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Abstract

Single cell gene expression studies enable profiling of transcriptional regulation during complex biological pro-
cesses and within highly hetergeneous cell populations. These studies allow discovery of genes that identify certain
subtypes of cells, or that mark a particular intermediate states during a biological process. In many single cell
studies, individual cells are executing through a gene expression program in an unsynchronized manner. In effect,
each cell is a snapshot of the transcriptional program under study. The package monocle provides tools for analyz-
ing single-cell expression experiments. It performs differential gene expression and clustering to identify important
genes and cell states. It is designed for RNA-Seq studies, but can be used with qPCR or other targeted assays. For
more information on the algorithm at the core of monocle, or to learn more about how to use single cell RNA-Seq
to study a complex biological process, see Trapnell and Cacchiarelli et al [1]
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1 Introduction

The monocle package provides a toolkit for analyzing single cell gene expression experiments. It was developed to
analyze single cell RNA-seq data, but can also be used with qPCR measurements. This vignette provides an overview of
a single cell RNA-Seq analysis workflow with Monocle. Monocle was developed to analyze dynamic biological processes
such as cell differentiation, although it also supports simpler experimental settings.

1



As cells differentiate, they undergo a process of transcriptional re-configuration, with some genes being silenced
and others newly activated. While many studies have compared cells at different stages of differentiation, examining
intermediate states has proven difficult, for two reasons. First, it is often not clear from cellular morphology or
established markers what intermediate states exist between, for example, a precursor cell type and its terminally
differentiated progeny. Moreover, two cells might transit through a different sequence of intermediate stages and
ultimately converge on the same end state. Second, even cells in a genetically and epigenetically clonal population
might progress through differentiation at different rates in vitro, depending on positioning and level of contacts with
neighboring cells. Looking at average behavior in a group of cells is thus not necessarily faithful to the process through
which an individual cell transits.

Monocle computationally reconstructs the transcriptional transitions undergone by differentiating cells. It orders a
mixed, unsynchronized population of cells according to progress through the learned process of differentiation. Because
the population may actually differentiate into multiple separate lineages, Monocle allows the process to branch, and can
assign each cell to the correct sub-lineage. It subsequently identifies genes which distinguish different states, and genes
that are differentially regulated through time. Finally, it performs clustering on all genes, to classify them according to
kinetic trends. The algorithm is inspired by and and extends one proposed by Magwene et al to time-order microarray
samples [2]. Monocle differs from previous work in three ways. First, single-cell RNA-Seq data differ from microarray
measurements in many ways, and so Monocle must take special care to model them appropriately at several steps in the
algorithm. Secondly, the earlier algorithm assumes that samples progress along a single trajectory through expression
space. However, during cell differentiation, multiple lineages might arise from a single progenitor. Monocle can find
these lineage branches and correctly place cells upon them. Finally, Monocle also performs differential expression
analysis and clustering on the ordered cells to help a user identify key events in the biological process of interest.

2 Single-cell expression data in Monocle

The monocle package takes a matrix of expression values, which are typically for genes (as opposed to splice variants),
as calculated by Cufflinks [3] or another gene expression estimation program. Monocle assumes that gene expression
values are log-normally distributed, as is typical in RNA-Seq experiments. Monocle does not normalize these expression
values to control for library size, depth of sequencing, or other sources of technical variability - whichever program that
you use to calculate expression values should do that. Monocle is not meant to be used with raw counts, and doing
so could produce nonsense results.

2.1 The CellDataSet class

monocle holds single cell expression data in objects of the CellDataSet class. The class is derived from the Bioconductor
ExpressionSet class, which provides a common interface familiar to those who have analyzed microarray experiments
with Bioconductor. The class requires three input files:

1. exprs, a numeric matrix of expression values, where rows are genes, and columns are cells

2. phenoData, an AnnotatedDataFrame object, where rows are cells, and columns are cell attributes (such as cell
type, culture condition, day captured, etc.)

3. featureData, an AnnotatedDataFrame object, where rows are features (e.g. genes), and columns are gene
attributes, such as biotype, gc content, etc.

