
Inferring differential exon usage in RNA-Seq data with the
DEXSeq package

Alejandro Reyes, Simon Anders, Wolfgang Huber

European Molecular Biology Laboratory (EMBL),
Heidelberg, Germany

This vignette describes version 1.16.10 of the DEXSeq package.

Last revision of this document: 2015-05-21

Contents

1 Overview

The Bioconductor package DEXseq implements a method to test for differential exon usage in compar-
ative RNA-Seq experiments. By differential exon usage (DEU), we mean changes in the relative usage
of exons caused by the experimental condition. The relative usage of an exon is defined as

number of transcripts from the gene that contain this exon

number of all transcripts from the gene
. (1)

The statistical method used by DEXSeq was introduced in our paper [?]. The basic concept can be
summarized as follows. For each exon (or part of an exon) and each sample, we count how many reads
map to this exon and how many reads map to any of the other exons of the same gene. We consider
the ratio of these two counts, and how it changes across conditions, to infer changes in the relative exon
usage (??). In the case of an inner exon, a change in relative exon usage is typically due to a change
in the rate with which this exon is spliced into transcripts (alternative splicing). Note, however, that
DEU is a more general concept than alternative splicing, since it also includes changes in the usage of
alternative transcript start sites and polyadenylation sites, which can cause differential usage of exons
at the 5’ and 3’ boundary of transcripts.

Similar as with differential gene expression, we need to make sure that observed differences of values of
the ratio (??) between conditions are statistically significant, i. e., are sufficiently unlikely to be just due
to random fluctuations such as those seen even between samples from the same condition, i. e., between

1

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 2

replicates. To this end, DEXSeq assesses the strength of these fluctuations (quantified by the so-called
dispersion) by comparing replicates before comparing the averages between the sample groups.

The preceding description is somewhat simplified (and perhaps over-simplified), and we recommend that
users consult the paper [?] for a more complete description, as well as Appendix ?? of this vignette,
which describes how the current implementation of DEXSeq differs from the original approach described
in the paper. Nevertheless, two important aspects should be mentioned already here: First, DEXSeq
does not actually work on the ratios (??), but on the counts in the numerator and denominator, to
be able to make use of the information that is contained in the magnitude of count values. (3000
reads versus 1000 reads is the same ratio as 3 reads versus 1 read, but the latter is a far less reliable
estimate of the underlying true value, because of statistical sampling.) Second, DEXSeq is not limited
to simple two-group comparisons; rather, it uses so-called generalized linear models (GLMs) to permit
ANOVA-like analysis of potentially complex experimental designs.

2 Preparations

2.1 Example data

To demonstrate the use of DEXSeq, we use the pasilla dataset, an RNA-Seq dataset generated by Brooks
et al. [?]. They investigated the effect of siRNA knock-down of the gene pasilla on the transcriptome of
fly S2-DRSC cells. The RNA-binding protein pasilla protein is thought to be involved in the regulation of
splicing. (Its mammalian orthologs, NOVA1 and NOVA2, are well-studied examples of splicing factors.)
Brooks et al. prepared seven cell cultures, treated three with siRNA to knock down pasilla and left four
as untreated controls, and performed RNA-Seq on all samples. They deposited the raw sequencing
reads with the NCBI Gene Expression Omnibus (GEO) under the accession number GSE18508.1

Executability of the code. Usually, Bioconductor vignettes contain automatically executable code,
i. e., you can follow the vignette by directly running the code shown, using functionality and data
provided with the package. However, it would not be practical to include the voluminous raw data of
the pasilla experiment here. Therefore, the code in this section is not automatically executable. You
may download the raw data yourself from GEO, as well as the required extra tools, and follow the work
flow shown here and in the pasilla vignette [?]. From Section ?? on, code is directly executable, as
usual. Therefore, we recommend that you just read this section, and try following our analysis in R
only from the next section onwards. Once you work with your own data, you will want to come back
and adapt the work flow shown here to your data.

2.2 Alignment

The first step of the analysis is to align the reads to a reference genome. It is important to align them to
the genome, not to the transcriptome, and to use a splice-aware aligner (i. e., a short-read alignment tool

1http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508

http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 3

that can deal with reads that span across introns) such as TopHat2 [?], GSNAP [?], or STAR [?]. The
explanation of the analysis work-flow presented here starts with the aligned reads in the SAM format.
If you are unfamiliar with the process of aligning reads to obtain SAM files, you can find a summary
how we proceeded in preparing the pasilla data in the vignette for the pasilla data package [?] and a
more extensive explanation, using the same data set, in our protocol article on differential expression
calling [?].

2.3 HTSeq

The initial steps of a DEXSeq analysis, described in the following two sections, is typically done outside
R, by using two provided Python scripts. You do not need to know how to use Python; however you
have to install the Python package HTSeq, following the explanations given on the HTSeq web page:

http://www-huber.embl.de/users/anders/HTSeq/doc/install.html

Once you have installed HTSeq, you can use the two Python scripts, dexseq_prepare_annotation.py
(described in Section ??) and dexseq_count.py (Section ??), that come with the DEXSeq package.
If you have trouble finding them, start R and ask for the installation directory with

pythonScriptsDir = system.file("python_scripts", package="DEXSeq")

list.files(pythonScriptsDir)

[1] "dexseq_count.py" "dexseq_prepare_annotation.py"

The displayed path should contain the two files. If it does not, try to re-install DEXSeq (as usual, with
biocLite).

An alternative work flow, which replaces the two Python-based steps with R=based code, is also
available and is demonstrated in the vignette of the parathyroidSE package [?].

2.4 Preparing the annotation

The Python scripts expect a GTF file with gene models for your species. We have tested our tools
chiefly with GTF files from Ensembl and hence recommend to prefer these, as files from other providers
sometimes do not adhere fully to the GTF standard and cause the preprocessing to fail. Ensembl
GTF files can be found in the “FTP Download” sections of the Ensembl web sites (i. e., Ensembl,
EnsemblPlants, EnsemblFungi, etc.). Make sure that your GTF file uses a coordinate system that
matches the reference genome that you have used for aligning your reads. (The safest way to ensure
this is to download the reference genome from Ensembl, too.) If you cannot use an Ensembl GTF file,
see Appendix ?? for advice on converting GFF files from other sources to make them suitable as input
for the dexseq_prepare_annotation.py script.

