
CNVrd2: A package for measuring gene copy
number, identifying SNPs tagging copy number

variants, and detecting copy number polymorphic
genomic regions

Hoang Tan Nguyen1,2, Tony R Merriman1 and Michael A Black1

1Department of Biochemistry, University of Otago
2Department of Mathematics and Statistics, University of Otago

January 31, 2016

Contents

1 Introduction

The CNVrd2 package 1 (?) utilizes next-generation sequencing (NGS) data to measure human-

gene copy number (CN) and identify single-nucleotide polymorphisms (SNPs), and insertions and

deletions (INDELs) that are in linkage disequilibrium with a gene of interest. Typically, the

data being used are low- or medium-coverage whole genome sequence (WGS) data from multiple

individuals in a population. Such data comprise collections of sequence reads that have been

aligned (or "mapped") to an appropriate reference genome. Changes in read depth (i.e., the

number of reads aligned to a specific region of the genome) can indicate changes in DNA copy

number in this region (i.e., deletions or duplications of specific portions of DNA). If this region

encompasses a gene, then changes in copy number may also be reflected by changes in gene activity

- such changes have been shown to be associated with altered risk of disease in human populations,

and altered trait distributions in agricultural settings.

To measure gene CN, CNVrd2 firstly divides a region (usually at least 1Mb) flanking a gene of

interest into constant-sized windows, and counts reads mapped in these windows. Next, these read-

count windows are transformed and standardized. After that, the DNAcopy package (?) is used
1CNVrd2 is an improved version of the pipeline CNVrd used to identify tagSNPs of FCGR3A/B CNV

1

to join the per-window standardized counts into regions (or "segments") of similar values. The

package then refines the segmentation step and outputs segmentation results, namely segmentation

scores (SS), for each sample. A function in the CNVrd2 package is then used to group SSs into

copy-number groups.

To calculate linkage disquilibrium (LD) between gene CNVs and SNPs/INDELs nearby, SNPs/IN-

DELs are coded into numeric values (0, 1, 2) and Fisher’s Exact Test is used to assess associations

between SNPs/INDELs and copy number. CNVrd2 is designed to identify SNPs/INDELs that can

be used as a surrogate marker for CNVs, therefore multiple samples are needed to obtain reliable

results. The package also uses distribution quantiles to identify highly polymorphic regions of the

genome (within a collection of samples) and can identify regions with variable polymorphism be-

tween populations. The BAM format (?) for aligned-NGS data and VCF format (?) for structural

variant information are used as the main forms of input for the package.

2 Getting started

First, we load the package in our R session. Note that the rjags package (?) requires the associated

JAGS application to be installed.

library('CNVrd2')

Loading required package: VariantAnnotation

Loading required package: BiocGenerics

Loading required package: parallel

##

Attaching package: ’BiocGenerics’

The following objects are masked from ’package:parallel’:

##

clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

clusterExport, clusterMap, parApply, parCapply, parLapply,

parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from ’package:stats’:

##

IQR, mad, xtabs

The following objects are masked from ’package:base’:

##

2

Filter, Find, Map, Position, Reduce, anyDuplicated, append,

as.data.frame, as.vector, cbind, colnames, do.call,

duplicated, eval, evalq, get, grep, grepl, intersect,

is.unsorted, lapply, lengths, mapply, match, mget, order,

paste, pmax, pmax.int, pmin, pmin.int, rank, rbind,

rownames, sapply, setdiff, sort, table, tapply, union,

unique, unlist, unsplit

Loading required package: GenomeInfoDb

Loading required package: stats4

Loading required package: S4Vectors

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: SummarizedExperiment

Loading required package: Biobase

Welcome to Bioconductor

##

Vignettes contain introductory material; view with

’browseVignettes()’. To cite Bioconductor, see

’citation("Biobase")’, and for packages

’citation("pkgname")’.