The expression value matrix must have the same number of columns as the phenoData has rows, and it must have
the same number of rows as the featureData data frame has rows. Row names of the phenoData object should
match the column names of the expression matrix. Row names of the featureData object should match row names
of the expression matrix.

You can create a new CellDataSet object as follows:

#not run

HSMM_expr_matrix <- read.table("fpkm_matrix.txt")

HSMM_sample_sheet <- read.delim("cell_sample_sheet.txt")

HSMM_gene_annotation <- read.delim("gene_annotations.txt")

Once these tables are loaded, you can create the CellDataSet object like this:

pd <- new("AnnotatedDataFrame", data = HSMM_sample_sheet)

fd <- new("AnnotatedDataFrame", data = HSMM_gene_annotation)

HSMM <- newCellDataSet(as.matrix(HSMM_expr_matrix), phenoData = pd, featureData = fd)
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It is often convenient to know how many express a particular gene, or how many genes are expressed by a given
cell. Monocle provides a simple function to compute those statistics:

HSMM <- detectGenes(HSMM, min_expr = 0.1)

print(head(fData(HSMM)))

## gene_short_name biotype num_cells_expressed

## ENSG00000000003.10 TSPAN6 protein_coding 224

## ENSG00000000005.5 TNMD protein_coding 0

## ENSG00000000419.8 DPM1 protein_coding 234

## ENSG00000000457.8 SCYL3 protein_coding 32

## ENSG00000000460.12 C1orf112 protein_coding 88

## ENSG00000000938.8 FGR protein_coding 0

## use_for_ordering

## ENSG00000000003.10 FALSE

## ENSG00000000005.5 FALSE

## ENSG00000000419.8 FALSE

## ENSG00000000457.8 FALSE

## ENSG00000000460.12 FALSE

## ENSG00000000938.8 FALSE

expressed_genes <- row.names(subset(fData(HSMM), num_cells_expressed >= 50))

The vector expressed_genes now holds the identifiers for genes expressed in at least 50 cells of the data set.
We will use this list later when we put the cells in order of biological progress. It is also sometimes convenient to
exclude genes expressed in few if any cells from the CellDataSet object so as not to waste CPU time analyzing them
for differential expression.

3 Quality control of single cell RNA-Seq experiments

Before proceeding with an in-depth analysis of your experimental data with monocle, you should verify that your data
passes several quality control checks. Your single cell RNA-Seq protocol may have given you the opportunity to image
individual cells after capture but prior to lysis. This image data allows you to score your cells, confirming that none
of your libraries were made from empty wells or wells with excess cell debris. With some protocols and instruments,
you may get more than one cell captured instead just a single cell. You should exclude libraries that you believe did
not come from a single cell, if possible. Empty well or debris well libraries can be especially problematic for Monocle.
It’s also a good idea to check that each cell’s RNA-seq library was sequenced to an acceptible degree. While there
is no widely accepted minimum level for what constitutes seequencing “deeply enough”, use your judgement: a cell
sequenced with only a few thousand reads is unlikely to yield meaningful measurements.

CellDataSet objects provide a convenient place to store per-cell scoring data: the phenoData slot. Simply include
scoring attributes as columns in the data frome you used to create your CellDataSet container. You can then easily
filter out cells that don’t pass quality control. You might also filter cells based on metrics from high throughput
sequencing quality assessment packages such as FastQC. Such tools can often identify RNA-Seq libraries made from
heavily degraded RNA, or where the library contains an abnormally large amount of ribosomal, mitochondrial, or other
RNA type that you might not be interested in.

