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Abstract

This vignette introduces the use of PROPER (PROspective Power Evaluation for RNAseq), which is designed

to provide power–sample size assessment in differential expression detection from RNA-seq data in a two-group

comparison setting.
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1 Introduction

RNA-seq has become a routine technique in quantifying and comparing gene expressions, and is widely used in differential

expression (DE) detection. A number of methods and software tools have been developed for that purpose [1, 2, 3]. An

RNA-Seq workflow at the gene level is also available as Bioconductor package rnaseqGene.

The determination of sample sizes is an important question in RNA-seq experimental design, and required in many grant

applications. Due to the complex nature of RNA-seq data and the analysis techniques, traditional methods for evaluating

power vs. sample size is not applicable. The main difficulty in the problem lie in following aspects:

� Multiple-testing problem. Since the DE test is performed simultaneously for many genes, the type I error is often

controlled by false discovery rate (FDR), which poses difficulty in traditional power calculation.

� Coverage depth. Unlike gene expression microarrays, the statistical power of the DE test from RNA-seq data is

greatly affected by the expression level (or the sequence counts). Genes with higher counts (such as longer genes)

will be easier to detect even when the effect sizes are the same as the low-count genes (shorter genes).

� DE detection procedure. Many existing RNA-seq DE methods implement different type of “shrinkage” procedures

to stabilize the estimation of within group variations. This makes the power calculation an intractable problem.

Due to these difficulties, we argue that the power calculation for RNA-seq can not be solve analytically. We develop a

simulation-based method [4] and R package PROPER (stands for PROspective Power Evaluation for RNAseq), which

provides simulation-based method to compute power-sample size relationship. The software package contain following

three modules:

1. Data generation. The RNA-seq count data are simulated from a negative binomial model based on user specified

model parameters.

2. DE detection. The DE detection is performed using existing software package.

3. Power assessment. The DE detection results are assessed to generate power–sample size relationship. Various

power-related quantities are computed, including marginal and stratified power, FDR, number of true/false dis-

coveries, false discovery cost, type I error. These quantities will help investigators to determine desirable sample

sizes.

2 Using PROPER

To assess the power-sample size relationship using PROPER, one needs to follow the simple steps below.

1. Set up a simulation scenario and select a method for detecting DE.

2. Run simulation and DE detection.

3. Evaluate the power–sample size relationship.

2.1 Set up a simulation scenario

To set up a simulation scenario, call the RNAseq.SimOptions.2grp function. Users have the option to set up number of

genes, percentage of genes with DE, sequencing depth (total number of read counts), baseline expression level, biological
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variations, and magnitude of DE (effect sizes). These factors all affect the power of detecting DE, yet making assumptions

on these is not a trivial task. We provide options to make use of parameters estimated from real RNAseq data sets:

� Cheung data: expressions of lymphoblastoid cell lines from 41 CEU individuals in International HapMap Project.

The data are from unrelated individuals, so the expressions show large biological variations overall.

� Gilad data: human liver sample comparisons between male and female. The biological variations are smaller than

those from Cheung data.

� Bottomly data: include 21 samples from two stains of inbreed mice. Since the data are from inbreed animal models,

the biological variations among replicates are much smaller.

� MAQC data: these are the benchmark datasets generate by FDA to test the sequencing technology. The replicates

are technical replicates so there’s essentially no dispersion.

These data sets are chosen for they represent different levels of dispersion distributions, which DE detection results can

be sensitive to. Most of the real RNA-seq data should have dispersions in between of these.

The following command sets up simulation options with 20,000 genes, 5% genes being DE, baseline expression and

dispersion based on Cheung data:

> library(PROPER)

> sim.opts.Cheung = RNAseq.SimOptions.2grp(ngenes = 20000, p.DE=0.05,

+ lOD="cheung", lBaselineExpr="cheung")

To make simulation options based on Bottomly data, do:

> sim.opts.Bottomly = RNAseq.SimOptions.2grp(ngenes = 20000, p.DE=0.05,

+ lOD="bottomly", lBaselineExpr="bottomly")

To set up meaningful effect size between two groups is non-trivial. The package allows for both parametric setting for

the log fold change as well as resampling based simulation if the user wishes to use some pilot data. The default is a

mixture of 0 for non-DE genes and N(0, 1.52) for DE genes.

