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1 Introduction
This manual is a brief introduction to structure, functions and usage of mmnet pack-
age. The mmnet package provides a set of functions to support systems analysis of
metagenomic data in R, including annotation of raw metagenomic sequence data, con-
struction of metabolic network, and differential network analysis based on state specific
metabolic network and enzymatic gene abundance.

Meanwhile, the package supports an analysis pipeline for metagenomic systems bi-
ology. We can simply start from raw metagenomic sequence data, optionally use MG-
RAST to rapidly retrieve metagenomic annotation, fetch pathway data from KEGG
using its API to construct metabolic network, and then utilize a metagenomic systems
biology computational framework mentioned in (?) to establish further differential
network analysis.

The main features of mmnet:

• Annotation of metagenomic sequence reads with MG-RAST

• Estimating abundances of enzymatic gene based on functional annotation

• Constructing State Specific metabolic Network

• Topological network analysis

• Differential network analysis

1.1 Installation
mmnet requires these packages: KEGGREST, igraph, Biobase, XML, RCurl, RJSO-
NIO, stringr, ggplot2 and biom. These should be installed automatically when you
install mmnet with biocLite() as follows:

## install release version of mmnet
source("http://bioconductor.org/biocLite.R")
biocLite("mmnet")

## install the latest development version
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useDevel()
biocLite("mmnet")

It should be noted that the function call useDevel() calling is chechout to the de-
velopment versino of BIOCONDUCTOR and it will be install the latest development
version of mmnet, which has more functions available and a lot of bugs fixed.

After installation, the mmnet is ready to load into the current workspace by the
following codes to the current workspace by typing or pasting the following codes:

library(mmnet)

2 Analysis Pipeline: from raw Metagenomic Sequence
Data to Metabolic Network Analysis

We will demonstrate go through an analysis pipeline to illustrate some of the main
functions in mmnet. This pipeline consists of several steps:

1. Raw metagenomic sequence data: prepare a specific amount of sequence data
ready to analyze from metagenomic studies. You can get the data by short-gun
sequencing or download raw data available online. Here we download a sample
data from ftp of MG-RAST.

2. Functional annotation: raw reads must be processed for functional annotation to
mapping to enzyme libraries with existing knowledge, such as KEGG database.

3. State Specific Network: start from an enzyme set, we can map these enzymes
onto metabolic pathways to construct a relatively small metabolic network with
abundance involved in specific biological states, named State Specific Network
(SSN).

4. Topological and differential network analysis: topological network analysis per-
forms a series of correlation analysis between enzyme abundances and topolog-
ical properties, i.e. betweenness or pageRank. Meanwhile differential network
analysis compares the enzyme abundances and structure of different state spe-
cific networks.

2.1 Prepare metagenomic sequence data
Acceptable sequence data can be in FASTA, FASTQ or SFF format. These are rec-
ognized by the file name extension with valid extensions for the appropriate formats
.fasta, .fna, .fastq, .fq, and .sff and FASTA and FASTQ files need to be in plain text
ASCII. An easy way to get some sequence data is to download public dataset from
MG-RAST. Here we download two FASTA data sets from MG-RAST ftp server, which
corresponds two metagenomic samples with different physiological states (MG-RAST
ID: 4440616.3 and 4440823.3). These data sets are consisting of several microbiomes
from twin pairs and their mothers (?).

download.file("ftp://ftp.metagenomics.anl.gov/projects/10/4440616.3/raw/507.fna.gz",
destfile = "obesesample.fna.gz")

download.file("ftp://ftp.metagenomics.anl.gov/projects/10/4440823.3/raw/687.fna.gz",
destfile = "leansample.fna.gz")
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2.2 Annotation of Metagenomic Sequence Reads
Functional annotation of microbiome is a crucial step for subsequent analysis. Many
tools can be used to identify functions of sequences. Meanwhile, local analysis tools
and annotation database need complicated installation and configuration, and suppose
users have deep understanding on high performance computing and next generation
sequencing, that requires users have sufficient preparing time, technical kills and com-
puting resource.