The HSMM dataset included with this package has scoring columns built in:

print(head(pData(HSMM)))

## Library Well Hours Media Mapped.Fragments Pseudotime State

## T0_CT_A01 SCC10013_A01 A01 0 GM 1958074 23.916673 1

## T0_CT_A03 SCC10013_A03 A03 0 GM 1930722 9.022265 1

## T0_CT_A05 SCC10013_A05 A05 0 GM 1452623 7.546608 1

## T0_CT_A06 SCC10013_A06 A06 0 GM 2566325 21.463948 1

## T0_CT_A07 SCC10013_A07 A07 0 GM 2383438 11.299806 1

## T0_CT_A08 SCC10013_A08 A08 0 GM 1472238 67.436042 2

## num_genes_expressed

## T0_CT_A01 9770

## T0_CT_A03 9180
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## T0_CT_A05 8528

## T0_CT_A06 7096

## T0_CT_A07 7590

## T0_CT_A08 7702

This dataset has already been filtered using the following commands:

valid_cells <- row.names(subset(pData(HSMM), Cells.in.Well == 1 & Control == FALSE & Clump == FALSE & Debris == FALSE & Mapped.Fragments > 1000000))

HSMM <- HSMM[,valid_cells]

Once you’ve excluded cells that do not pass your quality control filters, you should verify that the expression values
stored in your CellDataSet follow a distribution that is roughly lognormal:

# Log-transform each value in the expression matrix.

L <- log(exprs(HSMM[expressed_genes,]))

# Standardize each gene, so that they are all on the same scale,

# Then melt the data with plyr so we can plot it easily"

melted_dens_df <- melt(t(scale(t(L))))

# Plot the distribution of the standardized gene expression values.

qplot(value, geom="density", data=melted_dens_df) + stat_function(fun = dnorm, size=0.5, color='red') +

xlab("Standardized log(FPKM)") +

ylab("Density")

## Warning: Removed 2854443 rows containing non-finite values (stat_density).
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4 Basic differential expression analysis

Differential gene expression analysis is a common task in RNA-Seq experiments. Monocle can help you find genes that
are differentially expressed between groups of cells and assesses the statistical signficance of those changes. These
comparisons require that you have a way to collect your cells into two or more groups. These groups are defined by
columns in the phenoData table of each CellDataSet. Monocle will assess the signficance of each gene’s expression
level across the different groups of cells.

Performing differential expression analysis on all genes in the human genome can take a substantial amount of
time. For a dataset as large as the myoblast data from [1], which contains several hundred cells, the analysis can
take several hours on a single CPU. Let’s select a small set of genes that we know are important in myogenesis to
demonstrate Monocle’s capabilities:

marker_genes <- row.names(subset(fData(HSMM),

gene_short_name %in% c("MEF2C", "MEF2D", "MYF5", "ANPEP", "PDGFRA",

"MYOG", "TPM1", "TPM2", "MYH2", "MYH3", "NCAM1", "TNNT1", "TNNT2", "TNNC1",

"CDK1", "CDK2", "CCNB1", "CCNB2", "CCND1", "CCNA1", "ID1")))

In the myoblast data, the cells collected at the outset of the experiment were cultured in“growth medium”(GM) to
prevent them from differentiating. After they were harvested, the rest of the cells were switched over to“differentiation
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medium” (DM) to promote differentiation. Let’s have monocle find which of the genes above are affected by this
switch:

diff_test_res <- differentialGeneTest(HSMM[marker_genes,],

fullModelFormulaStr="expression~Media")

# Select genes that are significant at an FDR < 10%

sig_genes <- subset(diff_test_res, qval < 0.1)

# Attach the HUGO symbols and other featureData for these genes

sig_genes <- merge(fData(HSMM), sig_genes, by="row.names")

sig_genes[,c("gene_short_name", "pval", "qval")]