In a GTF file, many exons appear multiple times, once for each transcript that contains them. We need
to “collapse” this information to define exon counting bins, i. e., a list of intervals, each corresponding to
one exon or part of an exon. Counting bins for parts of exons arise when an exonic region appears with
different boundaries in different transcripts. See Figure 1 of the DEXSeq paper [?] for an illustration.

http://www-huber.embl.de/users/anders/HTSeq/doc/install.html

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 4

The Python script dexseq_prepare_annotation.py takes an Ensembl GTF file and translates it into
a GFF file with collapsed exon counting bins.

Make sure that your current working directory contains the GTF file and call the script (from the
command line shell, not from within R) with

python /path/to/library/DEXSeq/python_scripts/dexseq_prepare_annotation.py

Drosophila_melanogaster.BDGP5.72.gtf Dmel.BDGP5.25.62.DEXSeq.chr.gff

In this command, which should be entered as a single line, replace /path/to.../python_scripts with
the correct path to the Python scripts, which you have found with the call to system.file shown
above. Drosophila_melanogaster.BDGP5.72.gtf is the Ensembl GTF file (here the one for fruit
fly, already de-compressed) and Dmel.BDGP5.25.62.DEXSeq.chr.gff is the name of the output file.

In the process of forming the counting bins, the script might come across overlapping genes. If two
genes on the same strand are found with an exon of the first gene overlapping with an exon of the
second gene, the script’s default behaviour is to combine the genes into a single “aggregate gene” which
is subsequently referred to with the IDs of the individual genes, joined by a plus (’+’) sign. If you do
not like this behaviour, you can disable aggregation with the option “-r no”. Without aggregation,
exons that overlap with other exons from different genes are simply skipped.

2.5 Counting reads

For each SAM file, we next count the number of reads that overlap with each of the exon counting bins
defined in the flattened GFF file. This is done with the script python_count.py:

python /path/to/library/DEXSeq/python_scripts/dexseq_count.py

Dmel.BDGP5.25.62.DEXSeq.chr.gff untreated1.sam untreated1fb.txt

This command (again, to be entered as a single line) expects two files in the current working directory,
namely the GFF file produced in the previous step (here Dmel_flattened.py) and a SAM file with
the aligned reads from a sample (here the file untreated1.sam with the aligned reads from the first
control sample). The command generates an output file, here called untreated1fb.txt, with one
line for each exon counting bin defined in the flattened GFF file. The lines contain the exon counting
bin IDs (which are composed of gene IDs and exon bin numbers), followed by a integer number which
indicates the number of reads that were aligned such that they overlap with the counting bin.

Use the script multiple times to produce a count file from each of your SAM files.

There are a number of crucial points to pay attention to when using the python_count.py script:

Paired-end data: If your data is from a paired-end sequencing run, you need to add the option “-p yes”
to the command to call the script. (As usual, options have to be placed before the file names, surrounded
by spaces.) In addition, the SAM file needs to be sorted, either by read name or by position. Most
aligners produce sorted SAM files; if your SAM file is not sorted, use samtools sort -n to sort by read
name (or samtools sort) to sort by position. (See e.g. reference [?], if you need further explanations
on how to sort SAM files.) Use the option “-r pos” or “-r name” to indicate whether your paired-end

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 5

data is sorted by alignment position or by read name.2

Strandedness: By default, the counting script assumes your library to be strand-specific, i.e., reads are
aligned to the same strand as the gene they originate from. If you have used a library preparation
protocol that does not preserve strand information (i.e., reads from a given gene can appear equally
likely on either strand), you need to inform the script by specifying the option “-s no”. If your library
preparation protocol reverses the strand (i.e., reads appear on the strand opposite to their gene of
origin), use “-s reverse”. In case of paired-end data, the default (-s yes) means that the read from
the first sequence pass is on the same strand as the gene and the read from the second pass on the
opposite strand (“forward-reverse” or “fr” order in the parlance of the Bowtie/TopHat manual) and the
options -s reverse specifies the opposite case.

SAM and BAM files: By default, the script expects its input to be in plain-text SAM format. However,
it can also read BAM files, i.e., files in the the compressed binary variant of the SAM format. If you
wish to do so, use the option “-f bam”. This works only if you have installed the Python package
pysam, which can be found at https://code.google.com/p/pysam/.

Alignment quality: The scripts takes a further option, -a to specify the minimum alignment quality (as
given in the fifth column of the SAM file). All reads with a lower quality than specified (with default
-a 10) are skipped.

Help pages: Calling either script without arguments displays a help page with an overview of all options
and arguments.

2.6 Reading the data in to R

The remainder of the analysis is now done in R. We will use the output of the python scripts for the
pasilla experiment, that can be found in the package pasilla. Open an Rsession and type:

inDir = system.file("extdata", package="pasilla")

countFiles = list.files(inDir, pattern="fb.txt$", full.names=TRUE)

countFiles

[1] "/Library/Frameworks/R.framework/Versions/3.2/Resources/library/pasilla/extdata/treated1fb.txt"

[2] "/Library/Frameworks/R.framework/Versions/3.2/Resources/library/pasilla/extdata/treated2fb.txt"

[3] "/Library/Frameworks/R.framework/Versions/3.2/Resources/library/pasilla/extdata/treated3fb.txt"

[4] "/Library/Frameworks/R.framework/Versions/3.2/Resources/library/pasilla/extdata/untreated1fb.txt"

[5] "/Library/Frameworks/R.framework/Versions/3.2/Resources/library/pasilla/extdata/untreated2fb.txt"

[6] "/Library/Frameworks/R.framework/Versions/3.2/Resources/library/pasilla/extdata/untreated3fb.txt"

[7] "/Library/Frameworks/R.framework/Versions/3.2/Resources/library/pasilla/extdata/untreated4fb.txt"

flattenedFile = list.files(inDir, pattern="gff$", full.names=TRUE)

flattenedFile

[1] "/Library/Frameworks/R.framework/Versions/3.2/Resources/library/pasilla/extdata/Dmel.BDGP5.25.62.DEXSeq.chr.gff"

2The possibility to process paired-end data from a file sorted by position is based on recent contributions of Paul-
Theodor Pyl to HTSeq.

https://code.google.com/p/pysam/

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 6

Now, we need to prepare a sample table. This table should contain one row for each library, and columns
for all relevant information such as name of the file with the read counts, experimental conditions,
technical information and further covariates. To keep this vignette simple, we construct the table on
the fly.

sampleTable = data.frame(

row.names = c("treated1", "treated2", "treated3",

"untreated1", "untreated2", "untreated3", "untreated4"),

condition = c("knockdown", "knockdown", "knockdown",

"control", "control", "control", "control"),

libType = c("single-end", "paired-end", "paired-end",

"single-end", "single-end", "paired-end", "paired-end"))

While this is a simple way to prepare the table, it may be less error-prone and more prudent to used an
existing table that had already been prepared when the experiments were done, save it in CSV format
and use the R function read.csv to load it.