To facilitate the analysis of microbiome metabolic network, mmnet provides func-
tions for sequence annotation linking R with MG-RAST. MG-RAST (?) is a stable,
extensible, online analysis platform for annotation and statistic metagenomes based on
sequence data. Moreover, MG-RAST is freely available to all researchers. For more
details, see http://metagenomics.anl.gov.

By integrating the web service provided by MG-RAST into R environment. mm-
net provides several functions for assigning functional annotation to reads : loginM-
grast,uploadMgrast, submitMgrastJob, listMgrastProject and checkMgrastMetagenome.

Before use the MG-RAST services, we need register and login a MG-RAST ac-
count to access its service. Registration needs to be done on the website. Login can be
processed by function loginMgrast. After successful calling this function with user’s
name and password, a session variable login.info is returned for further access to MG-
RAST service. It should be noted that username ’mmnet’ with password ’mmnet’ was
already registered for testing purpose. See ’?loginMgrast’ for more details.

## login on MG-RAST
login.info <- loginMgrast(user = "mmnet", userpwd = "mmnet")

After login, the next step is to upload raw sequence data (obesesample.fna.gz and
leansample.fna.ga in here) to your MG-RAST inbox. Function uploadMgrast is de-
signed to get the job done easily.

## select the sample data to upload
seq.file <- c("obesesample.fna.gz", "leansample.fna.gz")
## upload sequence data to MG-RAST
metagenome.id <- lapply(seq.file, uploadMgrast, login.info = login.info)

Note: According to MG-RAST user manual, uploaded files may be removed from
your inbox after 72 hours. So please perform submission of your files within that time
frame.

Once the sequence data is uploaded to your MGRAST inbox, users could submit
one MGRAST job to annotate each sequence files in your inbox with function submit-
MgrastJob.

## submit MGRAST job
metagenome.id <- lapply(seq.file, submitMgrastJob,

login.info = login.info)
show(metagenome.id)

It should be noticed that our sample metagenomic sequences downloaded from the
MG-RAST have been annotated, so it will return the corresponding metagenome ID
that already exists in MG-RAST without duplicated annotation.

In other cases, the annotation process may take several hours or days. Thus, here
we provide a function checkMgrastMetagenome to check whether your metagenome
annotation is completed or in processing.
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## check MGRAST project status
metagenome.status <- lapply(metagenome.id, checkMgrastMetagenome,

login.info = login.info)
## apparently, status of completed annotation
## metagenome is TRUE
show(metagenome.status)

Once the annotation process completes, the metagenome ID can be obtained by
function getMgrastAnnotation to load the functional annotation profile separately for
subsequent metabolic analysis. For private data, you must login on MGRAST to get
login.info and call getMgrastAnnotation with login.info. For more details see ’getM-
grastAnnotation’.

## private data
private.annotation <- lapply(metagenome.id, getMgrastAnnotation,

login.info = login.info)
## public annotation data, does not require
## login.info
public.annotation <- lapply(metagenome.id, getMgrastAnnotation)

For convenience, we have save this annotation profiles in mmnet names ’anno.rda’.
See ’anno’ for more details. Loading annotation profiles as follows:

data(anno)
summary(anno)

## Length Class Mode
## 4440616.3 13 data.frame list
## 4440823.3 13 data.frame list

Here, we show an entire process which integrates all the functions above, from se-
quence uploading to annotation profile downloading, and retrieve the annotation profile
after MG-RAST annotation completed.

