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1 Introduction

Genome-wide association studies (GWAS) have lead to the discovery of many disease-associated single
nucleotide polymorphisms (SNPs). Researchers are often interested in extending these studies to de-
termine the genetic association of a given pathway (i.e., a gene set) with a certain phenotype. Gene
set methods allow users to combine SNP-level association p-values across multiple biologically related
genes.

The cpvSNP package provides code for two gene set analysis methods [1-2] and accurately corrects for
the correlation structure among observed SNPs. Both of the implemented methods translate a set of
gene ids to their corresponding SNPs, and combine the p-values for those SNPs. Calculated statistics,
degrees of freedom, and corresponding p-values are stored for each gene set.

This vignette describes a typical analysis workflow and includes some details regarding the statistical
theory behind cpvSNP. For more technical details, please see references [1] and [2].

2 Example workflow for cpvSNP

2.1 Preparing a dataset for analysis

For our example, we will use a set of simulated data, the geneSetAnalysis dataset from the cpvSNP
package. We begin by loading relevant libraries, sub-setting the data, and running createArrayData
on this data set.

> library(cpvSNP)
> data(geneSetAnalysis)
> names (geneSetAnalysis)

| [1] "arrayData" "geneSets" "ldMat" "indepSNPs"

The geneSetAnalysis list holds four elements, each of which we will need for this vignette. The
first object, arrayData, is a data.frame containing the p-values, SNP ids, genomic position, and
chromosome of all the probes in our hypothetical GWAS. Our first step is to use the cpvSNP function
createArrayData to convert this data.frame to a GRanges object.

> arrayDataGR <- createArrayData(geneSetAnalysis[["arrayData"]],
+ positionName="Position")
> class(arrayDataGR)

[1] "GRanges"
attr(, "package")
[1] "GenomicRanges"

The geneSetAnalysis list also contains a GeneSetCollection with two sets of interest. We can find
the Entrez ids by accessing the genelIds slot of the GeneSetCollection.
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> geneSets <- geneSetAnalysis[["geneSets"]]
> geneSets

GeneSetCollection
names: setl, set2 (2 total)
unique identifiers: 100505495, 11128, ..., 80243 (250 total)

types in collection:
geneIdType: Nullldentifier (1 total)
collectionType: NullCollection (1 total)

> length(geneSets)

| 1] 2

> head(genelds(geneSets[[1]]))

| [1] "100505495" "11128" "2857" "2002" "84466" "100506696"
> details(geneSets[[1]1])

setName: setl

genelds: 100505495, 11128, ..., 6857 (total: 200)
geneldType: Null

collectionType: Null

setldentifier: rescomp216:19144:2014-08-28 13:23:17:1192854957
description: Randomly sampled gene set 1
organism:

pubMedIds:

urls:

contributor:

setVersion: 0.0.1

creationDate: Fri Aug 8 13:47:58 2014

> head(genelds(geneSets[[2]]))
| [1] "9447" "er4L" "647979" "7846" "556350" "285987"

Our next data formatting step is to convert the ids in our GeneSetCollection from Entrez gene ids
to their corresponding SNP ids. In this example, our SNP positions are coded in the hgl9 genome
build. Please be careful when converting gene ids to SNPs, as mappings change between genome build
updates. The geneToSNPList function requires gene transcripts stored as a GRanges object, along
with the GRanges object specific to our study. For this example, we will use the gene transcripts stored
in the database TxDb.Hsapiens.UCSC.hgl9.knownGene

> library(TxDb.Hsapiens.UCSC.hgl9.knownGene)

> txdb <- TxDb.Hsapiens.UCSC.hgl9.knownGene

> genesHgl9 <- genes(txdb)

> snpsGSC <- geneToSNPList(geneSets, arrayDataGR, genesHgl9)

Loading required package: BiocGenerics
Loading required package: parallel
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Attaching package: 'parallel!'
The following objects are masked from 'package:snow':

clusterApply, clusterApplyLB, clusterCall, clusterEvalQqQ,
clusterExport, clusterMap, clusterSplit, makeCluster, parApply,
parCapply, parLapply, parRapply, parSapply, splitIndices,
stopCluster

Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':

clusterApply, clusterApplyLB, clusterCall, clusterEvalQqQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:snow':

clusterApply, clusterApplyLB, clusterCall, clusterEvalQqQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,

parRapply, parSapply

The following objects are masked from 'package:stats':
IQR, mad, xtabs
The following objects are masked from 'package:base':

Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, as.vector, cbind, colnames, do.call, duplicated,
eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply,
lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unlist, unsplit