## gene_short_name pval qval

## 1 MEF2C 4.467856e-02 4.691249e-02

## 2 TNNT1 1.609316e-03 2.112228e-03

## 3 MYH3 2.105695e-15 4.421959e-14

## 4 CCND1 3.050216e-03 3.767913e-03

## 5 MYF5 1.734181e-12 1.213927e-11

## 6 TNNC1 1.295710e-07 3.023324e-07

## 7 MEF2D 1.226788e-02 1.431252e-02

## 8 TNNT2 1.414059e-05 2.699567e-05

## 9 MYOG 4.811366e-11 2.020774e-10

## 10 CDK2 4.478085e-05 7.836649e-05

## 11 MYH2 2.481852e-04 4.009145e-04

## 12 ID1 7.529538e-10 2.635338e-09

## 13 CCNA1 7.200186e-02 7.200186e-02

## 14 CCNB1 9.506501e-09 2.851950e-08

## 15 PDGFRA 1.130272e-07 2.966964e-07

## 16 TPM1 5.033852e-07 1.057109e-06

## 17 NCAM1 3.886923e-02 4.296073e-02

## 18 CCNB2 5.277032e-14 5.540883e-13

## 19 ANPEP 3.842662e-04 5.763993e-04

## 20 CDK1 1.118992e-11 5.874708e-11

## 21 TPM2 1.570507e-03 2.112228e-03

So 18 of the 22 genes are significant at a 10% false discovery rate! This isn’t surprising, as most of the above
genes are highly relevant in myogenesis. Monocle also provides some easy ways to plot the expression of a small set
of genes grouped by the factors you use during differential analysis. This helps you visualize the differences revealed
by the tests above. One type of plot is a “jitter” plot.

MYOG_ID1 <- HSMM[row.names(subset(fData(HSMM),

gene_short_name %in% c("MYOG", "ID1"))),]

plot_genes_jitter(MYOG_ID1, grouping="Media", ncol=2)
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Note that we can control how to layout the genes in the plot by specifying the number of rows and columns. See
the man page on plot_genes_jitter for more details on controlling its layout. Most if not all of Monocle’s plotting
routines return a plot object from the ggplot2. This package uses a grammar of graphics to control various aspects of
a plot, and makes it easy to customize how your data is presented. See the ggplot2 book [?] for more details.
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5 Ordering cells by progress

In many biological processes, cells do not progress in perfect synchrony. In single-cell expression studyies of processes
such as cell differentiation, captured cells might be widely distributed in terms of progress. That is, in a population of
cells captured at exactly the same time, some cells might be far along, while others might not yet even have begun
the process. Monocle can informatically put the cells “in order” of how far they have progressed through the process
you’re studying. Monocle may even be able to find where cells diverge, with groups of cells proceeding down distinct
paths. In this section, we will put a set of differentiating myoblasts in order of progress through myogenesis.

First, we must decide which genes we will use to define a cell’s progress through myogenesis. Monocle orders cells
by examining the pattern of expression of these genes across the cell population. Monocle looks for genes that vary in
“interesting” ways (that is aren’t just noisy), and uses these to structure the data. We ultimately want a set of genes
that increase (or decrease) in expression as a function of progress through the process we’re studying.

Ideally, we’d like to use as little prior knowledge of the biology of the system under study as possible. We’d like
to discover the important ordering genes from the data, rather than relying on literature and textbooks, because that
might introduce bias in the ordering. One effective way to isolate a set of ordering genes is to simply compare the cells
collected at the beginning of the process to those at the end and find the differentially expressed genes, as described
above. The command below will find all genes that are differentially expressed in response to the switch from growth
medium to differentiation medium:

#not run

diff_test_res <- differentialGeneTest(HSMM[expressed_genes,], fullModelFormulaStr="expression~Media")

ordering_genes <- row.names (subset(diff_test_res, qval < 0.01))

However, for the sake of keeping the running time in this vignette short, we will leverage the developmental biology
community’s extensive knowledge of expression dynamics during skeletal myogenesis, and use the small set of genes
discussed above.

ordering_genes <- row.names (subset(diff_test_res, qval < 0.1))

#Only use genes are detectably expressed in a sufficient number of cells

ordering_genes <- intersect(ordering_genes, expressed_genes)

Once we have a list of gene ids to be used for ordering, we need to set them in the HSMM object, because the next
several functions will depend on them.

HSMM <- setOrderingFilter(HSMM, ordering_genes)

The genes we’ve chosen to use for ordering define the state space of the cells in our data set. Each cell is a point
in this space, which has dimensionality equal to the number of genes we’ve chosen. So if there are 500 genes used for
ordering, each cell is a point in a 500-dimensional space. For a number of reasons, Monocle works better if we can
reduce the dimensionality of that space before we try to put the cells in order. In this case, we will reduce the space
down to one with two dimensions, which we will be able to easily visualize and interpret while Monocle is ordering the
cells.

