median")

This comp.mat matrix can then be applied to a flowPate to correct for the effects
of spillover. The difference between compensating in flowCore and compensating in
plateCore is that plateCore only compensates for the dyes listed in wellAnnotation,
whereas flowCore compensates each sample the same way. Since plateCore does this
custom compensation, it is important to list each dye or fluorophore in the wellAnno-
tation, even if the sample will not be used for further analysis. If all the samples are
stained the same way, then compensating with either approach should give the same
results. The pbmcFP can be compensated using the comp.mat from above.

> pbmcFPcomp <- compensate(pbmcFP.lymph,comp.mat)

In this particular case the pbmcPlate has already compensated on the cytometer, so
no further compensation is necessary.

The process of analyzing and gating (filtering) the large amount of data in a flow-

Plate can be simplified by first correcting for the effects of cell size on background
fluorescence. This step is not necessary in this PBMC lymphocyte example, since the
level of autofluorescence is very low, but it can have large effects on other cell types that
have a wider range of FSC values, such as fibroblasts and stem cells. This correction
will later allows us to define a one-dimensional gate between positive and negative cells
in only the channel interest, instead of having a two dimensional gate that includes the
forward scatter (FSC) channel. The background correction uses the unstained wells and
fits a log-log linear model to FSC versus each fluorescence channel (Hahne et al. 2006
Genome Biology). The correction is then applied to all the wells on a the plate. The
fixAutoFl() function takes a flowPlate, and character variables indicating the FSC
channel and the fluorsence channels (chanCols).

> pbmcFPbgc <- fixAutoFl(pbmcFP.lymph,fsc="FSC-H",chanCols=rownames(comp.mat))

Figure 2 shows the results of the autofluorescence correction for PBMC lymphoctes
where the background fluorescence was artificially inflated.

7

FSC−H

F
L1

−
H

0.5

1.0

1.5

2.0

300 350 400 450 500 550 600

H11

300 350 400 450 500 550 600

H11 (corrected)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Figure 2: Levelplots showing the effects of cell size (FSC) on fluorescence for the un-
stained cells before (left) and after (right) the background correction. The fluorescence
signal intensity generally increases with increasing cell size (FSC). The effect of cell
size on background fluorescence for PBMC lymphocytes was exaggerated in this plot to
demonstrate fixAutoFl().

8

6 Gating

Gating on flowplates is mainly performed using Subset(). The first argument to this
function is a flowPlate and the second is a valid flowCore filter(s). For exploratory
analysis and setting up the initial gates, it is sometimes more convenient to work with
a flowSet, which can be extracted from a flowPlate using the plateSet() function.

> fs <- plateSet(pbmcFP)

In this PBMC example, we can use a rectangleGate to separate the lymphocytes
from the debris and monocytes. Looking at the plots in Figure 1, the lymphocytes look
like they are located from about 400 to 650 on the FSC scale, and 100 to 300 on the
SSC scale. We can use xyplot() from the flowViz package to display events inside the
gates.

> rectGate <- rectangleGate("FSC-H"=c(400,700),"SSC-H"=c(100,300))

> xyplot(`SSC-H` ~ `FSC-H` | as.factor(Well.Id), pbmcFP[1:2], displayFilter=TRUE,

+ smooth=FALSE, col=c("red","blue"),filter=rectGate)

Since we want this gate to be applicable to all the wells, it may help to enlarge the
rectangleGate and then use a data-driven gate like norm2Filter to pick out lympho-
cytes. The lymphocyte population may drift over the course of analyzing the plate.
norm2Filter will fit a bivariate normal to the FSC and SSC channels to identify an
elliptical region of high density.

> rectGate <- rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))

> normGate <- norm2Filter("SSC-H","FSC-H",scale.factor=1.5)

> xyplot(`SSC-H` ~ `FSC-H` | as.factor(Well.Id), pbmcFP[1:4], displayFilter=TRUE, smooth=FALSE, col=c("red","blue"),filter=normGate & rectGate)

The results of applying the rectangleGate and norm2filt are shown in Figure 1.
Once the population of interest has been identified, Subset() the flowPlate to

select those cells. These same gates were used to select lymphocytes when we were
initially creating the flowSet. If your sample is comprised of multiple cell populations,
as in this PBMC example, then it is necessary to Subset() before the compensation
and background correction steps. The compensationSet should be processed with the
rectangleGate and norm2Filter gates prior to constructing the compensation matrix.

> rectGate <- rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400))

> normGate <- norm2Filter("SSC-H","FSC-H",scale.factor=1.5)

> pbmcFP.lymph <- Subset(pbmcFP, rectGate & normGate)

Now we’re ready to set the isotype (Negative.Control) gates that will be used to
idenfity positively and negatively stained cells. We will estimate the gates using the
flowPlate that has been subsetted for lymphocytes, compensate, and then background
corrected. The default settings for the setControlGates() assumes the data is on a
linear scale.