In any case, it is vital to check the table carefully for correctness.

sampleTable

condition libType

treated1 knockdown single-end

treated2 knockdown paired-end

treated3 knockdown paired-end

untreated1 control single-end

untreated2 control single-end

untreated3 control paired-end

untreated4 control paired-end

Our table contains the sample names as row names and the two covariates that vary between samples:
first the experimental condition (factor condition with levels control and treatment) and the
library type (factor libType), which we included because the samples in this particular experiment
were sequenced partly in single-end runs and partly in paired-end runs.

For now, we will ignore this latter piece of information, and postpone the discussion of how to include
such additional covariates to Section ??. If you have only a single covariate and want to perform a
simple analysis, the column with this covariate should be named condition.

Now, we construct an DEXSeqDataSet object from this data. This object holds all the input data and
will be passed along the stages of the subsequent analysis. We construct the object with the DEXSeq
function DEXSeqDataSetFromHTSeq, as follows:

suppressPackageStartupMessages(library("DEXSeq"))

dxd = DEXSeqDataSetFromHTSeq(

countFiles,

sampleData=sampleTable,

design= ~ sample + exon + condition:exon,

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 7

flattenedfile=flattenedFile)

The function takes four arguments. First, a vector with names of count files, i.e., of files that have
been generated with the dexseq_count.py script. The function will read these files and arrange the
count data in a matrix, which is stored in the DEXSeqDataSet object dxd. The second argument is our
sample table, with one row for each of the files listed in the first argument. This information is simply
stored as is in the object’s meta-data slot (see below). The third argument is a formula of the form
“ sample + exon + condition:exon” that specifies the contrast with of a variable from the sample table
columns and the ‘exon’ variable. Using this formula, we are interested in differences in exon usage due
to the ‘condition’ variable changes. Later in this vignette, we will how to add additional variables for
complex designs. The fourth argument is a file name, now of the flattened GFF file that was generated
with dexseq_prepare_annotation.py and used as input to dexseq_count.py when creating the
count file.

There are other ways to get a DEXSeq analysis started. See Appendix ?? and Ref. [?] for details.

3 Standard analysis work-flow

3.1 Loading and inspecting the example data

To demonstrate the DEXSeq work flow, we will use the DEXSeqDataSet constructed in the previous
section. However, in order to keep the run-time of this vignette small, we will subset the object to only
a few genes.

genesForSubset = read.table(

file.path(inDir, "geneIDsinsubset.txt"),

stringsAsFactors=FALSE)[[1]]

dxd = dxd[geneIDs(dxd) %in% genesForSubset,]

The DEXSeqDataSet class is derived from the DESeqDataSet. As such, it contains the usual accessor
functions for the column data, row data, and some specific ones. The core data in an DEXSeqDataSet
object are the counts per exon. Each row of the DEXSeqDataSet contains in each column the count
data from a given exon (’this’) as well as the count data from the sum of the other exons belonging to
the same gene (’others’). This annotation, as well as all the information regarding each column of the
DEXSeqDataSet, is specified in the colData.

colData(dxd)

DataFrame with 14 rows and 4 columns

sample condition libType exon

<factor> <factor> <factor> <factor>

1 treated1 knockdown single-end this

2 treated2 knockdown paired-end this

3 treated3 knockdown paired-end this

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 8

4 untreated1 control single-end this

5 untreated2 control single-end this

...

10 treated3 knockdown paired-end others

11 untreated1 control single-end others

12 untreated2 control single-end others

13 untreated3 control paired-end others

14 untreated4 control paired-end others

We can access the first 5 rows from the count data by doing,

head(counts(dxd), 5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

FBgn0000256:E001 92 28 43 54 131 51 49 1390 829 923 1115 2495

FBgn0000256:E002 124 80 91 76 224 82 95 1358 777 875 1093 2402

FBgn0000256:E003 340 241 262 347 670 260 297 1142 616 704 822 1956

FBgn0000256:E004 250 189 201 219 507 242 250 1232 668 765 950 2119

FBgn0000256:E005 96 38 39 71 76 57 62 1386 819 927 1098 2550

[,13] [,14]

FBgn0000256:E001 1054 1052

FBgn0000256:E002 1023 1006

FBgn0000256:E003 845 804

FBgn0000256:E004 863 851

FBgn0000256:E005 1048 1039

Notice that the number of columns is 14, the first seven (we have seven samples) corresponding to the
number of reads mapping to out exonic regions and the last seven correspond to the sum of the counts
mapping to the rest of the exons from the same gene on each sample.

split(seq_len(ncol(dxd)), colData(dxd)$exon)

$this

[1] 1 2 3 4 5 6 7

##

$others

[1] 8 9 10 11 12 13 14

We can also access only the first five rows from the count belonging to the exonic regions (’this’)
(without showing the sum of counts from the rest of the exons from the same gene) by doing,

head(featureCounts(dxd), 5)

treated1 treated2 treated3 untreated1 untreated2 untreated3

FBgn0000256:E001 92 28 43 54 131 51

FBgn0000256:E002 124 80 91 76 224 82

FBgn0000256:E003 340 241 262 347 670 260

FBgn0000256:E004 250 189 201 219 507 242

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 9

FBgn0000256:E005 96 38 39 71 76 57

untreated4

FBgn0000256:E001 49

FBgn0000256:E002 95

FBgn0000256:E003 297

FBgn0000256:E004 250

FBgn0000256:E005 62

In both cases, the rows are labelled with gene IDs (here Flybase IDs), followed by a colon and the
counting bin number. (As a counting bin corresponds to an exon or part of an exon, this ID is called
the feature ID or exon ID within DEXSeq.) The table content indicates the number of reads that have
been mapped to each counting bin in the respective sample.