HSMM <- reduceDimension(HSMM, use_irlba=FALSE)

## Reducing to independent components

Now that the space is reduced, it’s time to order the cells. The call below has two important optional arguments.
The first num_paths allows Monocle to assign cells to one of several alternative fates. In this case, we know there are
contaminating fibroblasts in the culture, so by setting num_paths= 2, the fibroblasts wind up on their own trajectory
in response to the serum switch, instead of getting mixed in with the myoblasts. The second important argument is
the reverse flag. Monocle won’t be able to tell without some help which cells are at the beginning of the process
and which are at the end. The reverse flag tells Monocle to reverse the orientation of the entire process as it’s
being discovered from the data, so that the cells that would have been assigned to the end are instead assigned to the
beginning, and so on.

HSMM <- orderCells(HSMM, num_paths=2, reverse=TRUE)
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plot_spanning_tree(HSMM)
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HSMM_filtered <- HSMM[expressed_genes, pData(HSMM)$State != 3]

my_genes <- row.names(subset(fData(HSMM_filtered),

gene_short_name %in% c("CDK1", "MEF2C", "MYH3")))

cds_subset <- HSMM_filtered[my_genes,]

plot_genes_in_pseudotime(cds_subset, color_by="Hours")
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6 Advanced differential expression analysis

In this section, we’ll explore how to use Monocle to find genes that are differentially expressed according to several
different criteria. First, we’ll look at how to use Monocle’s classification of cell ”States” to find genes that distinguish
subpopulations of cells. Second, we’ll look at how to find genes that are differentially expressed as a function of
pseudotime, such as those that become activated or repressed during differentiation. Finally, you’ll see how to perform
multi-factorial differential analysis, which can help subtract the effects of confounding variables in your experiment.

To keep the vignette simple and fast, we’ll be working with small sets of genes. Rest assured, however, that
Monocle can analyze many thousands of genes even in large experiments, making it useful for discovering dynamically
regulated genes during the biological process you’re studying.

6.1 Finding genes that distinguish cell type or state

During a dynamic biological process such as differentiation, cells might assume distinct intermediate or final states.
When we ordered the myoblasts, we allowed them to ultimately select one of two outcomes. As discussed in Trapnell
and Cacchiarelli et al, these two outcomes correspond to myoblasts and a contaminating fibroblast population (States 2
and 3) when cultured in low-mitogen medium (DM). Monocle also identified a third state (State 1), which corresponds
to actively proliferating cells cultured in growth medium (GM). Let’s look at several genes that should distinguish
between fibroblasts and myoblasts in DM. We’ll exclude all cells from state 1 for now.

to_be_tested <- row.names(subset(fData(HSMM),

gene_short_name %in% c("TBP", "MYH3", "NCAM1", "PDGFRA", "ANPEP")))

cds_subset <- HSMM[to_be_tested, pData(HSMM)$State != 1]

To test the effects of State on gene expression, we simply call differentialGeneTest on the genes we’ve
selected. To specify that we want genes that differ between cells in State 2 vs. State 3, we have to specify a model
formula. Monocle’s differential expression analysis works essentially by fitting two models to the expression values for
each gene, working through each gene independently. The simpler of the two models is called the full model. This
model is essentially a way of predicting the expression value of the gene we’re currently looking at as a function of
whatever State Monocle’s ordering routine assigned to it. The second model, called the reduced model, does the same
thing, but it doesn’t know the State for each cell. It has to come up with a reasonable prediction of the expression
value for the gene that will be used for all the cells. Because the full model has more information about each cell, it
will do a better job of predicting the expression of the gene in each cell. The question Monocle must answer for each
gene is how much better the full model’s prediction is than the reduced model’s. The greater the improvement that
comes from knowing the State of each cell, the more significant the differential expression result. This is a common
strategy in differential analysis, and we leave a detailed statistical exposition of such methods to others.