## first login on MG-RAST
login.info <- loginMgrast("mmnet", "mmnet")
## prepare the metagenomic sequence for annotation
seq <- "obesesample.fna.gz"
## mgrast annotation
uploadMgrast(login.info, seq)
metagenome.id2 <- submitMgrastJob(login.info, seqfile = basename(seq))
while (TRUE) {

status <- checkMgrastMetagenome(metagenome.id = metagenome.id2)
if (status)

break
Sys.sleep(5)
cat("In annotation, please waiting...")
flush.console()

}
## if annotation profile is public,take login.info
## as NULL
anno2 <- getMgrastAnnotation(metagenome.id2, login.info = login.info)
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2.3 Estimating the abundance of enzymatic genes
Enzyme abundance varies in different biological states. Enzymatic gene abundances
are important for microbial marker-gene and disease study, especially for linking mi-
crobial genes with the host state. Here, we estimate enzymatic gene abundances based
on read counts with a normalization procedure.

To estimate the abundance of enzymatic genes, estimateAbundance function should
be called for each sample. A widely used in metagenomic analysis format - Biological
Observation Matrix (BIOM) (?) format will be return by this function. The BIOM
file format (canonically pronounced biome) is designed to be a general-use format for
representing biological sample by observation contingency tables. More details on
BIOM file can be found in http://biom-format.org/.

mmnet.abund <- estimateAbundance(anno)
show(mmnet.abund)

## biom object.
## type: enzymatic genes abundance
## matrix_type: dense
## 1034 rows and 2 columns

Furthermore, BIOM abundance file was also supported by other tools. Take MG-
RAST for example, user could download the enzymatic genes abundance profile with
MG-RAST API. Moreover, while samples have been annotated with other tools (e.g.
blast to KEGG locally), users could create their own BIOM files represents enzymatic
genes abundance and import them for metagenomic systems biology analysis.

## download BIOM functional abundance profile of the
## two sample metagenome from MG-RAST
if (require(RCurl)) {

function.api <- "http://api.metagenomics.anl.gov/1/matrix/function"
mgrast.abund <- read_biom(getForm(function.api,

.params = list(id = "mgm4440616.3", id = "mgm4440823.3",
source = "KO", result_type = "abundance")))

}
## obtain the intersect ko abundance of MG-RAST and
## esimatiAbundance
intersect.ko <- intersect(rownames(mgrast.abund), rownames(mmnet.abund))
## compare the two by taking one metagenome
mgrast.abund1 <- biom_data(mgrast.abund)[, 1][intersect.ko]
mmnet.abund1 <- biom_data(mmnet.abund)[, 1][intersect.ko]
if (require(ggplot2)) {

p <- qplot(mgrast.abund1, mmnet.abund1) + geom_abline(slope = 1,
intercept = 0, color = "blue") + ylim(0, 400) +
xlim(0, 400)

print(p)
}

The enzymatic gene abundances estimated by MG-RAST is un-calibrated and un-
optimized compared to the method in mmnet. As show in Figure 1, abundances in
MG-RAST is over-estimated in most cases, especially on high abundance enzymatic
genes. The details on abundances calibration in mmnet is as follows: Sequences were
annotated with all KOs (KEGG orthologous groups) of the top KO-associated match
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Figure 1: enzymatic genes abundance comparison between MG-RAST and mmnet
package

among the top 100 matches; Sequences with multiple top KO-associated matches with
the same e-value were annotated with the union set of KOs; To make a balance be-
tween identifying low-abundance genes and reducing the error-rate of identification a
threshold of 2 reads to allow the inclusion of rare genes and all KO abundances below
this threshold were set to zero.

For other tools, users can download the annotated data first. Taking IMG/M for
example, metagenomic annotation data from IMG/M includes the abundance infor-
mation. Thus, we can construct the metabolic network without abundance estimation
directly. It can be accessed as following: 1) In package mmnet, function to construct
metabolic network takes BIOM file as input. We create the BIOM file for network
construction first:

## Load the IMG/M sample data
IMGFile <- system.file("extdata/IMGSample.tab", package = "mmnet")
IMGSample <- read.delim2(IMGFile, quote = "")
## Create BIOM file for network construction
abundance <- IMGSample$Gene.Count
abundance <- abundance/sum(abundance)
abundance <- as.data.frame(abundance)
KO <- IMGSample$KO.ID
KO <- as.data.frame(gsub("KO:", "", KO))
biom.data <- make_biom(abundance, observation_metadata = KO)
biom.data$type <- "enzymatic genes abundance"