To see details on the counting bins, we also print the first 3 lines of the feature data annotation:

head(rowRanges(dxd), 3)

GRanges object with 3 ranges and 5 metadata columns:

seqnames ranges strand | featureID groupID

<Rle> <IRanges> <Rle> | <character> <character>

FBgn0000256:E001 chr2L [3872658, 3872947] - | E001 FBgn0000256

FBgn0000256:E002 chr2L [3873019, 3873322] - | E002 FBgn0000256

FBgn0000256:E003 chr2L [3873385, 3874395] - | E003 FBgn0000256

exonBaseMean exonBaseVar transcripts

<numeric> <numeric> <list>

FBgn0000256:E001 64 1251

FBgn0000256:E002 110 2770

FBgn0000256:E003 345 22148

seqinfo: 14 sequences from an unspecified genome; no seqlengths

So far, this table contains information on the annotation data, such as gene and exon IDs, genomic
coordinates of the exon, and the list of transcripts that contain an exon.

The accessor function annotationData shows the design table with the sample annotation (which was
passed as the second argument to DEXSeqDataSetFromHTSeq):

sampleAnnotation(dxd)

DataFrame with 7 rows and 3 columns

sample condition libType

<factor> <factor> <factor>

1 treated1 knockdown single-end

2 treated2 knockdown paired-end

3 treated3 knockdown paired-end

4 untreated1 control single-end

5 untreated2 control single-end

6 untreated3 control paired-end

7 untreated4 control paired-end

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 10

In the following sections, we will update the object by calling a number of analysis functions, always
using the idiom “ dxd = someFunction (dxd)”, which takes the dxd object, fills in the results of
the performed computation and writes the returned and updated object back into the variable dxd.

3.2 Normalisation

Different samples might be sequenced with different depths. In order to adjust for such coverage biases,
we estimate size factors, which measure relative sequencing depth. DEXSeq uses the same method as
DESeq and DESeq2, which is provided in the function estimateSizeFactors.

dxd = estimateSizeFactors(dxd)

3.3 Dispersion estimation

To test for differential exon usage, we need to estimate the variability of the data. This is necessary
to be able to distinguish technical and biological variation (noise) from real effects on exon usage due
to the different conditions. The information on the strength of the noise is inferred from the biological
replicates in the data set and characterized by the so-called dispersion. In RNA-Seq experiments
the number of replicates is typically too small to reliably estimate variance or dispersion parameters
individually exon by exon, and therefore, variance information is shared across exons and genes, in an
intensity-dependent manner.

In this section, we discuss simple one-way designs: In this setting, samples with the same experimental
condition, as indicated in the condition factor of the design table (see above), are considered as
replicates – and therefore, the design table needs to contain a column with the name condition. In
Section ??, we discuss how to treat more complicated experimental designs which are not accommodated
by a single condition factor.

To estimate the dispersion estimates, DEXSeq uses the approach of the package DESeq2. Internally,
the functions from DESeq2 are called, adapting the parameters of the functions for the specific case
of the DEXSeq model. Briefly, per-exon dispersions are calculated using a Cox-Reid adjusted profile
likelihood estimation, then a dispersion-mean relation is fitted to this individual dispersion values and
finally, the fitted values are taken as a prior in order to shrink the per-exon estimates towards the fitted
values. See the DESeq2 paper for the rational behind the shrinkage approach [?].

dxd = estimateDispersions(dxd)

As a shrinkage diagnostic, the DEXSeqDataSet inherits the method plotDispEsts that allows us to
plot the per-exon dispersion estimates versus the mean normalised count, the resulting fitted values and
the a posteriori (shrinked) dispersion estimates (Figure ??).

plotDispEsts(dxd)

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 11

Figure 1: Fit Diagnostics. The initial per-exon dispersion estimates (shown by black points), the
fitted mean-dispersion values function (red line), and the shrinked values in blue.

3.4 Testing for differential exon usage

Having the dispersion estimates and the size factors, we can now test for differential exon usage. For
each gene, DEXSeq fits a generalized linear model with the formula

∼ sample + exon + condition:exon (2)

and compare it to the smaller model (the null model)

∼ sample + exon. (3)

In these formulae (which use the standard notation for linear model formulae in R ; consult a text book
on R if you are unfamiliar with it), sample is a factor with different levels for each sample, condition
is the factor of experimental conditions that we defined when constructing the DEXSeqDataSet object
at the beginning of the analysis, and exon is a factor with two levels, this and others, that were
specified when we generated our DEXSeqDataSet object. The two models described by these formulae
are fit for each counting bin, where the data supplied to the fit comprise two read count values for each
sample, corresponding to the two levels of the exon factor: the number of reads mapping to the bin
in question (level this), and the sum of the read counts from all other bins of the same gene (level
others). Note that this approach differs from the approach described in the paper [?] and used in
older versions of DEXSeq; see Appendix ?? for further discussion.

Readers familiar with linear model formulae might find one aspect of Equation (??) surprising: We
have an interaction term condition:exon, but denote no main effect for condition. Note, however,

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 12

that all observations from the same sample are also from the same condition, i.e., the condition

main effects are absorbed in the sample main effects, because the sample factor is nested within the
condition factor.

The deviances of both fits are compared using a χ2-distribution, giving rise to a p value. Based on that,
we can decide whether the null model (??) is sufficient to explain the data, or whether it may be rejected
in favour of the alternative, model (??), which contains an interaction coefficient for condition:exon.
The latter means that the fraction of the gene’s reads that fall onto the exon under the test differs
significantly between the experimental conditions.

The function testForDEU performs these tests for each exon in each gene.

dxd = testForDEU(dxd)

The resulting DEXSeqDataSet object contains slots with information regarding the test.

For some uses, we may also want to estimate relative exon fold changes. To this end, we call
estimateExonFoldChanges. Exon usage fold changes are calculated by fitting for each gene, a GLM
from the joint data of all its exons. The model frame can be found in the slot object@modelFrameBM
of a DEXSeqDataSet object. The model ” sample + fitExpToVar * exon” is fitted. The resulted
coefficients are arranged and reformatted in order to remove gene expression effects (absorbed by the
’sample’ variable in the formula), leaving only exon usage effects for each individual exon in each level
of the parameter ”fitExpToVar”.

dxd = estimateExonFoldChanges(dxd, fitExpToVar="condition")

So far in the pipeline, the intermediate and final results have been stored in the meta data of a
DEXSeqDataSet object, they can be accessed using the function mcol. In order to summarize the
results without showing the values from intermediate steps, we call the function DEXSeqResults. The
result is a DEXSeqResults object, which is a subclass of a DataFrame object.

dxr1 = DEXSeqResults(dxd)

dxr1

##

LRT p-value: full vs reduced

##

DataFrame with 498 rows and 13 columns

groupID featureID exonBaseMean dispersion stat

<character> <character> <numeric> <numeric> <numeric>

FBgn0000256:E001 FBgn0000256 E001 58 0.0173 1.5e-05

FBgn0000256:E002 FBgn0000256 E002 103 0.0075 1.6e+00

FBgn0000256:E003 FBgn0000256 E003 326 0.0106 3.5e-02

FBgn0000256:E004 FBgn0000256 E004 254 0.0111 1.7e-01

FBgn0000256:E005 FBgn0000256 E005 61 0.0441 2.9e-02

...