Loading required package: Biobase
Welcome to Bioconductor

Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
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Loading required package: annotate

Loading required package: AnnotationDbi

Loading required package: stats4

Loading required package: IRanges

Loading required package: S4Vectors

Loading required package: XML

Loading required package: graph

Attaching package: 'graph'

The following object is masked from 'package:XML':
addNode

Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'parallel'

The following objects are masked from 'package:snow':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQqQ,
clusterExport, clusterMap, clusterSplit, makeCluster, parApply,
parCapply, parLapply, parRapply, parSapply, splitIndices,
stopCluster

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQqQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplylLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:snow':

clusterApply, clusterApplyLB, clusterCall, clusterEvalqQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,

parRapply, parSapply

The following objects are masked from 'package:stats':

IQR, mad, xtabs
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The following objects are masked from 'package:base':

Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, as.vector, cbind, colnames, do.call, duplicated,
eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply,
lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unlist, unsplit

Loading required package: Biobase
Welcome to Bioconductor

Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.

Loading required package: annotate
Loading required package: AnnotationDbi
Loading required package: stats4
Loading required package: IRanges
Loading required package: S4Vectors
Loading required package: XML

Loading required package: graph

Attaching package: 'graph'
The following object is masked from 'package:XML':

addNode
> class(snpsGSC)

[1] "GeneSetCollection"
attr(,"package")
[1] "GSEABase"

Note that the geneToSNPList function has a quiet option defaulted to TRUE, which suppresses all
warnings that may arise when finding overlaps between the genes in our collection and our study SNPs.
The default is set to TRUE because there are often warnings that are usually not an issue. However,
please be aware that valid warnings may also be suppressed if the quiet option is set to TRUE.

We now have the two input files required to run GLOSSI [1] and VEGAS [2]: a GRanges object for the
SNPs in our GWAS, and a GeneSetCollection with SNP ids for each gene in each set.

> arrayDataGR

GRanges object with 1478 ranges and 6 metadata columns:
seqnames ranges strand | p SNP Position
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2.2 Running GLOSSI

<IRanges>
12686368]
12686476
12687753]
12691826]
126929071

223543792]
223544114]
223544169]
223544430]
223551121]
End
<numeric>
12686368
12686476
12687753
12691826
12692907

223543792
223544114
223544169
223544430
223551121

<Rle>
*

* ¥ ¥ *

* ¥ X X * -

geneldType: AnnotationIdentifier (1 total)

<Rle>

[1] chril [12686368,

[2] chril [12686476,

[3] chril [12687753,

[4] chril [12691826,

[5] chril [12692907,

[1474] chri [223543792,

[1475] chrl [223544114,

[1476] chril [223544169,

[1477] chri [223544430,

[1478] chrl [223551121,

chromosome Start

<factor> <numeric>

[1] chrl 12686368

[2] chrl 12686476

[3] chrl 12687753

[4] chrl 12691826

[5] chrl 12692907

[1474] chrl 223543792

[1475] chrl 223544114

[1476] chrl 223544169

[1477] chrl 223544430

[1478] chrl 223551121

> snpsGSC
GeneSetCollection

names: setl, set2 (2 total)

unique identifiers: rs3789052, rs3789051,
types in collection:

collectionType: NullCollection (1 total)

<numeric> <character>

.4385530
.9673862
.8034737
. 7689260
.6024674

O O O O O

.5994048
.2110342
.8460483
.2994696
.1452205

O O O O O

rs10779772
rs3010868
rs4568844
rs3010872
rs3000873

rs6681438
rs12024361
rs12042076
rs2036497
rsb96166

seqinfo: 27 sequences from an unspecified genome; no seqlengths

., rs3766392 (1478 total)

<integer>
12686368
12686476
12687753
12691826
12692907

223543792
223544114
223544169
223544430
223551121

An assumption of GLOSSI [1] is that our SNPs (and thus p-values) are independent. In order to run
glossi, we must subset our arrayDataGR p-values to those from independent SNPs.

In the geneSetAnalysis list, we have included a vector of independent SNPs from our GWAS experi-
ment. This list was created using a standard ‘LD-pruning’ method from the PLINK software [3].
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> indep <- geneSetAnalysis[["indepSNPs"]]
> head(indep)

Vi
1 1rs2649588
2 1rs3107157
3 1rs1456465
4 rs7528494
5 rs12046130
6 rs11590026

> dim(indep)
| 1] 302 1

We now subset arrayDataGR to contain only independent SNPs, and create a new vector of p-values
with names corresponding to these independent SNPs.

