
TarSeqQC : Targeted Sequencing Experiment Quality Control

Gabriela A Merino1, Cristóbal Fresno1, and Elmer A Fernández1

1CONICET-Universidad Católica de Córdoba, Argentina

March 11, 2016

gmerino@bdmg.com.ar

Abstract

Targeted Sequencing experiments are a Next Generation Sequencing application, designed to explore
a small group of specific genomic regions. The TarSeqQC package models this kind of experiments in
R and its main goal is to allow the quality control and fast exploration over the experiment results. To
do this, a new R class, called TargetExperiment , was implemented. This class is based on the Bed File,
that characterize the experiment, the alignment BAM File and the reference genome FASTA File. When
the constructor is called, coverage and read count information are computed for the targeted sequences.
After that, exploration and quality control could be carried out using graphical and numerical tools.
Density, bar, read profile and box plots were implemented to achieve this task. A circular histogram plot
was also implemented in order to summarize all experiment results. Coverage or median counts intervals
can be defined and explored to further assist quality control analysis. Thus, library and pool preparation
or sequencing errors could be easily detected. Finally, an .xlsx report containing quality control results
can be built.

1

Contents

1 Introduction 3

2 The TargetExperiment class 3

3 Input Data 5

3.1 Bed File . 5

3.2 BAM File . 6

3.3 FASTA File . 6

3.4 Additional input data . 7

4 Creating a TargetExperiment object 7

4.1 Constructor call . 7

4.2 Early exploration . 9

5 Deep exploration and Quality Control 10

5.1 Panel overview . 10

5.2 Controlling low counts features . 16

5.3 Read counts exploration . 17

6 Quality Control Report 21

7 Troubleshoot 21

2

1 Introduction

Next Generation Sequencing (NGS) technologies produce huge volume of sequence data at relative low cost.
Among the different NGS applications, Targeted Sequencing (TS) allows the exploration of specific genomic
regions, called features, of a small group of genes (Metzker, 2010). An ordinary application of TS is to detect
Single Nucleotide Polimorphisms (SNPs) involved in several pathologies. Nowadays, TS cancer panels are
emerging as a new screening methodology to explore specific regions of a small number of genes known to
be related to cancer.

In TS, specific regions of a DNA sample are copied and amplified by PCR. If a target region is too large,
several primers can be used to read it. In addition, if the panel has a large number of interest genomic regions,
different PCR pools could be required to achieve a good coverage. All fragments are sequenced in a NGS
machine, generating millions of short sequence reads, but its throughput obviously is less than if the whole
genome was sequenced. The reads are then aligned against a reference genome and, after that, downstream
analysis could be performed. However, prior to further analysis, it is crucial to evaluate the run performance,
as well as the experiment quality control, i.e., how well the features were sequenced, which feature and gene
coverages were achieved, if some problems arise in the global setting or by specific PCR pools (Metzker, 2010).

At present, several open access tools can be used to explore and control experiment results(Lee et al.,
2012). Those tools allow visualization and some level of read profiles quantification. But, they were developed
as general purpose tools to cover a wide range of NGS applications, mainly for whole genome exploration.
Consequently, they require great amount of computational resources and power. On the other hand, in TS
only small group of regions are required to be explored and characterized in terms of coverage, as well as,
the evaluation and comparison of pool efficiency. In this scenario, current genomic tools have became heavy
and coarse for such amount of data. Consequently, the availability of light, fast and specific tools for TS
data handling and visualization is a must in current labs.

Here we present TarSeqQC R package, an exploration tool for fast visualization and quality control of TS
experiments. Its use is not restricted to TS and can also be used to analyze data from others NGS applications
in which feature-gene structure could be defined, like exons or isoforms in RNA-seq and amplicon in DNA-seq.

This vignette intends to guide through to the use of the TarSeqQC R Bioconductor package. First, the
input data format is described. Then, we show how to build an instance of the TargetExperiment class. After
that, we will graphically explore the results and do the quality control over the sequenced features. Finally,
we will build an .xlsx report that summarize the analysis above.

2 The TargetExperiment class

TarSeqQC R package is based on the TargetExperiment class. The Figure 1 shows the TargetExperiment
class structure.
The TargetExperiment class has nine slots:

� bedFile: a GRanges object that models the Bed File

� bamFile: a BamFile object that is a reference to the BAM File.

� fastaFile: a FaFile object that is a reference to the reference sequence.

3

Figure 1: TargetExperiment class diagram.

4

� featurePanel: a GRanges object that models the feature panel and related statistics.

� genePanel: a GRanges object that models the analyzed panel and related statistics at a gene level.

� scanBamP: a ScanBamParam containing the information to scan the BAM File.

� pileupP: a PileupParam containing the information to build the pileup matrix.

� attribute: a character indicating which attribute coverage or medianCounts will be used to the
analysis.

� feature: a character indicating the name of the analyzed features, e.g.: “amplicon”, “exon”, “tran-
script”.

The next sections will illustrate how the TargetExperiment methods can be used. For illustrate this,
the TarSeqQC R package provides a Bed File, a BAM File, a FASTA File and a dataset that stores the
TargetExperiment object built with those. This example case is based on a synthetic amplicon sequencing
experiment containing 29 amplicons of 8 genes in 4 chromosomes.