FBgn0261573:E012 FBgn0261573 E012 23.1 0.022 8.38

FBgn0261573:E013 FBgn0261573 E013 9.8 0.245 1.17

FBgn0261573:E014 FBgn0261573 E014 87.5 0.033 1.12

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 13

FBgn0261573:E015 FBgn0261573 E015 268.3 0.012 2.57

FBgn0261573:E016 FBgn0261573 E016 304.2 0.100 0.15

pvalue padj control knockdown

<numeric> <numeric> <numeric> <numeric>

FBgn0000256:E001 1.00 1.00 11 11

FBgn0000256:E002 0.21 0.99 13 14

FBgn0000256:E003 0.85 1.00 19 19

FBgn0000256:E004 0.68 1.00 18 17

FBgn0000256:E005 0.86 1.00 11 11

...

FBgn0261573:E012 0.0038 0.099 6.7 8.5

FBgn0261573:E013 0.2795 0.989 6.0 3.8

FBgn0261573:E014 0.2908 0.989 13.3 12.0

FBgn0261573:E015 0.1089 0.965 18.5 17.3

FBgn0261573:E016 0.7017 0.999 18.9 18.2

log2fold_control_knockdown genomicData

<numeric> <GRanges>

FBgn0000256:E001 0.020 chr2L:-:[3872658, 3872947]

FBgn0000256:E002 -0.034 chr2L:-:[3873019, 3873322]

FBgn0000256:E003 0.024 chr2L:-:[3873385, 3874395]

FBgn0000256:E004 0.036 chr2L:-:[3874450, 3875302]

FBgn0000256:E005 -0.013 chr2L:-:[3878895, 3879067]

...

FBgn0261573:E012 -0.355 chrX:+:[19421654, 19421867]

FBgn0261573:E013 0.650 chrX:+:[19422668, 19422673]

FBgn0261573:E014 0.142 chrX:+:[19422674, 19422856]

FBgn0261573:E015 0.093 chrX:+:[19422927, 19423634]

FBgn0261573:E016 0.060 chrX:+:[19423707, 19424937]

countData transcripts

<matrix> <list>

FBgn0000256:E001 92 28 43 ...

FBgn0000256:E002 124 80 91 ...

FBgn0000256:E003 340 241 262 ...

FBgn0000256:E004 250 189 201 ...

FBgn0000256:E005 96 38 39 ...

...

FBgn0261573:E012 37 23 38 ...

FBgn0261573:E013 8 3 6 ...

FBgn0261573:E014 75 66 92 ...

FBgn0261573:E015 264 234 245 ...

FBgn0261573:E016 611 187 188 ...

The description of each of the column of the object DEXSeqResults can be found in the metadata
columns.

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 14

mcols(dxr1)$description

[1] "group/gene identifier"

[2] "feature/exon identifier"

[3] "mean of the counts across samples in each feature/exon"

[4] "exon dispersion estimate"

[5] "LRT statistic: full vs reduced"

[6] "LRT p-value: full vs reduced"

[7] "BH adjusted p-values"

[8] "exon usage coefficient"

[9] "exon usage coefficient"

[10] "relative exon usage fold change"

[11] "GRanges object of the coordinates of the exon/feature"

[12] "matrix of integer counts, of each column containing a sample"

[13] "list of transcripts overlapping with the exon"

From this object, we can ask how many genes are significant with a false discovery rate of 10%:

table (dxr1$padj < 0.1)

##

FALSE TRUE

426 17

We may also ask how many genes are affected

table (tapply(dxr1$padj < 0.1, dxr1$groupID, any))

##

FALSE TRUE

20 9

Remember that our example data set contains only a selection of genes. We have chosen these to
contain interesting cases; so the fact that such a large fraction of genes is significantly affected here is
not typical.

To see how the power to detect differential exon usage depends on the number of reads that map to an
exon, a so-called MA plot is useful, which plots the logarithm of fold change versus average normalized
count per exon and marks by red colour the exons which are considered significant; here, the exons with
an adjusted p values of less than 0.1 (Figure ??). There is of course nothing special about the number
0.1, and you can specify other thresholds in the call to plotMA.

plotMA(dxr1, cex=0.8)

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 15

Figure 2: MA plot. Mean expression versus log2 fold change plot. Significant hits (at padj¡0.1) are
coloured in red.

4 Additional technical or experimental variables

In the previous section we performed a simple analysis of differential exon usage, in which each sample
was assigned to one of two experimental conditions. If your experiment is of this type, you can use the
work flow shown above. All you have to make sure is that you indicate which sample belongs to which
experimental condition when you construct the DEXSeqDataSet object (Section ??. Do so by means
of a column called condition in the sample table.

If you have a more complex experimental design, you can provide different or additional columns in the
sample table. You then have to indicate the design by providing explicit formulae for the test.

In the pasilla dataset, some samples were sequenced in single-end and others in paired-end mode.
Possibly, this influenced counts and should hence be accounted for. We therefore use this as an
example for a complex design.

When we constructed the DEXSeqDataSet object in Section ??, we provided in the sample table an
additional column called libType, which has been stored in the object:

sampleAnnotation(dxd)

DataFrame with 7 rows and 4 columns

sample condition libType sizeFactor

<factor> <factor> <factor> <numeric>

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 16

1 treated1 knockdown single-end 1.34

2 treated2 knockdown paired-end 0.80

3 treated3 knockdown paired-end 0.92

4 untreated1 control single-end 0.99

5 untreated2 control single-end 1.57

6 untreated3 control paired-end 0.84

7 untreated4 control paired-end 0.83

We specify two design formulae, which indicate that the libType factor should be treated as a blocking
factor:

formulaFullModel = ~ sample + exon + libType:exon + condition:exon

formulaReducedModel = ~ sample + exon + libType:exon

Compare these formulae with the default formulae (??, ??) given in Section ??. We have added, in
both the full model and the reduced model, the term libType:exon. Therefore, any dependence of
exon usage on library type will be absorbed by this term and accounted for equally in the full and a
reduced model, and the likelihood ratio test comparing them will only detect differences in exon usage
that can be attributed to condition, independent of type.