9

> pbmcFPbgc <- setControlGates(pbmcFPbgc,gateType="Negative.Control",numMads=5)

> pbmcFPbgc <- applyControlGates(pbmcFPbgc)

The numMads parameter indicates how far above the isotype population the positive-
negative threshold is set. The threshold is set by taking the median fluorescence intensity
(MFI) and adding 5 median absolute deviations (MADs). The default value of 5 works
well for a number of cell types but may need to be adjusted for specific applications.
Future versions of plateCore will use more sophisticated methods of estimating kernel
density to fit distrubutions to the data and have a more robust esimtate of the positive-
negative threshold. Once the control gates have be created, they are applied to the test
wells using the applyControlGates().

We see how reasonable the gates look using xyplot(). Examples of the test wells
associated with the negative control well A03 are shown in Figure 3. To check all the
gates in the FL1.H channel we would use the following code.

> xyplot(`FL1-H` ~ `FSC-H` | as.factor(Well.Id),

+ transform("FL1-H"=log10) %on% pbmcFPbgc, displayFilter=TRUE,

+ smooth=FALSE,col=c("red","blue"),filter="Negative.Control")

10

FSC−H

F
L1

−
H

0

1

2

3

A03

300350400450500550600

B03 B05

B06 B08

0

1

2

3

B09

0

1

2

3

300350400450500550600

B10

Figure 3: Dotplots showing the test wells associated with the negative control well A03.
The gate was created automatically using setControlGates() to estimate the threshold
between positive and negative cells based on the staining in A03. rectangleGates are
drawn around the positive cells in each plot. Positive cells are shown in blue and negative
cells in red.

11

7 Displaying Data

Tools for visualizing flowPlates are based on the collection of functions in flowViz ,
which is itself based on lattice. Currently on xyplot() works directly on a flowPlate

object, but the other functions like levelplot() (shown in Figure 2) can be used by
accessing the flowSet inside a flowPlate via plateSet(). xyplot() is the primary
tool for making dotplots, showing gates, and creating overlay plots.

If the negative control gates have been created using setControlGates(), then they
can be shown using xyplot(). The code used to generate Figure 3 is shown below.

> wells <- unique(subset(pbmcFPbgc@wellAnnotation,Negative.Control=="A03",

+ select="name")[,1])

> xyplot(`FL1-H` ~ `FSC-H` | as.factor(Well.Id),

+ transform("FL1-H"=log10) %on% pbmcFPbgc[wells],

+ displayFilter=TRUE,smooth=FALSE, col=c("red","blue"),

+ filter="Negative.Control")

The wells of interest are identified by looking for all the wells that have A03 are their
negative control. When used for plotting flowSets, the filter argument takes a flowCore
filter. For flowPlates the filter can also accept a character string indicating what
type of gate to display. plateCore currently supports ”Negative.Control” gates, and more
options will be available in the future.

In the plots shown in Figure 3, a number of the test samples are heterogenous in
expression for the markers in the FL1.H channel. For these samples it is clear that the
gate created using setControlGates() looks reasonable. In other situations where the
difference between positive and negative cells is not as distinct, making overlay dotplots
showing both the test and negative control samples on the same graph can help to
determine the appropriate gate. An example of the code use to generate the overlay
plots in Figure 4is shown below.

> wells <- unique(subset(pbmcFPbgc@wellAnnotation,Negative.Control=="A06",

+ select="name")[,1])

> xyplot(`FL1-H` ~ `FSC-H` | as.factor(Well.Id),

+ transform("FL1-H"=log10) %on% pbmcFPbgc[wells],

+ displayFilter=TRUE,smooth=FALSE, col=c("blue","green"),

+ filter="Negative.Control",filterResults="Negative.Control")

In order for the gates to display correctly, any transformations must be applied directly
on the flowPlate. This ensures that the Negative.Control gates, along with the fluo-
rescence signal data, are on the same scale. If the transformation is in the formula, as
in the following example, the the gates will not show up.

> xyplot(log10(`FL1-H`) ~ `FSC-H` | as.factor(Well.Id), pbmcFPbgc[wells],

+ displayFilter=TRUE,smooth=FALSE, col=c("blue","green"),

+ filter="Negative.Control",filterResults="Negative.Control")

12

FSC−H

F
L1

−
H 0

1

2

3

A06

300350400450500550600

C05 C12

300350400450500550600

D08

0

1

2

3

E03

Figure 4: Overlay dotplots for the test wells associated with the negative control well
A06. The cells from A06 (green) are shown in each dotplot along with the results from the
test cells (blue). In cases where the test well population is close to the positive-negative
threshold, such as well D08, these plots can help determine if the Negative.Control gates
should be adjusted.