3 Input Data

A TS experiment is characterized by the presence of a Bed File which defines the features that should be
sequenced. The TarSeqQC package follows this architecture, where the Bed File is the key data of the
experiment. However, TarSeqQC also requires mainly three pieces of information that should be provided
in order to call the TargetExperiment constructor. The Bed File, the BAM File, that contains the obtained
alignment for the sequenced reads, and the sequence FASTA File. The complete path to these files should
be defined when the TargetExperiment constructor is called.

Other parameters can also be specified in the TargetExperiment object constructor. The scanBamP

and pileupP are instances of the ScanBamParam and PileupParam classes defined in the RSamtools R
Bioconductor package (Morgan et al., 2015b). These parameters specify how to scan the BAM Fileand how
to build the corresponding pileup, that will be used for exploration and quality control. The scanBamP

allows to specify the features of interest contained in the Bed File, acording to Morgan et al. (2015b)
specifications. The pileupP establishes what information should be contained in the pileup matrix, for
instance, if nucleotides and/or strand should be distinguished. If these two parameters are not specified, the
deafult values of their constructors will be used. In addition, feature and attribute are other important
parameters that should be specified in order to conduct the Quality Control. The first is a character that
determines which kind of features are contained in the Bed File. In the example presented here, amplicon
is the feature type. The second parameter, attribute, can be coverage or medianCounts defining which
meassures will be considered in the Quality Control analysis.

3.1 Bed File

The Bed File is stored as a TargetExperiment slot and is modeled as a GRanges object (Lawrence et al.
(2013)). The Bed File must be a tabular file in which each row represents one sequenced feature. This file
should contain at least “chr”, “start”, “end” , “name” and “gene” columns. Additional columns like “strand” or
another experimental information, could be included and would be conserved. For example, in some experi-
ments, more than one PCR pool is neccesary. In this case, the Bed File must also contain a “pool” column

5

specifying in which of these pools each feature was defined. This information is an imperative requisite to
evaluate the performance of each PCR pool.

A GRanges object represents a collection of genomic features each having a single start and end location
on the genome (Lawrence et al., 2013). In order to use it to model the Bed File, the mandatory fields “chr”,
“start” and “end” will be used to define the “seqnames”, “start” and “end” GRanges slots. The same will
occur if the optional field “strand” is included in the Bed File. The “name” column will be setted as ranges
identifiers. Finally, “gene” and additional columns like “pool”, will be stored as metadata columns.
In order to create a TargetExperiment object, the complete route to the Bed File and its name must be
specified as a character R object. Thus, to use the example Bed File provided by TarSeqQC :

> bedFile<-system.file("extdata", "mybed.bed", package="TarSeqQC", mustWork=TRUE)

Note that any experiment, in which can be defined feature-gene relations, could be analyzed using the
TarSeqQC R Bioconductor package. For instance, if you have an RNA-seq experiment and you are interested
in exploring some genes, you could build your customized Bed File in which the feature could be “exon” or
“transcript”.

3.2 BAM File

The BAM File stores the alignment results (Li et al., 2009). In this example case, it corresponds to the
amplicon sequencing experiment alignment. This file will be used to build the pileup for the selected features
in which quality control is based. Briefly, a pileup is a matrix in which each row represents a genomic po-
sition and have at least three columns: “pos”, “chr” and “counts”. The first and second columns specify the
genomic position and “counts” contains the total read counts for this position. Pileup matrix could contains
four additional columns that store the read counts for each nucleotide at this position.

In order to call the TargetExperiment constructor, the complete route to the BAM File and its name
must be specified as a character R object. For example, we can define it in order to use TargetExperiment
external data:

> bamFile<-system.file("extdata", "mybam.bam", package="TarSeqQC", mustWork=TRUE)

When the TargetExperiment constructor is called the BAM File, will be stored as a BamFile object
(Morgan et al., 2015b) and this object will be a TargetExperiment slot.

3.3 FASTA File

The FASTA File contains the reference sequence previously used to align the BAM File and will be used to
extract the sequences for the selected features. This information is useful to compare the pileup results with
the reference, in order to detect nucleotide variants. To create a TargetExperiment object, the full path to
the FASTA File and its name must be specified as a character R object. For example:

> fastaFile<-system.file("extdata", "myfasta.fa", package="TarSeqQC",

+ mustWork=TRUE)

6

The FASTA File will be stored as a FaFile object (Morgan et al. (2015b)) and this object will be setted
as a TargetExperiment slot.

3.4 Additional input data

The previous files are mandatories to call the TargetExperiment constructor. Additional parameters can be
set in order to apply several methods, perform the quality control and results exploration. These parameters
are:

� scanBamP: is a ScanBamParam object, that specifies rules to scan a BamFile object. For example, if
you wish only keep those reads that were properly paired, or those that have a specific Cigar code,
scanBamP can be used to specify it. In TS experiments, we want to analyze only the features. The way
to specify this is using the which parameter in the scanBamP constructor. If the scanBamP parameter
was not specified in the TargetExperiment constructor calling, its default value will be used and then,
the which parameter will be specified using the Bed File.