Next, we estimate the dispersions. This time, we need to inform the estimateDispersions function
about our design by providing the full model’s formula, which should be used instead of the default
formula (??).

dxd = estimateDispersions(dxd, formula = formulaFullModel)

The test function now needs to be informed about both formulae

dxd = testForDEU(dxd,

reducedModel = formulaReducedModel,

fullModel = formulaFullModel)

Finally, we get a summary table, as before.

dxr2 = DEXSeqResults(dxd)

How many significant DEU cases have we got this time?

table(dxr2$padj < 0.1)

##

FALSE TRUE

412 22

We can now compare with the previous result:

table(before = dxr1$padj < 0.1, now = dxr2$padj < 0.1)

now

before FALSE TRUE

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 17

1

10

100

1000

200

300

500

E
xp

re
ss

io
n

E001 E002 E003 E004 E005 E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 E016 E017 E018 E019 E020 E021 E022 E023

2555775 2559193 2562612 2566030 2569448 2572867 2576285 2579703 2583122 2586540

FBgn0010909 − control knockdown

Figure 3: Fitted expression. The plot represents the expression estimates from a call to testForDEU.
Shown in red is the exon that showed significant differential exon usage.

FALSE 411 6

TRUE 1 16

Accounting for the library type has allowed us to find six more hits, which confirms that accounting for
the covariate improves power.

5 Visualization

The plotDEXSeq provides a means to visualize the results of an analysis.

plotDEXSeq(dxr2, "FBgn0010909", legend=TRUE, cex.axis=1.2, cex=1.3, lwd=2)

The result is shown in Figure ??. This plot shows the fitted expression values of each of the exons of
gene FBgn0010909, for each of the two conditions, treated and untreated. The function plotDEXSeq

expects at least two arguments, the DEXSeqDataSet object and the gene ID. The option legend=TRUE

causes a legend to be included. The three remaining arguments in the code chunk above are ordinary

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 18

1

10

100

1000

200

300

500

E
xp

re
ss

io
n

E001 E002 E003 E004 E005 E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 E016 E017 E018 E019 E020 E021 E022 E023

2555775 2559193 2562612 2566030 2569448 2572867 2576285 2579703 2583122 2586540

FBgn0010909 − control knockdown

Figure 4: Transcripts. As in Figure ??, but including the annotated transcript models.

plotting parameters which are simply handed over to R ’s standard plotting functions. They are not
strictly needed and included here to improve appearance of the plot. See the help page for par for
details.

Optionally, one can also visualize the transcript models (Figure ??), which can be useful for putting
differential exon usage results into the context of isoform regulation.

plotDEXSeq(dxr2, "FBgn0010909", displayTranscripts=TRUE, legend=TRUE,

cex.axis=1.2, cex=1.3, lwd=2)

Other useful options are to look at the count values from the individual samples, rather than at the model
effect estimates. For this display (option norCounts=TRUE), the counts are normalized by dividing them
by the size factors (Figure ??).

plotDEXSeq(dxr2, "FBgn0010909", expression=FALSE, norCounts=TRUE,

legend=TRUE, cex.axis=1.2, cex=1.3, lwd=2)

As explained in Section ??, DEXSeq is designed to find changes in relative exon usage, i. e., changes in
the expression of individual exons that are not simply the consequence of overall up- or down-regulation
of the gene. To visualize such changes, it is sometimes advantageous to remove overall changes in

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 19

10

100

1000

200

300

500

N
or

m
al

iz
ed

 c
ou

nt
s

E001 E002 E003 E004 E005 E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 E016 E017 E018 E019 E020 E021 E022 E023

2555775 2559193 2562612 2566030 2569448 2572867 2576285 2579703 2583122 2586540

FBgn0010909 − control knockdown

Figure 5: Normalized counts. As in Figure ??, with normalized count values of each exon in each
of the samples.

expression from the plots. Use the (somewhat misnamed) option splicing=TRUE for this purpose.

plotDEXSeq(dxr2, "FBgn0010909", expression=FALSE, splicing=TRUE,

legend=TRUE, cex.axis=1.2, cex=1.3, lwd=2)

To generate an easily browsable, detailed overview over all analysis results, the package provides an
HTML report generator, implemented in the function DEXSeqHTML. This function uses the package
hwriter [?] to create a result table with links to plots for the significant results, allowing a more detailed
exploration of the results.

DEXSeqHTML(dxr2, FDR=0.1, color=c("#FF000080", "#0000FF80"))

6 Parallelization

DEXSeq analyses can be computationally heavy, especially with data sets that comprise a large num-
ber of samples, or with genomes containing genes with large numbers of exons. While some steps
of the analysis work on the whole data set, the computational load can be parallelized for some

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 20

1

10

100

1000

200

300

500

E
xo

n
us

ag
e

E001 E002 E003 E004 E005 E006 E007 E008 E009 E010 E011 E012 E013 E014 E015 E016 E017 E018 E019 E020 E021 E022 E023

2555775 2559193 2562612 2566030 2569448 2572867 2576285 2579703 2583122 2586540

FBgn0010909 − control knockdown

Figure 6: Fitted splicing. The plot represents the estimated effects, as in Figure ??, but after
subtraction of overall changes in gene expression.

steps. We use the package BiocParallel, and implemented the BPPARAM parameter of the functions
estimateDispersions, testForDEU and estimateExonFoldChanges:

BPPARAM = MultiCoreParam(workers=4)

dxd = estimateSizeFactors(dxd)

dxd = estimateDispersions(dxd, BPPARAM=BPPARAM)

dxd = testForDEU(dxd, BPPARAM=BPPARAM)

dxd = estimateExonFoldChanges(dxd, BPPARAM=BPPARAM)

7 Perform a standard differential exon usage analysis in one
command

In the previous sections, we went through the analysis step by step. Once you are sufficiently confident
about the work flow for your data, its invocation can be streamlined by the wrapper function DEXseq,
which runs the analysis shown above through a single function call.