2.2 Run simulation and DE detection

With the simulation settings ready, one can call runSims function to generate count data and perform DE detection.

Since the main goal of the function is to evaluate power and sample size relationship, users specify the sample sizes

(number of replicates in each group) for which they want to evaluate power. By default, we evaluate power when there

are 3, 5, 7, and 10 samples in each treatment group. We found through preliminary results that 10 samples in each

group provides adequate power when the dispersions are small (similar to those from Bottomly data). If the dispersions

are large, we suggest users increase sample sizes, but it will take more computational time.

This is the most computationally intensive part of the software. The computational performance depends on the DE

detection software and the scale of the simulation. For a simulation with 50,000 genes, four different sample sizes, and

using edgeR for DE detection, each simulation takes around 10 seconds on a Macbook Pro laptop with 2.7Ghz i7 CPU

and 16G RAM, which translates to 17 minutes for 100 simulations.

The number of simulations need to be specified. We recommend to run at least 20 simulations in order to get stable

results. The simulation results should be saved for the next step power evaluation.
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The built-in DE detection method inlcude edgeR, DESeq and DSS. These Bioconductor packages need to be installed in

order to use them.

To run simulation and DE detection using edgeR, do:

> simres = runSims(Nreps = c(3, 5, 7, 10), sim.opts=sim.opts.Cheung,

+ DEmethod="edgeR", nsims=20)

2.3 Evaluate the powers

With the simulation results from runSims, one can use comparePower function to evaluate powers in different ways.

comparePower is a rather comprehensive function with many options. Users have the ability to specify:

� Method to control type I error (by raw p-values or FDR), and the desired type I error threshold for calling DE.

� Method to stratify genes (by baseline expression level or dispersion) and the strata, since the function will provide

stratified power-related quantities.

� Method to define “biologically interesting genes”. There could be many true DE genes with small changes, which

can be difficult to detect. Including these gene in the “true DE” set will hurt the power. We advocate to estimate

the “targeted” power, which is defined as the power to detect biologically interesting genes, or genes with at least

moderate expression changes. We argue that the targered power are of more interests for investigators. This

function provide options for defining biologically interesting genes, by either log fold change or standardized log

fold change (log fold change divided by square root of dispersion).

It is important to point out that this power evaluation step is independent of the previous simulation/DE dection

step (using runSims). With the same results from runSims, one can evaluate the powers using different criteria in

comparePower.

The following command evaluate the powers with following criteria: (1) genes with FDR<0.1 are deemed DE; (2)

stratification is done by baseline expression level; (3) biologically interesting genes are defined as those with log fold

change greater than 0.5:

> powers = comparePower(simres, alpha.type="fdr", alpha.nominal=0.1,

+ stratify.by="expr", delta=0.5)

Users can summarize or visualize the results from comparePower function. For example, the result can be nicely

summarized by calling summaryPower function, which genreates following table for marginal power-related quantities.

> summaryPower(powers)

Sample size Nominal FDR Actual FDR Marginal power Avg # of TD Avg # of FD FDC

3 0.10 0.44 0.27 56.42 31.00 0.56

5 0.10 0.27 0.41 79.79 18.53 0.22

7 0.10 0.19 0.49 92.13 19.21 0.09

10 0.10 0.14 0.58 106.15 12.64 0.11

The table summarizes marginal power-related results under each sample size, including marginal power, true discovery

(TD), false discovery (FD), and false discovery cost (FDC, defined as the number of FD divided by the number of TD).
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To visualize the power results, there are a list of functions generating different figures for visualization. Specifically:

� To plot the stratified power, do

> plotPower(powers)

Each line in the figure represents the stratified power under a certain sample size. In the figure below, the powers

are calculated stratitifed by the average counts of genes. It shows that when the counts are very low (between 0

and 10), the powers are very low. For genes with more than 10 reads, powers increase significantly. Moreover, it

shows when there are 10 samples in each group, the powers are close to the canonically desired level of 0.8 for

genes with reasonably large counts.
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Figure 1: Stratified target power

� To plot the number of true discoveries, do

> plotPowerTD(powers)

Again, each line represents results from one sample size. The numbers of true discoveries from each stratum are

plotted.
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Figure 2: Stratified number of true discoveries

� To plot the stratified false discovery cost, do
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> plotFDcost(powers)
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Figure 3: Stratified false discovery cost

� Or one can call plotAll to generate all plots in a single figure:

> plotAll(powers)

2.4 Additional functionalities

2.4.1 Power and sequencing depth

In RNAseq experiments, the design stage involves decisions beyond sample size. One may face a choice between fewer

samples sequenced deeper versus more samples sequenced shallower. The sequencing depth and sample size relationship

can be assessed using power.seqDepth function:

> power.seqDepth(simres, powers)

This generates the following table.

3 reps 5 reps 7 reps 10 reps

0.2 0.21 0.33 0.41 0.50

0.5 0.24 0.37 0.46 0.55

1 0.27 0.41 0.49 0.58

2 0.30 0.44 0.53 0.62

5 0.34 0.48 0.57 0.66

10 0.36 0.51 0.60 0.69

This table reads as the following: Using 5 replicates in each group with average coverage similar to that from the Cheung

data (or whatever you used in your simulation set up), the marginal power is 0.41. Doubling the depth would increase the

power to 0.44, yet doubling the sample size at the same depth would increase the power to 0.58. Thus for this example,

using more replicates is more helpful than sequencing deeper.
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Power

Average count strata

P
ow

er

n = 2
n = 3
n = 5
n = 7
n = 10

(0,10]

(10,20]

(20,40]

(40,80]

(80,160]

(160,320]

(320,640]

(640,1.28e+03]

(1.28e+03,Inf]

0.
0

0.
2

0.
4

0.
6

0.
8

Average count strata

# 
Tr

ue
 D

is
co

ve
rie

s

(0,10]

(10,20]

(20,40]

(40,80]

(80,160]

(160,320]

(320,640]

(640,1.28e+03]

(1.28e+03,Inf]

0
10

20
30

40
50 n = 2

n = 3
n = 5
n = 7
n = 10

Average count strata

# 
Fa

ls
e 

D
is

co
ve

rie

(0,10]

(10,20]

(20,40]

(40,80]

(80,160]

(160,320]

(320,640]

(640,1.28e+03]

(1.28e+03,Inf]

0
5

10
15 n = 2

n = 3
n = 5
n = 7
n = 10

Average count strata

Fa
ls

e 
di

sc
ov

er
y 

co
st

(0,10]

(10,20]

(20,40]

(40,80]

(80,160]

(160,320]

(320,640]

(640,1.28e+03]

(1.28e+03,Inf]

0
1

2
3

4

n = 2
n = 3
n = 5
n = 7
n = 10

Average count strata

F
D

R

(0,10]

(10,20]

(20,40]

(40,80]

(80,160]

(160,320]

(320,640]

(640,1.28e+03]

(1.28e+03,Inf]

0.
0

0.
2

0.
4

0.
6

0.
8 n = 2

n = 3
n = 5
n = 7
n = 10

Average count strata

Fa
ls

e 
po

si
tiv

e 
ra

te

(0,10]

(10,20]

(20,40]

(40,80]

(80,160]

(160,320]

(320,640]

(640,1.28e+03]

(1.28e+03,Inf]

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0 n = 2
n = 3
n = 5
n = 7
n = 10

Figure 4: Visualization of stratified power-related quantities

2.5 To filter or not to filter

Differential expression is particularly difficult to detect in genes with very low counts. This is because the Poisson counting

error is comparable or even greater than the biological variation. Thus it is difficult to identify true DE from noise in

these genes and it is often desirable to filter out some genes before performing DE test. Filtering decreases the number

of total tests and thus reduced the burden for multiple testing adjustment. Though we forego the possibility of detecting

DE for the genes filtered out, we do not pay the price in false positives either. This may lead to better power, but the

tradeoff is not apparent and the cutoff for filtering is not obvious.