� pileupP: is a PileupParam object, that specifies rules to build the pileup starting from a BamFile.
You can use the pileupP parameter to specify if you want to distinguish between nucleotides and or
strands, filter low read quality or low mapping quality bases. If the pileupP parameter is not specified,
its default value will be used.

� attribute: is a character that specifies which attribute must be used for the results exploration and
quality control. The user can choice between medianCounts or coverage. If the attribute parameter is
not specified in the TargetExperiment constructor, it will be setted as “”. But, prior to perform some
exploration or control, this argument must be set using the setAttribute() method.

� feature: is a character that defines what means a feature. In this vignette a little example using
an synthetic amplicon targeted sequencing experiment is shown, thus the feature means an amplicon.
But, the use of TarSeqQC R package is not restricted to analyze only this kind of experiments. If you
don’t specify the feature parameter, it will be setted as “”. But, the same in attribute parameter,
it must be set prior to perform some exploration or control. It can be done using the setFeature()

method.

� BPPARAM: is a BiocParallelParam instance defining the parallel back-end to be used during evaluation
(see (Morgan et al., 2015a)). It allows the specification of how many workers (cpus) will be used, etc.

For more information about ScanBamParam and PileupParam constructors see Rsamtools manual.

4 Creating a TargetExperiment object

4.1 Constructor call

Once you have defined the input data presented above, the TargetExperiment constructor could be called
using:

> BPPARAM<-bpparam()

> myPanel<-TargetExperiment(bedFile, bamFile, fastaFile, feature="amplicon",

+ attribute="coverage", BPPARAM=BPPARAM)

7

When (TargetExperiment) is called, some TargetExperiment methods are invoked in order to define
two of the TargetExperiment slots. First, the buildFeaturePanel is internally used in order to build the
featurePanel slot. This method calls the pileupCounts function to build the pileup matrix. Then, the
summarizePanel is invoked in order to build the genePanel slot.
In the previous example, were defined the feature and attribute parameter values. If you don’t do this,
you can create the TargetExperiment object but a warning message will be printed. Then, you can use the
setFeature and setAttribute methods to set these values. For example:

> # set feature slot value

> setFeature(myPanel)<-"amplicon"

> # set attribute slot value

> setAttribute(myPanel)<-"coverage"

As we mentioned before, when the scanBamP and pileupP are not specified in the constructor call, they
assume their default constructor. But, you could specify those after the constructor call, using setScanBamP

and setPileupP.

> # set scanBamP slot value

> scanBamP<-ScanBamParam()

> #set which slot

> bamWhich(scanBamP)<-getBedFile(myPanel)

> setScanBamP(myPanel)<-scanBamP

> # set attribute slot value

> setPileupP(myPanel)<-PileupParam(max_depth=1000)

> # build the featurePanel again

> setFeaturePanel(myPanel)<-buildFeaturePanel(myPanel, BPPARAM)

> # build the genePanel again

> setGenePanel(myPanel)<-summarizePanel(myPanel, BPPARAM)

Note that the previous code specifies that the maximum read depth can be 1000. If you have some genomic
positions that has more than 1000 reads, they will not be computed. On the other hand, if you do any
change in the scanBamP and/or pileupP slots you will need set the featurePanel and the genePanel slots
again.
The TarSeqQC R package provides a dataset that stores the TargetExperiment object built with the previous
files. In order to use it, you can do:

> data(ampliPanel, package="TarSeqQC")

The loaded object is called ampliPanel. If you want to use it, you need to re-define the BAM File and
FASTA File path files. In order to do this, you can use:

> # Defining bam file and fasta file names and paths

> setBamFile(ampliPanel)<-system.file("extdata", "mybam.bam",

+ package="TarSeqQC", mustWork=TRUE)

> setFastaFile(ampliPanel)<-system.file("extdata", "myfasta.fa",

+ package="TarSeqQC", mustWork=TRUE)

8

Note that featurePanel and genePanel do not need to be rebuilt. The redefinition file names is neccesary
in order to use TargetExperiment methods that query this files.

4.2 Early exploration

The TargetExperiment class has typical show/print and summary R methods implemented. In addition, the
summaryGeneLev and summaryFeatureLev methods allow the summary exploration at “gene” and “feature”
level. The next example illustrates how do you call these methods:

> # show/print

> myPanel

TargetExperiment

amplicon panel:

GRanges object with 3 ranges and 5 metadata columns:

seqnames ranges strand | gene medianCounts IQRCounts

<Rle> <IRanges> <Rle> | <character> <numeric> <numeric>

AMPL1 chr1 [463, 551] * | gene1 304 33

AMPL2 chr1 [1553, 1603] * | gene2 560 16

AMPL3 chr1 [3766, 3814] * | gene2 442 36

coverage sdCoverage

<numeric> <numeric>

AMPL1 297 33

AMPL2 538 98

AMPL3 438 26

seqinfo: 4 sequences from an unspecified genome; no seqlengths

gene panel:

GRanges object with 3 ranges and 4 metadata columns:

seqnames ranges strand | medianCounts IQRCounts coverage

<Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric>

gene1 chr1 [463, 551] * | 304 0 297

gene2 chr1 [1553, 3814] * | 501 59 488

gene3 chr3 [1, 59] * | 0 0 0

sdCoverage

<numeric>

gene1 0

gene2 71

gene3 0

seqinfo: 4 sequences from an unspecified genome; no seqlengths

selected attribute:

coverage

> # summary

> summary(myPanel)

9

Min. 1st Qu. Median Mean 3rd Qu. Max.

gene 0 247 310 296 372 488

amplicon 0 139 274 299 457 874

> #summary at feature level

> summaryFeatureLev(myPanel)

Min. 1st Qu. Median Mean 3rd Qu. Max.

amplicon 0 139 274 299 457 874

> #summary at gene level

> summaryGeneLev(myPanel)

Min. 1st Qu. Median Mean 3rd Qu. Max.

gene 0 247 310 296 372 488

Using those methods you can easily find, for example, that in average all amplicons were sequenced at a
coverage of 256. You can also see that there is at least one amplicon that was not read. This is because the
minimum value of the attribute (coverage) is 0. In order to complement this analysis, you could explore the
attribute distribution using:

> g<-plotAttrExpl(myPanel,level="feature",join=TRUE, log=FALSE, color="blue")

> x11(type="cairo");

> g

In the Figure 2, the join parameter was set as ’TRUE’. If it is set as ’FALSE’, the figure will contain
the attribute box-plot on the left and the corresponding attribute density plot on the right.

5 Deep exploration and Quality Control

5.1 Panel overview

When you are working with a TS experiment, it is interesting to simultaneously evaluate the performance
of all the features. In addition, if you have prefixed attribute intervals, it could be important to compare
features according to them. For example, five coverage intervals can be defined according to the Table 1.

Then, these coverage intervals could be incorporated into the analysis. To do this, the TarSeqQC R
package needs an interval extreme definitions:

> # definition of the interval extreme values

> attributeThres<-c(0,1,50,200,500, Inf)

10

0

200

400

600

800

1

mean = 256, sd = 198, median = 180, IQR = 302

am
pl

ic
on

 c
ov

er
ag

e
amplicon coverage

Figure 2: Attribute distribution and density plots.

Table 1: Coverage intervals
Coverage Interval Motivation
[0, 1) Not sequenced

[1, 50) Low sequencing coverage

[50, 200) Regular sequencing coverage

[200, 500) Very good sequencing coverage

[500, Inf) Excellent sequencing coverage

A panel results overview is critical in order to compare and integrate it. To help this task, we have
implemented the plot method. This is a graphical tool consisting in a polar histogram, in which each gene
is represented as a bar. Each bar is colored depending the percentage of features that have their attribute
value in a particular prefixed interval. In addition, the bars (genes) can be grouped in chromosomes in order
to facilitate the comparisson at this level.
To build this plot, you can do:

> # plot panel overview

> g<-plot(myPanel, attributeThres, chrLabels =TRUE)

> g

In the example presented here, we can easily distinguish that the unique amplicon of the “gene3” was not
sequenced. This is because in the Figure 3, the bar corresponding to “gene3” is colored in red and this color
is related to the [0,1) coverage interval. In the same plot, we can also appreciate that this gene has only
one amplicon, as depicted in parenthesis in the bar label “gene3(1)”. Also it is possible to note that 40% of
“gene4” amplicons has a coverage between 1 and 50. Note that this gene have five amplicons, then the 40 %
corresponds to 2 amplicon. Another 20 % (1 amplicon) has a coverage value between 50 and 200, other one
“gene4” amplicon have a very good coverage value, it means, between 200 and 500 and the other amplicon

11

ge
ne

1(
1)

ge
ne

2(
2)

gene3(1)

gene4(5)

gene5(6)ge
ne

6(
2)

gene7(5)

gene8(7)

20%

40%

60%

80%

chr1

chr3

chr7

ch
r1

0 coverage_groups

[0,1)

[1,50)

[50,200)

[200,500)

[500,Inf]

Figure 3: Panel overview plot.

12

have an excellent coverage higher than 500.

It is important to note that a small and simple example is presented here. The prevoious plot could
have a grater impact when you have more features and genes. Figure 4 contains the panel overview for
a TS Experiment based on the Ion AmpliSeq Cancer Panel Primer Pool. This is a TS Panel offered by
Life Technologies (Technologies (2014a)) that allows to explorae 190 amplicons. In this case, you can easily
observe that “MLH1” and “CDKN2A” genes were no sequenced. You can also appreciate that several genes
like “ALK”, “VHL”, “AKT1”, “ARBB2”, among others, have more uniforme coverage values along their
amplicons. On the contrary, “KDR” and “PTEN” genes have some amplicons not sequenced and some other
with a high coverage.