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 21

In the simplest case, construct the DEXSeqDataSet as shown in Section ?? or in Appendix ??, then
run DEXSeq passing the DEXSeqDataSet as only argument, this function will output a DEXSeqResults
object.

dxr = DEXSeq(dxd)

class(dxr)

[1] "DEXSeqResults"

attr(,"package")

[1] "DEXSeq"

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 22

APPENDIX

A Preprocessing within R

As an alternative to the approach described in Section ??, users can also create DEXSeqDataSeq
objects from other Bioconductor data objects. The code for implementationg these functions was
kindly contributed by Michael I. Love. For details, see the parathyroidSE package vignette [?]. The
work flow is similar to the one using the HTSeq python scripts.

emphNote: The code in this section is not run when the vignette is built, as some of the commands
have long run time. Therefore, no output is given.

We use functionality from the following Bioconductor packages

library(GenomicRanges)

library(GenomicFeatures)

library(GenomicAlignments)

We demonstrate the workflow briefly (for more details, see [?]) on the data set of Haglund et al. [?],
which is provided as example data in the parathyroidSE data package.

First, we download the current human gene model annotation from Ensembl via Biomart and create a
transcript data base from these. Note that this step takes some time.

hse = makeTxDbFromBiomart(biomart="ensembl", dataset="hsapiens_gene_ensembl")

Next, we collapse the gene models into counting bins, analogous to Section ??.

exonicParts = disjointExons(hse, aggregateGenes=FALSE)

As before, we have to choose how to handle genes with overlapping exons. The aggregateGenes

option here plays the same role as the -r option to dexseq_prepare_anotation.py described at the
end of Section ??. The exonicParts object contains a GRanges object with our counting bins. We
use it to count the number of read fragments that overlap with the bins by means of the function
summarizeOverlaps. To demonstrate this, we first determine the paths to the example BAM files in
the parathyroidSE data package.

bamDir = system.file("extdata", package="parathyroidSE", mustWork=TRUE)

fls = list.files(bamDir, pattern="bam$", full=TRUE)

Then, use the following code to count the reads overlapping the bins.

bamlst = BamFileList(fls, index=character(), yieldSize=100000, obeyQname=TRUE)

SE = summarizeOverlaps(exonicParts, bamlst, mode="Union", singleEnd=FALSE,

ignore.strand=TRUE, inter.feature=FALSE, fragments=TRUE)

We can now call the function DEXSeqDataSetFromSE to build an DEXSeqDataSet object. We modify
the colData slot in order to specify the sample annotation, indicating that the first two BAM files form

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 23

one experimental condition and the third one the other. Then we create our DEXSeqDataSet object.

colData(SE)$condition = c("A", "A", "B")

DEXSeqDataSetFromSE(SE, design= ~ sample + exon + condition:exon)

A.1 Further accessors

The function geneIDs returns the gene ID column of the feature data as a character vector, and the
function exonIDs return the exon ID column as a factor.

head(geneIDs(dxd))

[1] "FBgn0000256" "FBgn0000256" "FBgn0000256" "FBgn0000256" "FBgn0000256"

[6] "FBgn0000256"

head(exonIDs(dxd))

[1] "E001" "E002" "E003" "E004" "E005" "E006"

These functions are useful for subsetting an DEXSeqDataSet object.

A.2 Overlap operations

The methods subsetByOverlaps and findOverlaps have been implemented for the DEXSeqResults
object, the query argument must be a DEXSeqResults object.

interestingRegion = GRanges("chr2L", IRanges(start=3872658, end=3875302))

subsetByOverlaps(query=dxr, subject=interestingRegion)

##

LRT p-value: full vs reduced

##

DataFrame with 4 rows and 16 columns

groupID featureID exonBaseMean dispersion stat

<character> <character> <numeric> <numeric> <numeric>

FBgn0000256:E001 FBgn0000256 E001 58 0.0173 1.5e-05

FBgn0000256:E002 FBgn0000256 E002 103 0.0075 1.6e+00

FBgn0000256:E003 FBgn0000256 E003 326 0.0106 3.5e-02

FBgn0000256:E004 FBgn0000256 E004 254 0.0111 1.7e-01

pvalue padj control knockdown

<numeric> <numeric> <numeric> <numeric>

FBgn0000256:E001 1.00 1.00 11 11

FBgn0000256:E002 0.21 0.99 13 14

FBgn0000256:E003 0.85 1.00 19 19

FBgn0000256:E004 0.68 1.00 18 17

log2fold_control_knockdown control.1 knockdown.1

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 24

<numeric> <numeric> <numeric>

FBgn0000256:E001 0.020 11 11

FBgn0000256:E002 -0.034 13 14

FBgn0000256:E003 0.024 19 19

FBgn0000256:E004 0.036 18 17

log2fold_control_knockdown.1 genomicData

<numeric> <GRanges>

FBgn0000256:E001 0.020 chr2L:-:[3872658, 3872947]

FBgn0000256:E002 -0.034 chr2L:-:[3873019, 3873322]

FBgn0000256:E003 0.024 chr2L:-:[3873385, 3874395]

FBgn0000256:E004 0.036 chr2L:-:[3874450, 3875302]

countData transcripts

<matrix> <list>

FBgn0000256:E001 92 28 43 ...

FBgn0000256:E002 124 80 91 ...

FBgn0000256:E003 340 241 262 ...

FBgn0000256:E004 250 189 201 ...

findOverlaps(query=dxr, subject=interestingRegion)

Hits object with 4 hits and 0 metadata columns:

queryHits subjectHits

<integer> <integer>

[1] 1 1

[2] 2 1

[3] 3 1

[4] 4 1

queryLength: 498

subjectLength: 1

This functions could be useful for further downstream analysis.

B Methodological changes since publication of the paper

In our paper [?], we suggested to fit for each exon a model that includes separately the counts for
all the gene’s exons. However, this turned out to be computationally inefficient for genes with many
exons, because the many exons required large model matrices, which are computationally expensive
to deal with. We have therefore modified the approach: when fitting a model for an exon, we now
sum up the counts from all the other exon and use only the total, rather than the individual counts
in the model. Now, computation time per exon is independent of the number of other exons in the
gene, which improved DEXSeq’s scalability. While the p values returned by the two approaches are not
exactly equal, the differences were very minor in the tests that we performed.

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 25

For now, the function for our original approach (which we now call the “big model” or “BM” approach)
are still included; all relevant functions, however, have been renamed to carry the suffix _BM in their
name. The new approach, which is now default and is used by the work flow described in this vignette,
has no special name (in some previous releases of DEXSeq which had included it first on an experimental
basis, it was termed the “TRT” approach).