2) Then we construct and analyze the SSN:
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## Construct and analyze SSN
ssn <- constructSSN(biom.data)
topologicalAnalyzeNet(ssn)

Futhermore, users may have annotated the metagenomic reads locally, the anno-
tated profile should be preprocessed in format as the MGRAST annotation profile that
have 13 columns. Details:

1. Read id
2. Hit id, ref sequence id
3. percentage identity, e.g. 100.00
4. alignment length, e.g. 107
5. number of mismatches, e.g. 0
6. number of gap openings, e.g. 0
7. query start, e.g. 1
8. query .end, e.g. 107
9. hit start, e.g. 1262
10. hit .end, e.g. 1156
11. e-value, e.g. 1.7e-54
12. score in bits, e.g. 210.0
13. KEGG orthology
Then we can analyze the annotation profile properly as profile from MG-RAST.

We also have added this description to the vignette of mmnet to help users analyze the
annotation profiles from the other tools. And we still strive to improve our package
with good support for other tools.

2.4 Building reference metabolic dataset
This package takes KEGG database to annotate enzymatic genes with metabolic re-
actions which is the basis representation for all proteins and functional RNAs corre-
sponding to KEGG pathway nodes, BRITE hierarchy nodes, and KEGG module nodes
to annotation the microbiome. The KEGG metabolic pathway is the best organized
part of KEGG PATHWAY database, and also is a network of KO-KO relations (?). It is
composed of KO, substrate and product of KO, and have been applied widely to create
genome-scale metabolic networks of various microbial species (?).

This reference metabolic data was obtained with the KEGG free REST API, about
150 KEGG reference pathways. And KEGG API is provided for academic use by aca-
demic users belonging to academic institutions. This service should not be used for
bulk data downloads. Thus, our small download with KEGG API is in agreement with
the license.

An initial reference data named RefDbcache.rda was saved in ”data” subdirectory
of mment that contains KOs and annotated with a metabolic reaction. Moreover, an KO
based reference metabolic network was also saved in RefDbcache.rda, where nodes
represent enzymes (KOs), and the directed edge from enzyme A to enzyme B indicates
that a product metabolite of a reaction catalyzed by enzyme A is a substrate metabolite
of a reaction catalyzed by enzyme B. As KEGG database is constantly updated, refer-
ence data can be updated by function updateMetabolicNetwork manually and saved in
the directory user specified.

Reference dataset can be loaded by function loadMetabolicData
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loadMetabolicData()
summary(RefDbcache)

## Length Class Mode
## ko 3768 -none- character
## substrate 3768 -none- list
## product 3768 -none- list
## user 1 -none- character
## date 1 -none- character
## version 14 -none- list
## network 9 igraph list

2.5 Constructing State Specific Network
Different biological states (e.g. obese or lean) can be identified based on different enzy-
matic gene set and abundances. In network view, different biological states associates
different metabolic sub-network with different abundances, named as State Specific
Network (SSN). We provide function constructSSN to construct the reference network
to obtain the state specific metabolic network for each microbiome. It could take the
output of function estimateAbundance as input, give the SSN as output.

ssn <- constructSSN(mmnet.abund)
g <- ssn[[1]]
summary(g)

## IGRAPH DN-- 568 5229 -- SSN
## + attr: name (g/c), name (v/c), abundance (v/n)

abund <- get.vertex.attribute(g, "abundance", index = V(g))
summary(abund)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2 8 25 39 49 310

2.6 Topological network analysis
To examine whether enzymes that are associated with a specific host state exhibit some
topological features in the SSN, we provide function topologicalAnalyzeNet to com-
pute and illustrate the correlations between the topological properties of enzymatic
genes and their abundances. It links the difference abundance with the topological
correlation (Figure 2). Common topological features are supported. See ’?topological-
AnalyzeNet’ for details.

topo.net <- topologicalAnalyzeNet(g)
## network with topological features as attributes
topo.net