M
P

L(
1)

N
R

A
S

(2
)

A
LK

(2
)

E
R

B
B

4(
8)

ID
H

1(
1)

C
TN

N
B

1(
1)

M
LH

1(
1)

PI
K3

C
A(

7)
VHL(

3)
FBXW

7(5)

FGFR3(5)

KDR(9)

KIT(9)

PDGFRA(4)

APC(7)

CSF1R(2)

NPM1(1)

BRAF(2)
EGFR(8)

MET(5)SMO(5)

FGFR1(2)ABL1(5)

C
D

KN
2A(1)

N
O

TC
H

1(2)

F
G

F
R

2(4)

P
T

E
N

(7)

R
E

T
(5)

AT
M

(1
7)

H
R

A
S

(2
)

H
N

F1
A

(2
)

K
R

A
S

(3
)

PT
PN

11
(2

)FL
T3

(5
)RB1(

8)
AKT1(1)

CDH1(3)

ERBB2(4)

TP53(8)

SMAD4(8)

JAK3(2)
STK11(4)

GNAS(1) SRC(1)

SM
ARCB1(

4)

20%

40%

60%

80%

coverage_groups

[0,1)

[1,50)

[50,200)

[200,500)

[500,Inf]

Figure 4: Cancer Panel Primer Pool overview plot.

Complementing the previous plot, plotFeatPerform illustrates a similar graphic where the bars are dis-
tributed along the x-axis. In order to expand the polar histogram shown in the Figure 3, the parameter
complete is included. If you set it as TRUE, the resultant plot will contain two graphics. The upper panel
is a bar plot at feature level, and the lower, at a gene level. Both graphics incorporate the prefixed attribute

13

intervals information and contain a red line to indicate the mean value of the attribute at the corresponding
level. In our example, you could run:

> # plot panel overview

> g<-plotFeatPerform(myPanel, attributeThres, complete=TRUE, log=FALSE,

+ featureLabs=TRUE, sepChr=TRUE, legend=TRUE)

> g

0

200

400

600

800

A
M

P
L1

30
84

45

A
M

P
L1

59
42

24

A
M

P
L1

59
81

22

A
M

P
L3

00
14

A
M

P
L3

03
73

A
M

P
L3

04
69

9

A
M

P
L3

07
72

5

A
M

P
L3

39
43

2

A
M

P
L3

58
31

A
M

P
L3

61
01

A
M

P
L3

65
69

A
M

P
L3

87
72

A
M

P
L4

16
88

8

A
M

P
L4

21
27

8

A
M

P
L4

64
38

6

A
M

P
L4

84
29

7

A
M

P
L4

92
61

2

A
M

P
L4

93
23

6

A
M

P
L4

95
04

1

A
M

P
L5

54
19

4

A
M

P
L5

59
66

9

A
M

P
L6

76
41

A
M

P
L6

81
78

A
M

P
L7

89
61

A
M

P
L7

89
94

A
M

P
L7

91
19

A
M

P
L8

06
35

A
M

P
L8

17
77

A
M

P
L8

21
52

am
pl

ic
on

 c
ov

er
ag

e coverage_groups

[0,1)

[1,50)

[50,200)

[200,500)

[500,Inf]

chr1 chr3 chr7 chr10

0

100

200

300

400

ge
ne

1

ge
ne

2

ge
ne

3

ge
ne

4

ge
ne

5

ge
ne

6

ge
ne

7

ge
ne

8

gene

ge
ne

 c
ov

er
ag

e

coverage_groups

[1,50)

[50,200)

[200,500)

Figure 5: Amplicon coverage performance. The upper panel is a bar plot at feature level, and the lower, at
gene level.

In Figure 5 we could evaluate the coverage value for each amplicon and gene. We can observe that when
coverage is summarized at gene level the highest value is lower than 500. However, at amplicon level, the
highest value is grater than 800.
The previous plot is also very useful when we are working with panels made-up by several primer pools
combination. For example, the Comprehensive Cancer Panel is another Life Tachnologies panel that allows
the exploration of 16000 amplicons from 409 genes related to several cancer types using 4 primer pools
(Technologies (2014b)). In this case, the Bed File contains a “pool” column that stores the number pool for
each feature. This information will be conserved in the TargetExperiment object built from this panel.
In the Quality Control context, it is so important to evaluate in early analysis stages if some pool effect
exists and if all pool results are comparable. Naturally, the TarSeqQC R package uses this information to
assist the user. For example, the Figure 6 illustrates the use of the plotFeatPerform in the described case.
Now, you can see that the graphic corresponding to the amplicon level shows a separation between amplicons
according to its pool value. Note that the same plot at a gene level is not showed because the complete

parameter was set too ’FALSE’. It is important to emphasize that, if correspond, the pool information will
be included in all methods of the TargetExperiment class. Thus, for example, when you call the summary

function for a TargetExperiment object that has pool information, the output will contain statistic results
for the amplicon level and for each pool separately.

14

1 2 3 4

0

1

2

3

lo
g1

0(
am

pl
ic

on
_c

ov
er

ag
e+

1)

coverage_groups

[0,1)

[1,50)

[50,200)

[200,500)

[500,Inf]

Figure 6: Performance exploration of an Ion AmpliSeq Comprehensive Cancer Panel experiment.