Loading required package: Rsamtools

Loading required package: XVector

Loading required package: Biostrings

##

Attaching package: ’VariantAnnotation’

The following object is masked from ’package:base’:

##

tabulate

Loading required package: rjags

Loading required package: coda

Linked to JAGS 4.1.0

Loaded modules: basemod,bugs

Loading required package: ggplot2

Loading required package: gridExtra

3

Working with BAM and VCF files.

The following section describes the workflow of the CNVrd2 package in reading BAM and VCF

files into R. The 58 MXL-sample BAM files (chr1:161100000-162100000) were downloaded from

the 1000 Genomes Project to measure copy number counts of FCGR3B gene (chr1:161592986-

161601753). Users can download the file MXLexample.zip on

http://code.google.com/p/cnvrdfortagsnps/downloads/list and unzip it into a direc-

tory.

Alternatively, to run the example without downloading the associated BAM files, users can skip

to section ?? to load a pre-processed verison of the same data.

2.1 Measuring FCGR3B CN

2.1.1 CNVrd2 object

We need to make an object of class CNVrd2 to define a region we want to investigate (regions

sized > 1Mb tend to work well - multiple genes can be included by specifying the start and end

positions of each). Here, we choose 1000bp-constant windows. We also need to supply a directory

that consists of BAM files including only mapped reads. Users who have not downloaded the

BAM files, should skip to section ??

objectCNVrd2 <- new("CNVrd2", windows = 1000, chr = "chr1",

st = 161100001, en = 162100000,

dirBamFile = "BamMXL",

genes = c(161592986, 161601753),

geneNames = "3B")

2.1.2 Count reads in windows

Use the function countReadInWindow to read the BAM files into R and count the number of reads

in each of the windows.

readCountMatrix <- countReadInWindow(Object = objectCNVrd2, correctGC = TRUE)

If GC-content correcion is selected (correctGC=TRUE) then a reference genome must be supplied.

The default reference genome is the human reference genome (UCSC version hg19). A full list of

reference genomes available through Bioconductor can be obtained from:

http://www.bioconductor.org/packages/release/bioc/html/BSgenome.html

4

http://code.google.com/p/cnvrdfortagsnps/downloads/list
http://www.bioconductor.org/packages/release/bioc/html/BSgenome.html

2.1.3 Segmentation

Use the function segmentSamples to segment and obtain segmentation scores for the FCGR3B

gene (Figure ??):

##Obtain segmentation scores

resultSegment <- segmentSamples(Object = objectCNVrd2, stdCntMatrix = readCountMatrix)

Instead of reading BAM files directly, we can use a matrix of read counts for the

function segmentSamples. Here, we obtain a read-count matrix from data in the CNVrd2 package.

##Load data into R

data(fcgr3bMXL)

##Reload readCountMatrix

readCountMatrix <- resultSegment$stdCntMatrix

##Take a quick look the data

readCountMatrix[1:2, 1:2]

##Make a CNVrd2 object

objectCNVrd2 <- new("CNVrd2", windows = 1000, chr = "chr1",

st = 161100001, en = 162100000,

dirBamFile = "BamMXL",

genes = c(161592986, 161601753),

geneNames = "3B")

##Obtain segmentation scores

resultSegment <- segmentSamples(Object = objectCNVrd2, stdCntMatrix = readCountMatrix)

##View these segmentation results

sS <- resultSegment$segmentationScores

hist(sS[, 1], 100, xlab = 'Segmentation score', main = '')

2.1.4 Obtain copy-number count

The data in Figure ?? suggest four distinct groups of segmentation scores, likely related to four

different copy number genotypes. The function groupCNVs uses a normal mixture model to cluster

SSs into groups. Unequal variances are assumed by default (EV = FALSE), however, if there are

relatively few SS values in one group then we can set EV = TRUE (see the groupCNVs manual

page for additional details).

5

Segmentation score

F
re

qu
en

cy

−1 0 1 2

0
5

10
15

Figure 1: FCGR3B segmentation score.