## IGRAPH DN-- 568 5229 -- SSN
## + attr: name (g/c), name (v/c), abundance (v/n),
## | betweennessCentrality (v/x), degree (v/x),
## | clusteringCoefficient (v/x), pageRank (v/x)
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Figure 2: Topological metabolic network analysis, linking topological features and
enzymatic gene abundances

## + edges (vertex names):
## [1] K01623->K00128 K01623->K00134 K01623->K01803 K01623->K00850
## [5] K01623->K01625 K01623->K01619 K01623->K00615 K01623->K00616
## [9] K01623->K01629 K01623->K00895 K01623->K00057 K01623->K01734
## [13] K01623->K01632 K01623->K08681 K01623->K06215 K01623->K03517
## [17] K01623->K01624 K01623->K04041 K01623->K03856 K00128->K01623
## [21] K00128->K00382 K00128->K01895 K00128->K00174 K00128->K00658
## + ... omitted several edges

2.7 Differential network analysis
To compare the abundance of enzymatic genes across various samples, we take three
strategies to identify the differential abundance (enrich or deplete), including (1) odds
ratio, (2) difference rank and (3) Jensen-Shannon Divergence (JSD). The corresponding
function differentialAnalyzeNet outputs the comparative network with nodes of differ-
ential abundance as result (Figure 3).

state <- c("obese", "lean")
differential.net <- differentialAnalyzeNet(ssn, sample.state = state,

method = "OR", cutoff = c(0.5, 2))
summary(differential.net)

## IGRAPH DN-- 651 6512 -- refNet
## + attr: name (g/c), name (v/c), p.value (v/n), OR (v/n)

9



●

●
●

●

●

●

●●

●

●

●
● ●

●
●

●
●

●

●
●

●

●●●
●●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●●●

●●
●

●●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●
●●●

●●●●
●

●
●

●

●

●

●

●

●

● ●

● ●

●

●●

●●●
●● ●

●

●

●
●

● ●

●●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
● ●
●

● ●●
●●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

● ●

●

●

●●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●●

●
●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●

●●●●●●

●

●

●

●●

●●●

●

●●

●
●
●●

●

●

●

●●

●●●

●●●●●
●●●●●●●●

●●
●
●●

●

●

●

●

●●●●

● ●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●
●●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

Figure 3: Differential metabolic network analysis, enzymatic genes that are associated
with specific state appear as colored nodes (red=enriched, green=depleted)

2.8 Network Visualization
Both function topologicalAnalyzeNet and differentialAnalyzeNet utilize function showMetage-
nomicNet to plot the metabolic network. The showMetagenomicNet can also be used
to personalized network display by specifying appropriate parameters (Figure 4).

## the reference network
## showMetagenomicNet(RefDbcache$network,mode='ref')
## the state specific metabolic network
showMetagenomicNet(g, mode = "ssn", vertex.label = NA,

edge.width = 0.3, edge.arrow.size = 0.1, edge.arrow.width = 0.1,
layout = layout.fruchterman.reingold)

3 Analysis in Cytoscape
Here is a simple example to show the reference metabolic network in Cytoscape with
RCytoscape package (Figure 5). Cytoscape2.8, and CytoscapeRPC: a Cytoscape plu-
gin is required besides of R package RCytoscape. See RCytoscape package for details
on ’how to transfer the network and attributes from R to Cytoscape’.

Open Cytoscape, and then activate the CytoscapeRPC plugin in Cytoscape’s Plug-
ins menu. Click to start the XMLRPC server in the dialog, and Cytoscape will wait for
commands from R. In the default setting, the communicate port is 9000 on localhost.
You can choose a different port, just be sure to use that changed port number when you
call the RCytoscape constructor.