15

5.2 Controlling low counts features

Low counts features should be detected in early analysis stages. The summaryIntervals method builds a
frequency table of the fetures that have its attribute value between predefined intervals. For example, if you
are interested in explore the “coverage” intervals defined before, you could do:

> # summaryIntervals

> summaryIntervals(myPanel, attributeThres)

amplicon_coverage_intervals abs cum_abs rel cum_rel

1 0 <= coverage < 1 1 1 3.4 3.4

2 1 <= coverage < 50 0 1 0.0 3.4

3 50 <= coverage < 200 12 13 41.4 44.8

4 200 <= coverage < 500 10 23 34.5 79.3

5 coverage >= 500 6 29 20.7 100.0

The previous methods is also useful when you are interesting in quantifying how many features have at
least it attribute value (coverage) lower or higher than a threshold. In this example, you could be interested
in knowing how many amplicons have shown at least a coverage of 50, because you consider that this is a
minimum value that you will admit. This is a typical aspect that you will explore when you do an experiment
Quality Control.
Another method that could help you is getLowCtsFeatures. This method returns a data.frame object that
contains all the features that have its attribute value lower than a threshold. The output data.frame also
contains the panel and attribute information for each feature. For example, if you want to known which are
the genes that have a coverage value lower than 50, you can do:

> getLowCtsFeatures(myPanel, level="gene", threshold=50)

names seqname start end medianCounts IQRCounts coverage sdCoverage

1 gene3 chr3 1 59 0 0 0 0

In addition, if you want to known which amplicons have a coverage value lower than 50, you should
execute:

> getLowCtsFeatures(myPanel, level="feature", threshold=50)

names seqname start end gene medianCounts IQRCounts coverage sdCoverage

1 AMPL4 chr3 1 59 gene3 0 0 0 0

Graphical methods were also implemented. The plotGeneAttrPerFeat allows the attribute value ex-
ploration for all the features of a selected gene. For instance, if you want to explore the“gene4”, you should do:

16

> g<-plotGeneAttrPerFeat(myPanel, geneID="gene4")

> # adjust text size

> g<-g+theme(title=element_text(size=16), axis.title=element_text(size=16),

+ legend.text=element_text(size=14))

> g

0

100

200

300

400

500

AM
PL

36
10

1

AM
PL

55
41

94

AM
PL

36
56

9

AM
PL

35
83

1

AM
PL

33
94

32

amplicons of gene4 gene

am
pl

ic
on

 c
ov

er
ag

e

amplicon coverage of gene4 gene

Figure 7: Performance attribute exploration of the gene4.

In Figure 7 you can observe the attribute value for each feature contained in the “gene4” gene.

5.3 Read counts exploration

When you are doing a Quality Control the analysis of coverage/median counts achieved for each feature
is important. But, sometimes could be interesting in exploring the read profile obtained for a particular
genomic region or a feature. For this reason, the TarSeqQC R package provides methods to help the explo-
ration at a nucleotide resolution.
Remember that when the featurePanel slot of a TargetExperiment object is built, the pileupCounts func-
tion is called. This and the buildFeaturePanel method are responsible for the pileup construction, read
counts obtainment, and coverage/medianCounts calculation. Even though these functions are internally
invoked by the TargetExperiment constructor, if you wish, you can call them. In particular, when pileup-

Counts is invoked, you will obtain a data.frame that contains the read counts information for each position
that was specified in the Bed File. In addition, this is a function, not a TargetExperiment method that could
be called externally to the class. Note that the columns in the obtained object could change, depending
on the pileupP parameter definition. In our case we are working with its default constructor and only the
maxdepth parameter was modified. For this reason, the resultant data.frame will contain one column for

17

each nucleotide and one column (“-”) storing deletion counts.
In order to call the pileupCounts function is neccesary to specify several parameters:

� bed: is a GRanges object that, at least, should have values in the seqnames, start and end slots.

� bamFile: is a character indicating the full path to the BAM file.

� fastaFile: is a character indicating the full path to the FASTA file.

� scanBamP: is a ScanBamParam object, that specifies rules to scan a BamFile object. If it was not
specified, its default value will be used and then, the which parameter will be specified using the Bed
File.

� pileupP: is a PileupParam object, that specifies rules to build the pileup, starting from a BamFile. If
it was not specified, the pileupP parameter will be defined using the constructor default values.

In our case, to work with the example data, you could do:

> # define function parameters

> bed<-getBedFile(myPanel)

> bamFile<-system.file("extdata", "mybam.bam", package="TarSeqQC", mustWork=TRUE)

> fastaFile<-system.file("extdata", "myfasta.fa", package="TarSeqQC",

+ mustWork=TRUE)

> scanBamP<-getScanBamP(myPanel)

> pileupP<-getPileupP(myPanel)

> #call pileupCounts function

> myCounts<-pileupCounts(bed=bed, bamFile=bamFile, fastaFile=fastaFile,

+ scanBamP=scanBamP, pileupP=pileupP, BPPARAM=BPPARAM)