6

objectCluster <- new("clusteringCNVs",

x = resultSegment$segmentationScores[, 1], k = 4, EV = TRUE)

#Cluster into 4 groups

copynumberGroups <- groupCNVs(Object = objectCluster)

=====================================

7 iterations

4 components with Equal variances

m: -1.30876666665667-0.02580184504113590.9838838408971832.08487018121448

p: 0.05172413793153550.6896606864511990.2069007456105260.0517144300067392

sigma: 0.1469858562965880.1469858562965880.1469858562965880.146985856296588

====================================

Clustering results are shown in Figure ??, and the group assignments for the samples are

contained in the allGroups object. For example, the NA19648 sample is assigned to the second

group because the probability associated with membership of this group is higher than that of the

other groups (nearly 1).

copynumberGroups$allGroups[1:3,]

Name Classification Group1

NA19648.MXL.bam NA19648.MXL.bam 2 1.784492e-18

NA19649.MXL.bam NA19649.MXL.bam 2 3.742821e-17

NA19651.MXL.bam NA19651.MXL.bam 3 5.012828e-61

Group2 Group3 Group4 score

NA19648.MXL.bam 1.000000e+00 2.472136e-11 3.368400e-46 -0.0195

NA19649.MXL.bam 1.000000e+00 2.250428e-12 2.248390e-48 -0.0710

NA19651.MXL.bam 1.540821e-13 1.000000e+00 4.647376e-10 1.1393

If we would like to force outliers into the lowest or highest CN genotype groups (e.g., dividing

the data into three groups: deletions, normal CN, duplications) then we can use options rightLimit

(Figure ??) or leftLimit or both.

#Set right limit = 1.5 to make values > 1.5 be into the largest group.

objectCluster <- new("clusteringCNVs",

x = resultSegment$segmentationScores[, 1], k = 3, EV = TRUE)

copynumberGroups <- groupCNVs(Object = objectCluster, rightLimit = 1.5)

7

●●

●●

●

●

●

●●● ●●●●

●

●

●

●

●●

●●●

●

●

●● ●●●

●

●

●●

● ●

●

●●

●

●

●●

●

●

●

●●● ●●●●●● ●●●

Segmentation score

G
ro

up

1
2

3
4

−1 0 1 2

le
ftL

im
it

=
 −

1.
33

rig
ht

Li
m

it
=

 2
.5

7

Segmentation score

F
re

qu
en

cy

−1 0 1 2

0
5

10

Figure 2: FCGR3B CN groups.

8

●●

●●

●

●

●

●●● ●●●●

●

●

●

●

●●

●●●

●

●● ●●●●

●●

● ●

●

●●

●

●●

●

●

●

●●● ●●●●●● ●●●

● ● ●

Segmentation score

G
ro

up

1
2

3

−1 0 1 2

le
ftL

im
it

=
 −

1.
33

rig
ht

Li
m

it
=

 1
.5

Segmentation score

F
re

qu
en

cy

−1 0 1 2

0
5

10

Figure 3: FCGR3B CN groups (rightLimit = 1.5).

=====================================

5 iterations

3 components with Equal variances

m: -1.30876666666667-0.02580733715714130.983841901058517

p: 0.05454545454545460.7272728952233420.218181650231204

sigma: 0.1254981622689890.1254981622689890.125498162268989

====================================

9

2.1.5 Plots

The function plotCNVrd2 can plot multiple samples. Trace plots of some of the samples exhibiting

duplications at the FCGR locus are shown in Figure ??. Here, based on information from the

literature, we assume that a copy number of two is the most common CN genotype.

allGroups <- copynumberGroups$allGroups

###Obtain names of duplicate samples

duplicatedSamples <- rownames(allGroups[allGroups[, 2] > 2,])

###Plot 6 duplicate samples

par(mfrow = c(3, 2))

for (ii in duplicatedSamples[1:6])

plotCNVrd2(Object = objectCNVrd2,

segmentObject = resultSegment,

sampleName = ii)

2.2 Identifying tag SNPs/INDELs for FCGR3B CNVs

The function calculateLDSNPandCNV is used to calculate LD between CNVs and SNPs/INDELs.