> pvals <- arrayDataGR$P[is.element (arrayDataGR$SNP, indep$Vi)]
> names(pvals) <- arrayDataGR$SNP[is.element(arrayDataGR$SNP, indep$Vi)]
> head(pvals)

rs2172285 rs2430130 rs1572750
0.7191158 0.3508501 0.8763177

We now have the proper input to call glossi. We can consider all gene sets in our GeneSetCollection,
or call glossi on a just some of the sets. Accessor functions for the resulting GLOSSIResultCollection
allow us to view the results.

> gRes <- glossi(pvals, snpsGSC)
> gRes

An object of class "GLOSSIResultCollection"
([11]

GLOSSI results for setl

p-value = 0.876
observed statistic
degrees of freedom

0.132
1

[[2]]

GLOSSI results for set2
p-value = 0.6

observed statistic = 1.38
degrees of freedom = 2

> gRes2 <- glossi(pvals, snpsGSC[[1]])
> gRes2

GLOSSI results for setl
p-value = 0.876
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0.132
1

observed statistic
degrees of freedom

> pValue(gRes)
$setl
[1] 0.8763177
$set?2
[1] 0.5997541
> degrees0fFreedom(gRes)
$setl
(1] 1
$set2
[1] 2
> statistic(gRes)
$setl
[1] 0.1320265

$set?2
[1] 1.377129

Using the ReportingTools package, we can publish these results to a HTML page for exploration. We
first adjust for multiple testing.

> pvals <- p.adjust( unlist( pValue(gRes) ), method= "BH" )

> library(ReportingTools)

> report <- HTMLReport (shortName = "cpvSNP_glossiResult",

+ title = "GLOSSI Results", reportDirectory = "./reports")
> publish(geneSets, report, annotation.db = "org.Hs.eg",

+ setStats = unlist(statistic (gRes)),

+ setPValues = pvals)

> finish(report)

2.3 Running VEGAS

Unlike GLOSSI, which requires SNPs and p-values to be independent, VEGAS [2] accounts for correlation
among SNPs and corresponding p-values. We thus need a matrix of correlation values for each SNP in
our GWAS. Most commonly, this correlation matrix holds linkage disequilibrium (LD) values. Many R
packages and online tools exist to calculate an LD matrix for observed raw data.

Here, we briefly show how to calculate an LD matrix for chromosome 1 using the publicly available
HapMap data, the R package snpStats, and the PLINK software package [3]. This requires down-
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loading PLINK file formatted data, extracting the probes on chromosome 1, and then calculating LD
among SNPs in the snpsGSC elements.

> download.file(

+ url="http://hapmap.ncbi.nlm.nih.gov/genotypes/hapmap3_r3/plink_format/hapmap3_r3_b:
+ destfile="hapmap3_r3_b36_fwd.consensus.qc.poly.ped.gz")

> download.file(

+ url="http://hapmap.ncbi.nlm.nih.gov/genotypes/hapmap3_r3/plink_format/hapmap3_r3_b:
+ destfile="hapmap3_r3_b36_fwd.consensus.qc.poly.map.gz")

> system("gunzip hapmap3_r3_b36_fwd.consensus.qc.poly.ped.gz")

> system("gunzip hapmap3_r3_b36_fwd.consensus.qc.poly.map.gz")

> system("plink --file hapmap3_r3_b36_fwd.consensus.qc.poly —--make-bed --chr 1")

> genos <- read.plink(bed, bim, fam)

> genos$genotypes

> head(genos$map)

> x <- genos[,is.element(genos$map$snp.name,c(genelds (snpsGSCL[2]]1)))]

> ldMat <- 1d(x,y=x,stats="R.squared")

We have performed these steps already, and can simply use the LD matrix included in our geneSetAnalysis
list, 1dMat to call vegas. Note that the vegas method calculates simulated statistics (see Methods
section below for more details).

1dMat <- geneSetAnalysis[["1dMat"]]

VRes <- vegas(snpsGSC[1], arrayDataGR, ldMat)
vRes

summary (unlist(simulatedStats(vRes)))
pValue(vRes)

degrees0OfFreedom(vRes)

statistic(vRes)

V V V V V V V

2.4 \Visualizing Results

There are two plotting functions available in cpvSNP to visualize the results from the GLOSSI and
VEGAS methods.

The plotPvals function plots the calculated p-values against the number of SNPs in each gene set,
for each set in the original GeneSetCollectionand GLOSSIResultCollection. In this vignette we
have only analyzed two gene sets, so this plot is not very informative. The plot is included simply to
demonstrate the plotting functions available in the cpvSNP package.