13

8 Extracting Results

Once the Negative.Control gates have been created and applied, we can then use the
summaryStats() to calculate different metrics of interest from the flowPlate. Running
summaryStats() on the pbmcFPbgc,

> pbmcFPbgc <- summaryStats(pbmcFPbgc)

will result in additional columns created in the associated wellAnnotation data.frame.

> colnames(pbmcFPbgc@wellAnnotation)

[1] "Well.Id" "Sample.Type" "Ab.Name"

[4] "Channel" "Negative.Control" "plateName"

[7] "name" "Negative.Control.Gate" "Percent.Positive"

[10] "Total.Count" "Positive.Count" "MFI"

[13] "MFI.Ratio" "Predict.PP" "Gate.Score"

These new columns include percentage of cells above the Negative.Control gate (Per-
cent.Positive), the number of cells in the raw data (Total.Count), the number of positive
cells (Positive Count), the median fluorescence intensity (MFI), and the ratio of the test
well MFI to the MFI of the negative control well (MFI.Ratio). The Predict.PP and
Gate.Score columns are explained in Section 9. In this PMBC example a number of the
samples have multiple cell populations, so the MFI and MFI.Ratio may not be helpful
since they are based on all the cells in a well, and not just the positive cells.

Now that we have this information we can display it using xyplot(). We can add the
marker names and percent positive results to our dotplots (Figure 5). The getGroups()
retrieves a list of wells associated with each negative control for a particular channel. In
this case, the 3rd element in the controlGroups list corresponds to negative control well
A03.

> controlGroups <- getGroups(pbmcFPbgc,chan="FL1-H")

> print(xyplot(`FL1-H` ~ `FSC-H` | as.factor(Well.Id),

+ transform("FL1-H"=log10) %on% pbmcFPbgc[controlGroups[[3]]],

+ displayFilter=TRUE,

+ smooth=FALSE,

+ col=c("red","blue"),

+ filter="Negative.Control",

+ flowStrip=c("Well.Id","Ab.Name","Percent.Positive")))

The wellAnnotation data.frame can be exported as a comma delimited for a record
of the analysis.

> write.csv(pbmcFPbgc@wellAnnotation,file="PMBC.001.csv")

14

FSC−H

F
L1

−
H

0

1

2

3

A03 : Isotype : 0%

300350400450500550600

B03 : Cdbd9 : 26% B05 : Cdbd15 : 4%

B06 : Cdbd17 : 75% B08 : Cdbd22 : 51%

0

1

2

3

B09 : Cdbd27 : 23%

0

1

2

3

300350400450500550600

B10 : Cdbd29 : 15%

Figure 5: Dotplots and Negative.Control gates for wells associated with control well A03.
Negative cells are shown in read and positive cells in blue. The strip above each plot
now contains the Antibody-Marker name, along with the percentage of positive cells in
the well.

15

9 Quality Assessment

Quality assessment using Bioconductor flow tools is covered in detail in the flowQ pub-
lication (Le Meur et al. 2007, Cytometry Part A). This example briefly covers how to
check the number of lymphocyte events in each well, scan for fluidic events, and check
the consistency of the isotype gating.

The number of gated lymphocytes in each well of the pbmcFPbgc dataset can be
found in the Total.Count column of the wellAnnotation.

> summary(wellAnnotation(pbmcFPbgc)$Total.Count)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

858.0 885.0 890.0 888.9 894.0 903.0 3

Since each well has at least 858 gated lymphocyte events there are no apparent problems
with the sample acquisition on the plate.

Fluidic events (bubbles, etc.) can cause the cytometer readings to shift. These type
of events can often be identified by plotting FSC vs Time, or through ecdf plots (as
described in Le Meur et al. 2007, Cytometry Part A). An example of an ecdf plot for
FSC looking for a row effect, since the samples are acquired by row, is shown in Figure
6. The code used to produce the figure is shown below.

> print(flowViz::ecdfplot(~`FSC-H` | as.factor(Column.Id),

+ data=plateSet(pbmcFPbgc), groups=Row.Id, auto.key=TRUE))

One approach to evaluating the consistency of isotype-based gating is to plot the MFI
ratio versus the percentage of positive cells. The MFI ratio is the ratio of the median
fluorescence intensity of the test sample to its corresponding isotype control. If two
sample have approximately the same percentage of positive cells, then their MFI ratios
should be similar. The summaryStats() function in plateCore performs a robust logistic
regression on the MFI ratio to the percentage of positive cells, and results from the fit
are stored in the Predict.PP and Gate.Score columns of wellAnnotation. Predict.PP
gives the estimated percentage of positive cells based on the MFI ratio, and Gate.Score
indicates how many standard residuals a sample data point is from the best fit line.
Figure 7 shows the MFI ratio versus percent positive plot for the PBMC lymphocyte
example. The code used to generate the plot is shown below. The glmrob() function
from the robustbase package is used to perform the regression.