In the following, we describe the current default (“TRT”) approach in detail (though the exposition
assumes the reader’s familiarity with our paper).

Deviating from the paper’s notation, we now use the index i to indicate a specific counting bin, with i
running through all counting bins of all genes. The samples are indexed with j, as in the paper. We
write Kij0 for the count or reads mapped to counting bin i in sample j and Kij1 for the sum of the
read counts from all other counting bins in the same gene. Hence, when we write Kijl, the third index
l indicates whether we mean the read count for bin i (l = 0) or the sum of counts for all other bins of
the same gene (l = 1). As before, we fit a GLM of the negative binomial (NB) family

Kijl ∼ NB(mean = sjµijl, dispersion = αi), (4)

now with the model specified in Equation (??), which we write out as

log2 µijl = βS
ij + lβE

i + βEC
iρj
. (5)

This model is fit separately for each counting bin i. The coefficient βS
ij accounts for the sample-

specific contribution (factor sample in Equation (??)), the term βE
i is only included if l = 1 and hence

estimates the logarithm of the ratio Kij1/Kij0 between the counts for all other exons and the counts
for the tested exon. As this coefficient is estimated from data from all samples, it can be considered as
a measure of “average exon usage”. In the R model formula, it is represented by the term exon with
its two levels this (l = 0) and others (l = 1). Finally, the last term, βEC

i,ρj
, captures the interaction

condition:exon, i.e., the change in exon usage if sample j is from experimental condition group ρ(j).
Here, the first condition, ρ = 0, is absorbed in the sample coefficients, i.e., βEC

i0 is fixed to zero and
does not appear in the model matrix.

For the dispersion estimation, one dispersion value αi is estimated with Cox-Reid-adjusted maximum
likelihood using the full model given above. A mean-variance relation is fitted using the individual
dispersion values. Finally, the individual values are shrinked towards the fitted values. For more details
about this shrinkage approach look at the DESeq2 vignette and/or its manuscript [?]. For the likelihood
ratio test, this full model is fit and compared with the fit of the reduced model, which lacks the
interaction term βEC

iρj
. As described in Section ??, alternative model formulae can be specified.

C Requirements on GTF files

In the initial preprocessing step described in Section ??, the Python script dexseq_prepare_annotation.py
is used to convert a GTF file with gene models into a GFF file with collapsed gene models. We rec-
ommend to use GTF files downloaded from Ensembl as input for this script, as files from other sources
may deviate from the format expected by the script. Hence, if you need to use a GTF or GFF file from

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 26

another source, you may need to convert it to the expected format. To help with this task, we here
give details on how the dexseq_prepare_annotation.py script interprets a GFF file.

• The script only looks at exon lines, i.e., at lines which contain the term exon in the third (“type”)
column. All other lines are ignored.

• Of the data in these lines, the information about chromosome, start, end, and strand (1st,
4th, 5th, and 7th column) are used, and, from the last column, the attributes gene_id and
transcript_id. The rest is ignored.

• The gene_id attribute is used to see which exons belong to the same gene. It must be called
gene_id (and not Parent as in GFF3 files, or GeneID as in some older GFF files), and it must give
the same identifier to all exons from the same gene, even if they are from different transcripts of
this gene. (This last requirement is not met by GTF files generated by the Table Browser function
of the UCSC Genome Browser.)

• The transcript id attribute is used to build the transcripts attribute in the flattened
GFF file, which indicates which transcripts contain the described counting bin. This infor-
mation is needed only to draw the transcript model at the bottom of the plots when the
displayTranscript option to plotDEXSeq is used.

Therefore, converting a GFF file to make it suitable as input to dexseq_prepare_annotation.py

amounts to making sure that the exon lines have type exon and that the atributes giving gene ID
(or gene symbol) and transcript ID are called gene id and transcript id, with this exact spelling.
Remember to also take care that the chromosome names match those in your SAM files, and that the
coordinates refer to the reference assembly that you used when aligning your reads.

D Session Information

The session information records the versions of all the packages used in the generation of the present
document.

sessionInfo()

R version 3.2.3 (2015-12-10)

Platform: x86_64-apple-darwin13.4.0 (64-bit)

Running under: OS X 10.9.5 (Mavericks)

##

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

##

other attached packages:

[1] DEXSeq_1.16.10 DESeq2_1.10.1

[3] RcppArmadillo_0.6.500.4.0 Rcpp_0.12.3

Inferring differential exon usage in RNA-Seq data with the DEXSeq package 27

[5] SummarizedExperiment_1.0.2 GenomicRanges_1.22.4

[7] GenomeInfoDb_1.6.3 IRanges_2.4.7

[9] S4Vectors_0.8.11 Biobase_2.30.0

[11] BiocGenerics_0.16.1 BiocParallel_1.4.3

[13] knitr_1.12.3

##

loaded via a namespace (and not attached):

[1] genefilter_1.52.1 statmod_1.4.24 locfit_1.5-9.1

[4] splines_3.2.3 lattice_0.20-33 colorspace_1.2-6

[7] survival_2.38-3 XML_3.98-1.3 foreign_0.8-66

[10] DBI_0.3.1 RColorBrewer_1.1-2 lambda.r_1.1.7

[13] plyr_1.8.3 stringr_1.0.0 zlibbioc_1.16.0

[16] Biostrings_2.38.4 munsell_0.4.3 gtable_0.1.2

[19] futile.logger_1.4.1 hwriter_1.3.2 codetools_0.2-14

[22] evaluate_0.8 latticeExtra_0.6-28 geneplotter_1.48.0

[25] biomaRt_2.26.1 AnnotationDbi_1.32.3 highr_0.5.1

[28] acepack_1.3-3.3 xtable_1.8-2 scales_0.3.0

[31] formatR_1.2.1 Hmisc_3.17-2 annotate_1.48.0

[34] XVector_0.10.0 Rsamtools_1.22.0 gridExtra_2.0.0

[37] BiocStyle_1.8.0 ggplot2_2.0.0 digest_0.6.9

[40] stringi_1.0-1 grid_3.2.3 tools_3.2.3

[43] bitops_1.0-6 magrittr_1.5 RCurl_1.95-4.7

[46] RSQLite_1.0.0 Formula_1.2-1 cluster_2.0.3

[49] futile.options_1.0.0 rpart_4.1-10 nnet_7.3-12

E References