> plotPvals(gRes, main="GLOSSI P-values")

The assocPvalBySetPlot function plots the GWAS p-values for each SNP in the original association
study, as well as those for SNPs in a particular gene set. This visualization enables an easy comparison
of the p-values within a particular gene set to all p-values from our GWAS. Gene sets that are highly
associated with the phenotype of interest will have a different distribution than all SNPs in our study.
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Figure 1: The number of SNPs per gene set versus the p-value, for the GLOSSI methods.

> pvals <- arrayDataGR$P
> names(pvals) <- arrayDataGR$SNP
> assocPvalBySetPlot(pvals, snpsGSC[[2]])

3 Methods in brief

3.1 GLOSSI methods

The GLOSSI [1] method assumes that our p-values are independently distributed. Define J to be the
total number of independent SNPs for which we have association p-values, such that each locus j has
a corresponding p-value, p;, j € {1,...,J}. For this vignette, J = 302. Let K be the total number of

loci sets in which we are interested. For the example used in this vignette, K = 2.

We begin by defining an indicator variable g for each loci set k and for each locus 7, such that

1, if 5" locus is in k' set
gjk = .
! 0, otherwise



Combining SNP P-Values in Gene Sets: the cpvSNP Package 12

0 all assoc results
T —— Set of interest
o |

- —

=

[4)]

c

0]

()
0 |
o
o
. RS T =
o | b

—logqg p —Vvalue

Figure 2: Density plots of all p-values, overlaid in red with p-values from the second gene set.

Note the sum of g, is the size of loci-set k
J
N = Z Jik
j=1
Our statistic for each loci-set & is defined as

J
Skobs = _2 Z g.]klog(p])

J=1

We know from Fisher's transformation that if the p; Zj\‘/i Unif(0,1) then Sk, ~ X3,,. Thus, to calculate
the corresponding p-value for loci-set &k, we simply use the corresponding x? distribution for each set.
Note the degrees of freedom in the null distribution takes into account the size of the loci-set, ny.

3.2 VEGAS methods

The VEGAS [2] method does not require independent SNPs, but rather a matrix of correlation values
among the SNPs being considered. These correlation values can be correlation coefficients, a composite
LD measure, or similar. We denote the correlation matrix for a particular loci-set k as >, where each
row and column corresponds to a SNP in k. This matrix must be square, symmetric, and have values

of 1 on the diagonal.
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To calculate a p-value for loci-set k that takes into account the correlation structure, we begin by
simulating a vector z ~ N(0,1) with length n,. We take the Cholesky decomposition of X, and
multiply this by z to define a Multivariate Normal random variable 2’ ~ MV N(0,%;). To define a
statistic from this null distribution that now has the same correlation structure as our observed data,
we calculate

Nk

Sk =Y _[zichol(Ty))?

=1

We simulate the vector z a total of n;,s times. We calculate the observed p-value as

#(Sk > Skobs) + 1
(nsims + ]-) .
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R version 3.2.2 Patched (2015-08-16 r69094), x86_64-w64-mingw32

e Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,

LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

e Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

Other packages: AnnotationDbi 1.32.0, Biobase 2.30.0, BiocGenerics 0.16.0, GSEABase 1.32.0,
GenomelnfoDb 1.6.0, GenomicFeatures 1.22.0, GenomicRanges 1.22.0, IRanges 2.4.0,
S4Vectors 0.8.0, TxDb.Hsapiens.UCSC.hg19.knownGene 3.2.2, XML 3.98-1.3, XVector 0.10.0,
annotate 1.48.0, cpvSNP 1.2.0, graph 1.48.0

Loaded via a namespace (and not attached): BiocParallel 1.4.0, BiocStyle 1.8.0,

Biostrings 2.38.0, DBI 0.3.1, GenomicAlignments 1.6.0, MASS 7.3-44, RCurl 1.95-4.7,
RSQLite 1.0.0, Rcpp 0.12.1, Rsamtools 1.22.0, SummarizedExperiment 1.0.0, biomaRt 2.26.0,
bitops 1.0-6, colorspace 1.2-6, corpcor 1.6.8, digest 0.6.8, futile.logger 1.4.1, futile.options 1.0.0,
ggplot2 1.0.1, grid 3.2.2, gtable 0.1.2, labeling 0.3, lambda.r 1.1.7, magrittr 1.5, munsell 0.4.2,
plyr 1.8.3, proto 0.3-10, reshape2 1.4.1, rtracklayer 1.30.0, scales 0.3.0, snow 0.3-13,

stringi 0.5-5, stringr 1.0.0, tools 3.2.2, xtable 1.7-4, zlibbioc 1.16.0
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