To set up the test based on State, we simply call differentialGeneTest with a string specifying fullModelFormulaStr.
We don’t have to specify the reduced model in this case, because the default of expression 1 is what we want here.

diff_test_res <- differentialGeneTest(cds_subset, fullModelFormulaStr="expression~State")

diff_test_res <- merge(fData(HSMM), diff_test_res, by="row.names")

diff_test_res[,c("gene_short_name", "pval", "qval")]

## gene_short_name pval qval

## 1 MYH3 9.028576e-07 1.128572e-06

## 2 TBP 9.027208e-01 9.027208e-01

## 3 PDGFRA 9.757446e-08 1.626241e-07

## 4 NCAM1 1.911788e-39 9.558938e-39

## 5 ANPEP 1.082550e-11 2.706374e-11

Note that all the genes are significantly differentially expressed as a function of State except the housekeeping
gene TBP, which we’re using a negative control. However, we don’t know which genes correspond to myoblast-specific
genes (those more highly expressed in State 2) versus fibroblast specific genes. We can again plot them with a jitter
plot to see:

plot_genes_jitter(cds_subset, color_by="Media", nrow=1, ncol=NULL, plot_trend=TRUE)

Monocle: Differential expression and time-series analysis for single-cell RNA-Seq and qPCR experiments
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Note that we could also simply compute summary statistics such as mean or median expression level on a per-State
basis to see this, which might be handy if we are looking at more than a handful of genes.

The differentialGeneTest function is actually quite simple “under the hood”. The call above is equivalent to:

full_model_fits <- fitModel(cds_subset, modelFormulaStr="expression~State")

reduced_model_fits <- fitModel(cds_subset, modelFormulaStr="expression~1")

diff_test_res <- compareModels(full_model_fits, reduced_model_fits)

diff_test_res

Occassionally, as we’ll see later, it’s useful to be able to call fitModel directly.

6.2 Finding genes that change as a function of pseudotime

Monocle’s main job is to put cells in order of progress through a biological process (such as cell differentiation) without
knowing which genes to look at ahead of time. Once it’s done so, you can analyze the cells to find genes that changes
as the cells make progress. For example, you can find genes that are significantly upregulated as the cells “mature”.
Let’s look at a panel of genes important for myogenesis:

to_be_tested <- row.names(subset(fData(HSMM),

gene_short_name %in% c("MYH3", "MEF2C", "CCNB2", "TNNT1")))

cds_subset <- HSMM[to_be_tested, pData(HSMM)$State != 3]

Again, we’ll need to specify the model we want to use for differential analysis. This model will be a bit more
complicated than the one we used to look at the differences between State. Monocle assigns each cell a“pseudotime”
value, which records its progress through the process in the experiment. The model can test against changes as a
function of this value. Monocle uses the VGAM package to model a gene’s expression level as a smooth, nonlinear
function of pseudotime:

diff_test_res <- differentialGeneTest(cds_subset, fullModelFormulaStr="expression~sm.ns(Pseudotime)")

The sm.ns function states that Monocle should fit a natural spline through the expression values to help it describe
the changes in expression as a function of progress. We’ll see what this trend looks like in just a moment. Other
smoothing functions are available.

Once again, let’s add in the gene annotations so it’s easy to see which genes are significant.

diff_test_res <- merge(fData(HSMM), diff_test_res, by="row.names")

diff_test_res[,c("gene_short_name", "pval", "qval")]

## gene_short_name pval qval

## 1 MEF2C 7.101360e-16 7.101360e-16

## 2 TNNT1 9.301420e-21 1.860284e-20

## 3 MYH3 3.466043e-19 4.621390e-19

## 4 CCNB2 1.243066e-25 4.972262e-25

We can plot the expression levels of these genes, all of which show significant changes as a function of differentiation,
using the function plot_genes_in_pseudotime. This function has a number of cosmetic options you can use to
control the layout and appearance of your plot.