> mfiPlot(fp,thresh=2,xlab="MFI Ratio (Test MFI / Isotype MFI)",xlim=c(0.1,250),

+ ylab="Percentage of cells above the isotype gate",pch=23)

16

FSC−H

E
m

pi
ric

al
 C

D
F

0.0
0.2
0.4
0.6
0.8
1.0

01

300 400 500

02 03

300 400 500

04

05 06 07

0.0
0.2
0.4
0.6
0.8
1.0

08

0.0
0.2
0.4
0.6
0.8
1.0

300 400 500

09 10

300 400 500

11 12

A
B
C
D
E
F
G
H

Figure 6: Empirical Cumulative Distribution Function (ecdf) plot for FSC from the
pmbc lymphocyte example plate.

17

0.1 0.5 1.0 5.0 50.0

0
20

40
60

80
10

0

MFI Ratio (Test MFI / Isotype MFI)

P
er

ce
nt

ag
e

of
 c

el
ls

 a
bo

ve
 th

e
is

ot
yp

e
ga

te

Figure 7: Plot of the MFI ratio versus the percentage of positive cells for the example
PBMC lymphocytes. The robust best fit line is shown in red, and samples that are more
than 2 standard residuals away from the line are shown in red.

18

10 Example: PBMC Large Panel Study

The PBMC dataset used in this example is available for download from ficcs.org as the
plateData.tar.gz file. The data consists of 5 different PBMC samples that were analyzed
with 189 different antibodies on 96-well plates. Each plate has a set of unstained,
isotype, and control wells. Antibodies and isotype controls are arrayed 3 per well, but
the data was compensated on the cytometer so there is no need to correct for spillover.
This example assumes that the plates have been unpacked and stored in the folder
”data/pbmc”. Each of the 5 subfolders in the PBMC directory contains 96 fcs files. The
text delimited file describing the layout of the plate is named pmbcPlateLayout.csv.

Processing all 5 plates is memory intensive, so each plate was loaded separately and
the resulting flowPlate was stored in an R data image in the pbmcRData folder. The
code used to process plate 8774 is shown below. Settings for the remaining 4 plates were
identical to plate 8774.

> plateName <- "lymph08774"

> plateDescription <- read.delim("pmbcPlateLayout.csv",

+ as.is=TRUE,header=TRUE,stringsAsFactors=FALSE)

> platePBMCraw <- flowPlate(data=read.flowSet(path="data/pbmc/08774"),

+ plateDescription,plateName=plateName)

> platePBMC <- Subset(platePBMCraw,

+ rectangleGate("FSC-H"=c(300,700),"SSC-H"=c(50,400)) &

+ norm2Filter("SSC-H","FSC-H",scale.factor=1.5))

> platePBMC <- setControlGates(platePBMC,gateType="Negative.Control")

> platePBMC <- applyControlGates(platePBMC)

> platePBMC <- summaryStats(platePBMC)

> save.image(file=paste("pbmcRData/",plateName,".Rdata",sep=""))

Once the 5 plates have been processed, the flowPlates can then be combined using
fpbind(). In this case the plates were saved using the same name, platePBMC. The
flowPlates were read into a list, and then combined into a large ”virtPlate”.

> fileNames <- list.files("pbmcRData",full.names=TRUE)

> plates <- lapply(fileNames,function(x){

+ load(x)

+ platePBMC

+ })

> virtPlate <- fpbind(plates[[1]],plates[[2]],plates[[3]],plates[[4]],plates[[5]])

Once the plates have been combined, xyplots and densityplots can then be condi-
tioned on ”plateName” to create graphics like Figure 8. The R code used to generate
Figure 8 is shown below.

> print(densityplot(~ `FL2-H` | as.factor(plateName),

+ transform("FL2-H"=log10) %on% virtPlate[c("C02","C03","A05")],

19

http://www.ficcs.org/data/plateData.tar.gz

+ layout=c(3,2),xlim=c(-0.2,2.5),

+ filterResult="Negative.Control",lty=c(1,2,3,4),

+ col=c('blue','black','red')))

20

FL2−H

D
en

si
ty 0.0

0.5

1.0

1.5

2.0
lymph08774

0.0 0.5 1.0 1.5 2.0

lymph08775 lymph09206

0.0 0.5 1.0 1.5 2.0

lymph09207

0.0

0.5

1.0

1.5

2.0
lymph09208

Figure 8: Density plot for two test antibodies (red,black) and their associated isotype
control (blue). The isotype gate is indicated with a vertical black bar.

21

	Overview
	Introduction
	Background
	Bioconductor Flow Tools

	Installation and Getting Started
	Creating a flowPlate
	Compensation and Background Correction
	Gating
	Displaying Data
	Extracting Results
	Quality Assessment
	Example: PBMC Large Panel Study