For the example described in Section 2, if we want to evalute power when we filter out genes within the first strata of

expression (average counts in 0-10), we specify the options filter.by and strata.filtered:

> powers = comparePower(simres, alpha.type="fdr", alpha.nominal=0.1,

+ strata = c(0, 10, 2^(1:7)*10, Inf), filter.by="expr",
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+ strata.filtered=1, stratify.by="expr", delta=0.5)

2.6 Interpret the result

The major application of PROPER is to help choose proper sample size, especially for grant applications. The results from

PROPER can be interpreted and written as the following in a grant application (with proper modification):

“Assume the transcriptome mean and variation profiles are similar to those from mouse striatum cells in previous studies,

and the magnitude of true differential expression is similar to the level observed between two strains of mice. If we expect

to identify 80% of DE genes whose log fold change is beyond 0.5, when the sequencing depth is at 5-million and FDR is

controlled at 0.2, we need to have at least 5 samples in each treatment group.”

3 Advanced options

3.1 setting the effect size by resampling from pilot or public data

Sometimes the user may not want to make a parametric assumption for the effect size, but can feel comfortable expecting

the overall DE is similar to that observed in another experiment. In this case we may use resampling based simulation.

We include an example data frame of mean expression measures (in log scale) in PBMC samples under various conditions.

The data can be access by data(pbmc).

3.2 setting the target of interest by standardized effect size

There is no general agreement on what makes an interesting or relevant amount of differential expression. Many re-

searchers use fold change as a unit of effect size, as this is a unit less measure relative to reference expression level.

Other argue that the relevant effect size may depend on a gene’s natural biological coefficient of variation (BCV). If the

user wishes to define targets of interest as genes with DE relative to BCV, one may change set the option target.by to

effectsize (the default is lfc for log fold change).

The following command evaluate the powers with following criteria: (1) genes with estimated fdr<0.1 are declared DE;

(2) stratification is done by dispersion level; (3) biologically interesting genes are defined as those with standardized log

fold change greater than 1:

> powers = comparePower(simres, alpha.type="fdr", alpha.nominal=0.1,

+ stratify.by="dispersion", target.by="effectsize", delta=1)

3.3 Choosing raw p-value instead of FDR

As one inspects the DE detection in simulation, a user may notice that the actual false discovery proportion differs from

the nominal FDR reported from the DE detection method. One may decide to use unadjusted raw p-values to define DE

gene in such situations (though typically much lower than 0.05 to account for multiple testing).
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The following command evaluate the powers with following criteria: (1) genes with pvalue<0.001 are deemed DE; (2)

stratification is done by dispersion level; (3) biologically interesting genes are defined as those with standardized log fold

change greater than 1:

> powers = comparePower(simres, alpha.type="pval", alpha.nominal=0.001,

+ stratify.by="dispersion", target.by="effectsize", delta=1)

4 Conclusion

PROPER provides methods to assess the power–sample size relationship for DE detection from RNA-seq data. A compre-

hensive evaluation of statistical power, as well as actual type I error, over a range of sample sizes, are obtained based on

simulation studies.

5 Session Info

> sessionInfo()

R version 3.2.2 Patched (2015-08-16 r69094)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2012 R2 x64 (build 9600)

locale:

[1] LC_COLLATE=C LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):

[1] BiocStyle_1.8.0 tools_3.2.2
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