Then, type the following commands in R:

10



●

●
● ●

●

●
●

●

●

●
●●

●

●

●

●
●

●
●

● ●

●
●

●

●

●
●

●
●

●

●●

●
●●
●●●

● ●

●

●

●
●

●

●

●
●

●
●

●
●

●●
●● ●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●
●

●
●

●
●

●

●●
●

●●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●●●

●● ●

●

●
●●● ●●●

●●
●

●●

●

●

●●

●● ● ●

●

●
●●
●

●
●●●● ●
● ●

●

●
●●
●●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●
●

●

●
●

●

●

●●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
● ●

● ●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

●●

● ●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●●

●●
●●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●●●●●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●
●

●

●

●

●●●

●
●●●

●

●

●

●●

●
●●

●●

●

●

●

●●●●● ●●●●●●●●●●●●●

● ●

●●●

●

●
●

●

●●
●●

●

●
●

●●

●●

●

● ●

●

●

●

●

●

●●
●

●
●

●●●
●

●

●

●● ●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●●

Figure 4: Visualization of State Specific Network using extitshowMetagenomicNet
with node size proportional to log(abundance)

if (require(RCytoscape)) {
refnet <- ssn[[1]]
net <- igraph.to.graphNEL(refnet)
## initialize the edge attibute
## edge.attr=list.edge.attributes(refnet)
## edge.attr.class = sapply(edge.attr, class)
## edge.attr.class[edge.attr.class=='character']='char'
## init node attributes
node.attr = list.vertex.attributes(refnet)
if (length(node.attr)) {

node.attr.class = sapply(node.attr, class)
node.attr.class[node.attr.class == "character"] = "char"
for (i in 1:length(node.attr)) net <- initNodeAttribute(net,

attribute.name = node.attr[i], attribute.type = node.attr.class[i],
default.value = "0")

}
## our metagenomic network does not have edge
## attributes, set them all to 1
net <- initEdgeAttribute(net, attribute.name = "weight",

attribute.type = "numeric", default.value = "1")
## create a network window in Cytoscape
cw <- new.CytoscapeWindow("net", graph = net, overwriteWindow = TRUE)
## transmits the CytoscapeWindowClass's graph data,
## from R to Cytoscape, nodes, edges, node and edge
## attributes
displayGraph(cw)
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Figure 5: Export netowork to Cytoscape with RCytoscape package

}

Session Information
The version number of R and packages loaded for generating the vignette were:

## R version 3.2.3 (2015-12-10)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: OS X 10.9.5 (Mavericks)
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
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## [1] stats graphics grDevices utils datasets methods
## [7] base
##
## other attached packages:
## [1] ggplot2_2.0.0 RCurl_1.95-4.7 bitops_1.0-6 mmnet_1.8.1
## [5] biom_0.3.12 igraph_1.0.1 knitr_1.12.3
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.3 formatR_1.2.1 plyr_1.8.3
## [4] highr_0.5.1 XVector_0.10.0 tools_3.2.3
## [7] zlibbioc_1.16.0 digest_0.6.9 evaluate_0.8
## [10] gtable_0.1.2 lattice_0.20-33 png_0.1-7
## [13] Matrix_1.2-3 parallel_3.2.3 httr_1.1.0
## [16] stringr_1.0.0 Biostrings_2.38.3 S4Vectors_0.8.11
## [19] IRanges_2.4.6 stats4_3.2.3 grid_3.2.3
## [22] nnet_7.3-11 Biobase_2.30.0 R6_2.1.2
## [25] flexmix_2.3-13 XML_3.98-1.3 RJSONIO_1.3-0
## [28] reshape2_1.4.1 magrittr_1.5 scales_0.3.0
## [31] codetools_0.2-14 modeltools_0.2-21 BiocGenerics_0.16.1
## [34] KEGGREST_1.10.1 colorspace_1.2-6 labeling_0.3
## [37] stringi_1.0-1 munsell_0.4.2

Cleanup
This is a cleanup step for the vignette on Windows; typically not needed for users.

allCon <- showConnections()
socketCon <- as.integer(rownames(allCon)[allCon[, "class"] ==

"sockconn"])
sapply(socketCon, function(ii) close.connection(getConnection(ii)))

## list()
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