This function will read a VCF file into R and transform phased/unphased values (00, 01, 10, 11)

into numeric values (0, 1, 2 or 0, 1). For a large VCF file (e.g., >= 1Mb), we generally use the

option nChunkForVcf=50 to break the file into 50 chunks for reading into R.

##Obtain VCF-file information in CNVrd2 package

vcfFile <- system.file(package="CNVrd2", "extdata",

"chr1.161600000.161611000.vcf.gz")

##Make a data frame named sampleCNV including samples, CNs, population names

sampleCNV <- data.frame(copynumberGroups$allGroups[, c(1,2)],rep("MXL", dim(copynumberGroups$allGroups)[1]))

rownames(sampleCNV) <- substr(sampleCNV[, 1], 1, 7)

sampleCNV[, 1] <- rownames(sampleCNV)

##The first column must be the sample names and some samples should be in the vcf file

tagSNPandINDELofMXL <- calculateLDSNPandCNV(sampleCNV = sampleCNV,

vcfFile = vcfFile, cnvColumn = 2,

population = "MXL", popColumn = 3,

10

161200000 161600000 162000000

−
2

0
1

2

NA19651
window = 1000

Coordinate

S
ta

nd
ar

di
ze

d
re

ad
 c

ou
nt

3B

161200000 161600000 162000000
−

2
0

2

NA19652
window = 1000

Coordinate

S
ta

nd
ar

di
ze

d
re

ad
 c

ou
nt

3B

161200000 161600000 162000000

−
3

−
1

1
3

NA19657
window = 1000

Coordinate

S
ta

nd
ar

di
ze

d
re

ad
 c

ou
nt

3B

161200000 161600000 162000000

−
2

0
2

NA19681
window = 1000

Coordinate

S
ta

nd
ar

di
ze

d
re

ad
 c

ou
nt

3B

161200000 161600000 162000000

−
2

0
2

NA19682
window = 1000

Coordinate

S
ta

nd
ar

di
ze

d
re

ad
 c

ou
nt

3B

161200000 161600000 162000000

−
2

0
1

2

NA19717
window = 1000

Coordinate

S
ta

nd
ar

di
ze

d
re

ad
 c

ou
nt

3B

Figure 4: MXL duplicated samples.

11

nChunkForVcf = 5, chr = "1",

st = 161600001, en = 161611000,

codeSNP= "Three", codeCNV = "ThreeGroup")

Reading the VCF file 1:161600001-161611000 with 5 blocks each

VCF file: 161600001 to 161602751

VCF file: 161602752 to 161605500

VCF file: 161605501 to 161608250

VCF file: 161608251 to 161611000

Calculating p and r2 values for MXL population.

head(tagSNPandINDELofMXL)

1CN_(n=3) 2CN_(n=36) 3CN_(n=15) p.values r

rs117435514 0.00 2.78 86.67 2.1e-09 0.81

rs185696163 0.00 2.78 86.67 2.1e-09 0.81

rs34015117 0.00 2.78 80.00 2.3e-08 0.77

rs76736176 0.00 2.78 66.67 1.5e-06 0.68

esv2661911 66.67 0.00 0.00 2.1e-03 -0.39

rs72704050 33.33 52.78 93.33 4.6e-03 0.34

p.valuesAdjusted r2 POP

rs117435514 1.3e-07 0.66 MXL

rs185696163 1.3e-07 0.66 MXL

rs34015117 9.6e-07 0.59 MXL

rs76736176 4.7e-05 0.46 MXL

esv2661911 5.4e-02 0.15 MXL

rs72704050 9.7e-02 0.11 MXL

From the results of the LD analysis, rs117435514 is the best tagSNP for duplications: 0%,

2.78% and 86.7% of deleted, normal and duplicated samples have this SNP (adjusted p-value =

7.1e-08, r2 = 0.66).

3 Working with complex loci

CNVrd2 can also be used to measure multiallelic copy-number polymorphisms. For loci having

high CN, users should use the function segmentSamplesUsingPopInformation to adjust the seg-

12

mentation process across populations. An xample of a gene exhibiting this type of complex CN

polymorphism is CCL3L1. Below we use the package to measure CCL3L1 CN and identify tag

SNPs/INDELs for CCL3L1 CNVs.