Monocle: Differential expression and time-series analysis for single-cell RNA-Seq and qPCR experiments



plot_genes_in_pseudotime(cds_subset, color_by="Hours")
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6.3 Multi-factorial differential expression analysis

Monocle can perform differential analysis in the presence of multiple factors, which can help you subtract some factors
to see the effects of others. In the simple example below, Monocle tests three genes for differential expression between
State 2 and 3, while subtracting the effect of Hours, which encodes the day on which each cell was collected. To do
this, we must specify both the full model and the reduced model. The full model captures the effects of both State

and Hours, while the reduced model only knows about Hours.
When we plot the expression levels of these genes, we can modify the resulting object returned by plot_genes_jitter

to allow them to have independent y-axis ranges, to better highlight the differences between cell states.

to_be_tested <- row.names(subset(fData(HSMM),

gene_short_name %in% c("MT2A", "REXO2", "HDAC4")))

cds_subset <- HSMM[to_be_tested, pData(HSMM)$Media == "DM" & pData(HSMM)$State != 1]

diff_test_res <- differentialGeneTest(cds_subset,

fullModelFormulaStr="expression~State * Hours",

reducedModelFormulaStr="expression~Hours")

diff_test_res <- merge(fData(cds_subset), diff_test_res, by="row.names")

diff_test_res[,c("gene_short_name", "pval", "qval")]

## gene_short_name pval qval

## 1 HDAC4 6.912805e-01 6.912805e-01

## 2 REXO2 7.111737e-05 1.066761e-04

## 3 MT2A 9.821186e-09 2.946356e-08

plot_genes_jitter(cds_subset, grouping="Hours", color_by="State", plot_trend=TRUE) + facet_wrap( ~ feature_label, scales="free_y")

Monocle: Differential expression and time-series analysis for single-cell RNA-Seq and qPCR experiments
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7 Clustering genes by pseudotemporal expression pattern

A common question that arises when studying time-series gene expression studies is: “which genes follow similar kinetic
trends”? Monocle can help you answer this question by grouping genes that have similar trends, so you can analyze
these groups to see what they have in common. To do this, we’ll first fit a smooth curve for each gene’s expression
trend as a function of pseudotime, then we’ll group the genes according to similarity of these curves.

We start by using the model fitting function that’s used during differential expression testing. This fitting procedure
works gene by gene and can take a while, so we’ll just work with 100 randomly chosen genes to keep the vignette small
and fast.

sampled_gene_cds <- HSMM_filtered[sample(nrow(fData(HSMM_filtered)), 100),]

full_model_fits <- fitModel(sampled_gene_cds, modelFormulaStr="expression~sm.ns(Pseudotime, df=3)")

## <simpleError in lm.fit(X.vlm, y = z.vlm, ...): NA/NaN/Inf in 'y'>

The full_model_fits list contains a model for each gene that we’ve chosen. We can generate a matrix of values
where each row holds the predicted exression values for a gene over each cell, which correspond to the columns.
Monocle provides the responseMatrix function to make this easy.

expression_curve_matrix <- responseMatrix(full_model_fits)

dim(expression_curve_matrix)

## [1] 100 212

Now we’ll feed this matrix to a function, clusterGenes, that will cluster the genes into four groups:

clusters <- clusterGenes(expression_curve_matrix, k=4)

plot_clusters(HSMM_filtered[ordering_genes,], clusters)

Monocle: Differential expression and time-series analysis for single-cell RNA-Seq and qPCR experiments
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The plot_clusters function returns a ggplot2 object showing the shapes of the expression patterns followed by
the 100 genes we’ve picked out. The topographic lines highlight the distributions of the kinetic patterns relative to
the overall trend lines, shown in red.

8 Citation

If you use Monocle to analyze your experiments, please cite:

citation("monocle")

##

## Cole Trapnell and Davide Cacchiarelli et al (2014): The dynamics

## and regulators of cell fate decisions are revealed by

## pseudo-temporal ordering of single cells. Nature Biotechnology

##

## A BibTeX entry for LaTeX users is

##

## @Article{,

## title = {The dynamics and regulators of cell fate decisions are revealed by pseudo-temporal ordering of single cells},

## author = {Cole Trapnell and Davide Cacchiarelli and Jonna Grimsby and Prapti Pokharel and Shuqiang Li and Michael Morse and Niall J. Lennon and Kenneth J. Livak and Tarjei S. Mikkelsen and John L. Rinn},

## year = {2014},

## journal = {Nature Biotechnology},

## }
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10 Session Info

sessionInfo()
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