> head(myCounts)

pos seqnames seq A C G T N = - which_label counts

1345 463 chr1 T 0 3 2 289 0 289 1 chr1:463-551 295

1346 464 chr1 A 297 0 1 1 0 297 1 chr1:463-551 300

1347 465 chr1 G 1 0 305 0 0 305 0 chr1:463-551 306

1348 466 chr1 T 0 0 1 306 0 306 0 chr1:463-551 307

1349 467 chr1 G 0 0 311 0 0 311 0 chr1:463-551 311

1350 468 chr1 C 0 316 0 0 0 316 0 chr1:463-551 316

Using the obtained read count information it is possible to build a read profile plot, in which the x axis
represents the genomic position and the y axis, the obtained read counts. It is also important to distinguish
how many read counts correspond to the reference nucleotide and how many could correspond to a genomic
variation. The plotRegion allows the read profile exploration for a specific genomic region. Helping the
region definition, the getRegion method extracts the information for a genomic region. For example:

> #complete information for gene7

> getRegion(myPanel, level="gene", ID="gene7", collapse=FALSE)

names seqname start end gene

1 AMPL18 chr10 141 233 gene7

2 AMPL19 chr10 1007 1079 gene7

18

3 AMPL20 chr10 4866 4928 gene7

4 AMPL21 chr10 6632 6693 gene7

5 AMPL22 chr10 8475 8527 gene7

> #summarized information for gene7

> getRegion(myPanel, level="gene", ID="gene7", collapse=TRUE)

names seqname start end gene

1 AMPL18, AMPL19, AMPL20, AMPL21, AMPL22 chr10 141 8527 gene7

Then, you could use the previous information to specify a genomic region, as:

> g<-plotRegion(myPanel, region=c(4500,6800), seqname="chr10", SNPs=TRUE,

+ xlab="", title="gene7 amplicons",size=0.5)

> x11(type="cairo")

> g

0

100

200

300

400

500

4500 5000 5500 6000 6500

co
un

ts

Profiles
ref_consensus
A
C
T
G

counts

gene7 amplicons

Figure 8: Read counts profile for the gene7 genomic region.

The plotFeature allows the read profile exploration of a particular feature. For example if we wish to
explore the “AMPL20” amplicon of the “gene7”, we should do:

> g<-plotFeature(myPanel, featureID="AMPL20")

> x11(type="cairo")

> g

As you can see in Figure 9, the gray shadow correspond to the total counts that were obtained at each
genomic position insight the selected amplicon. The violet line indicates the read counts matching with the
reference sequence. The green, blue, red and brown lines illustrate the read counts that do not match with
the reference and inform about the detected nucleotide variation. In this example, the selected amplicon
show a variation that change the reference nucleotide for a “T”. If you wan to know exactly the proportion
of read counts that match and no match against the reference, you can use the plotNtdPercentage as:

19

0

50

100

4880 4900 4920

co
un

ts

Profiles
ref_consensus
A
C
T
G

counts

AMPL20

Figure 9: Read counts profile for the ”20” gene7 amplicon.

> g<-plotNtdPercentage(myPanel, featureID="AMPL20")

> g

0

25

50

75

100

A A C C T G C T C T G T G C T G C A T T T C A G A G A A C G C C T C C C C G A G T G A G C T G C G A G A C C T G C T G T C A G

N
td

 %

Profiles
A
C
T
G

Ntd percentages of AMPL20

Figure 10: Nucleotide percentages for each genomic position on the ”AMPL20” gene7 amplicon.

In Figure 10 you can observe that in the position 4912 of the reference genome indicates that there should
be a “G” and the read counts indicate that in this position is a “T”. You could also extract this information
using the previous read counts data.frame myCounts. For this, remember that the featurePanel slot is a
GRanges object. Then, you could subset this directly using the feature name:

20

> getFeaturePanel(myPanel)["AMPL20"]

GRanges object with 1 range and 5 metadata columns:

seqnames ranges strand | gene medianCounts IQRCounts

<Rle> <IRanges> <Rle> | <character> <numeric> <numeric>

AMPL20 chr10 [4866, 4928] * | gene7 140 5

coverage sdCoverage

<numeric> <numeric>

AMPL20 139 5

seqinfo: 4 sequences from an unspecified genome; no seqlengths

Using this information, you could subset in myCounts object only those rows that corresponding with the
feature:

> featureCounts<-myCounts[myCounts[, "seqnames"] =="chr10" &

+ myCounts[,"pos"] >= 4866 & myCounts[,"pos"] <= 4928,]

Then, you could find which position have the lowest value in the “=” column. It means, the minimum value
of read counts matching against the reference:

> featureCounts[which.min(featureCounts[,"="]),]

pos seqnames seq A C G T N = - which_label counts

1423 4912 chr10 G 0 0 0 142 0 0 0 chr10:4866-4928 142

6 Quality Control Report

The TarSeqQC R package provides a method that generates an .xlsx report in which Quality Control relevant
information is contained. This file has three sheets. In the first, a summary is presented, containing the
results of summary and summaryIntervals methods. This sheet also includes a plot that characterize the
experiment. You could choose any graphic, but if you don not specify its name, the method calls the plot

TarSeqQC method to build it. The second and third sheets store the panel information at a gene and a
feature level respectively. Only the information corresponding to the selected attribute will be stored. Then,
if you only want to generate the report, you could call the buildReport after the object construction. In
our case, we want to specify the image file that we want to include in the report, to do this, we should do:

> imageFile<-system.file("extdata", "plot.pdf", package="TarSeqQC",

+ mustWork=TRUE)

> buildReport(ampliPanel, attributeThres, imageFile ,file="Results.xlsx")

7 Troubleshoot

Remember that all TargetExperiment methods that need read count information at a nucleotide level work
over the Bed File, BAM File and the FASTA File. For this reason, if you use some of them, please make

21

sure that the corresponding TargetExperiment slots have the file names well defined. For example, if you
wish loading the TarSeqQC example data, you can do:

> data(ampliPanel, package="TarSeqQC")

> ampliPanel

TargetExperiment

amplicon panel:

GRanges object with 3 ranges and 5 metadata columns:

seqnames ranges strand | gene medianCounts IQRCounts

<Rle> <IRanges> <Rle> | <character> <numeric> <numeric>

AMPL1 chr1 [463, 551] * | gene1 182 14

AMPL2 chr1 [1553, 1603] * | gene2 493 14

AMPL3 chr1 [3766, 3814] * | gene2 423 22

coverage sdCoverage

<numeric> <numeric>

AMPL1 180 16

AMPL2 470 83

AMPL3 418 11

seqinfo: 4 sequences from an unspecified genome; no seqlengths

gene panel:

GRanges object with 3 ranges and 4 metadata columns:

seqnames ranges strand | medianCounts IQRCounts coverage

<Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric>

gene1 chr1 [463, 551] * | 182 0 180

gene2 chr1 [1553, 3814] * | 458 35 444

gene3 chr3 [1, 59] * | 0 0 0

sdCoverage

<numeric>

gene1 0

gene2 37

gene3 0

seqinfo: 4 sequences from an unspecified genome; no seqlengths

selected attribute:

coverage

But, if you want to re-built the featurePanel slot, the pileupCounts execution will cause an error because
the method cannot find the files.

buildFeaturePanel(ampliPanel)

[1] "The index of your BAM file doesn't exist"

[1] "Building BAM file index"

open: No such file or directory

Error in FUN(X[[i]], ...) : failed to open SAM/BAM file

file: './mybam.bam'

22

To solve the previous error, you should do:

> setBamFile(ampliPanel)<-system.file("extdata", "mybam.bam", package="TarSeqQC",

+ mustWork=TRUE)

> setFastaFile(ampliPanel)<-system.file("extdata", "myfasta.fa",

+ package="TarSeqQC", mustWork=TRUE)

and then:

> setFeaturePanel<-buildFeaturePanel(ampliPanel)

23

Session Info

> sessionInfo()

R version 3.2.4 (2016-03-10)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2008 R2 x64 (build 7601) Service Pack 1

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] BiocParallel_1.4.3 TarSeqQC_1.0.2 openxlsx_3.0.0

[4] plyr_1.8.3 ggplot2_2.1.0 Rsamtools_1.22.0

[7] Biostrings_2.38.4 XVector_0.10.0 GenomicRanges_1.22.4

[10] GenomeInfoDb_1.6.3 IRanges_2.4.8 S4Vectors_0.8.11

[13] BiocGenerics_0.16.1

loaded via a namespace (and not attached):

[1] Rcpp_0.12.3 magrittr_1.5 zlibbioc_1.16.0

[4] cowplot_0.6.1 munsell_0.4.3 colorspace_1.2-6

[7] stringr_1.0.0 tools_3.2.4 grid_3.2.4

[10] gtable_0.2.0 snow_0.4-1 lambda.r_1.1.7

[13] futile.logger_1.4.1 reshape2_1.4.1 futile.options_1.0.0

[16] bitops_1.0-6 stringi_1.0-1 scales_0.4.0

24

References

Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., Morgan, M., and Carey, V.
(2013). Software for computing and annotating genomic ranges. PLoS Computational Biology, 9.

Lee, H. C., Lai, K., Lorenc, M. T., Imelfort, M., Duran, C., and Edwards, D. (2012). Bioinformatics tools and
databases for analysis of next-generation sequence data. Briefings in functional genomics, 11(1):12–24.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.,
et al. (2009). The sequence alignment/map format and samtools. Bioinformatics, 25(16):2078–2079.

Metzker, M. L. (2010). Sequencing technologiesâĂŤthe next generation. Nature Reviews Genetics, 11(1):31–
46.

Morgan, M., Obenchain, V., Lang, M., and Thompson, R. (2015a). BiocParallel: Bioconductor facilities for
parallel evaluation. R package version 1.3.51.

Morgan, M., Pagès, H., Obenchain, V., and Hayden, N. (2015b). Rsamtools: Binary alignment (BAM),
FASTA, variant call (BCF), and tabix file import. R package version 1.18.3.

Technologies, L. (2014a). Ion ampliseq cancer panel primer pool.

Technologies, L. (2014b). Ion ampliseq comprehensive cancer panel.

25

	Introduction
	The TargetExperiment class
	Input Data
	Bed File
	BAM File
	FASTA File
	Additional input data

	Creating a TargetExperiment object
	Constructor call
	Early exploration

	Deep exploration and Quality Control
	Panel overview
	Controlling low counts features
	Read counts exploration

	Quality Control Report
	Troubleshoot