The data set used here includes 1,917 samples of five large populations European, East Asian,

West African, South Asian ancestry and Americas with a total of 26 small populations as in the

table below:

Large Pop Small Pop Sample size

Americas CLM 65

Americas MXL 59

Americas PEL 60

Americas PUR 74

East Asian CDX 88

East Asian CHB 83

East Asian CHS 104

East Asian JPT 82

East Asian KHV 78

European CEU 96

European FIN 78

European GBR 77

European IBS 77

European TSI 100

South Asian BEB 50

South Asian GIH 81

South Asian ITU 39

South Asian PJL 37

South Asian STU 49

African ACB 74

African ASW 50

African ESN 64

African GWD 105

African LWK 90

African MSL 68

African YRI 89

13

3.1 Measuring CCL3L1 CN

The ccl3l1data data includes 1917 samples downloaded from the 1000 Genomes

Project in October 2012 and March 2013, their corresponding populations, segmen-

tation scores and CNs. The segmentation scores were obtained by using the function

segmentSamplesUsingPopInformation for a 1Mb region (chr17:33670000-34670000)

with 500bp-constant windows.

##Load data into R:

data(ccl3l1data)

head(ccl3l1data)

Name Pop SS CN

1 HG00096 GBR -0.6932975 1

2 HG00100 GBR -0.2308212 2

3 HG00103 GBR -0.3511010 2

4 HG00106 GBR -0.8012343 1

5 HG00108 GBR -0.4119802 2

6 HG00111 GBR -0.2879718 2

hist(ccl3l1data$SS, 100)

As can be seen in Figure ??, the data is multimodal and there are not clear

clusters on the right. Therefore, we can use a single population which has clear

clusters to obtain prior information for the clustering process into CN groups. Here,

we used the large European-ancestry population to obtain prior information.

xyEuro <- ccl3l1data[grep("CEU|TSI|IBS|GBR|FIN", ccl3l1data[, 2]),]

yEuro <- xyEuro[, 3]

names(yEuro) <- xyEuro[, 1]

hist(yEuro, 100, xlab = '', main = '')

As can be seen from Figure ??, the European-ancestry data exhibit relatively

clear clusters, allowing us to classify the samples into different CN groups.

Note: if we use the option autoDetermineGroup = TRUE in the function groupC-

14

Histogram of ccl3l1data$SS

ccl3l1data$SS

F
re

qu
en

cy

−1 0 1 2 3 4

0
20

40
60

80

Figure 5: CCL3L1 segmentation score.

15

F
re

qu
en

cy

−1.5 −1.0 −0.5 0.0 0.5 1.0

0
10

20
30

40

Figure 6: European-ancestry segmentation score.

16

NVs then the Bayesian information criterion (BIC) will be used to choose a suitable

number of components (See ?).

##Clustering European segmentation

##scores into group: 5 groups were chosen

objectClusterEuroCCL3L1 <- new("clusteringCNVs", x = yEuro, k = 5)

europeanCCL3L1Groups <- groupCNVs(Object = objectClusterEuroCCL3L1)

=====================================

7 iterations

5 components with Unequal variances

m: -1.51402924373199-0.871863641754189-0.3596050190158570.1442265197789390.611056959363024

p: 0.02569476547601550.281378789950390.4465042675825080.1787783814870730.0676437955040135

sigma: 0.04985566125899970.1132002471605970.1008864849220440.1154674632491250.230716323036497

====================================

Next, we use these results to infer CCL3L1 CN in all populations. The following

code collects information about the means, standard deviations and proportions of

the mixture components from the European population.

#Means

lambda0 <- as.numeric(europeanCCL3L1Groups$m)

#SD

sdEM <- as.numeric(europeanCCL3L1Groups$sigma)

#Proportions

pEM <- as.numeric(europeanCCL3L1Groups$p)

Take a look these results:

lambda0

[1] -1.5140292 -0.8718636 -0.3596050 0.1442265 0.6110570

sdEM

[1] 0.04985566 0.11320025 0.10088648 0.11546746 0.23071632

17

●

●●

●

● ●

●

●

●●

●

●●

●

●

●

●

● ●●●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●●

●●

●

●

●●

●

●●

●

●

●

●● ●

●

●

●

●●●

●

●●

●

●●

●●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

●

●

●●

●

●● ●

● ●●●●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ● ●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●● ●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

● ●

●

●

●

●

●

● ●

●

●

●●

●

●●

●●

●●

●●

●

● ●

● ●

●

●●

●

●●

●

●● ●

●

●● ● ●●

●

●●

●

●

● ●●

●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●●

● ● ●

●

●●

●

●

●

●●

●●

●

●

●

● ●

●

●●●

●

Segmentation score

G
ro

up

1
2

3
4

5

−1.5 −1.0 −0.5 0.0 0.5 1.0

le
ftL

im
it

=
 −

1.
6

rig
ht

Li
m

it
=

 1
.2

1

Segmentation score

F
re

qu
en

cy

−1.5 −1.0 −0.5 0.0 0.5 1.0

0
20

40

Figure 7: Clustering results of European-ancestry sample sets.

18

pEM

[1] 0.02569477 0.28137879 0.44650427 0.17877838 0.06764380

###Calculate the distances between groups

for (ii in 2:5){print(lambda0[ii] - lambda0[ii-1])}

[1] 0.6421656

[1] 0.5122586

[1] 0.5038315

[1] 0.4668304

###All segmentation scores

ccl3l1X <- ccl3l1data$SS

names(ccl3l1X) <- as.character(ccl3l1data$Name)

range(ccl3l1X)

[1] -1.675230 4.257877

The information above is then used by the function groupBayesianCNVs to clus-

ter the segmentation scores for the combined set of European-ancestry cohorts into

different CN groups. There is a high value in the full SS set (Figure ??), which we

eliminate in the following steps by setting rightLimit=4 so that it is automatically

allocated into the highest CN group. Using the other values, combined with locus-

specific information from the literature, we set the number of groups to be 10. All

prior information was used in our work to obtain CN for CCL3L1 gene (the four

group).

##Set prior information:

#prior for the sd of the means of groups:

#5 was set for the third group = 2 CN

sd <- c(1, 1, 5, 1, 1)

ccl3l1X <- sort(ccl3l1X)

###Data

xData <- ccl3l1X

###Number of groups

19

nGroups <- 10

###prior for means of groups

lambda0 <- lambda0

###Prior for mixing proportions

alpha0 <- c(3, 29, 44, 18, 7, 5, rep(2, nGroups -length(pEM) -1))

##Prior for the distances between groups

distanceBetweenGroups = 0.485

sdEM = sdEM

The final (5th) group of the results of the European-ancestry sample sets has a

large standard deviation as a result of the scattering of values on the right (Figure

??), therefore, we can set this value to equal the standard deviation of the fourth

group to avoid an overly wide mixture component.

##Adjust standard deviation for the fifth group

sdEM[5] <- sdEM[4]

Run the groupBayesianCNVs function to obtain CN groups.

set.seed(123)

groupCCL3L1allPops <- groupBayesianCNVs(xData = xData, nGroups = nGroups,

lambda0 = lambda0,

sd0 = sdEM, alpha0 = alpha0,

distanceBetweenGroups = distanceBetweenGroups,

sdOftau = sd,

rightLimit = 4)

These results would be similar to the results of the fourth column in the data of the

package.

3.2 Identifying tag-SNPs for CCL3L1 CNVs

We can obtain obtain tag-SNPs/INDELs for multiple populations simultaneously.

Below, we reuse the CCL3L1 data to obtain tag-SNPs for some populations.

20

rownames(ccl3l1data) <- ccl3l1data[, 1]

Load VCF file into R and choose populations which we would like to find tagSNPs/IN-

DELs.

##Obtain vcf-file information in CNVrd2

vcfFileCCL3L1 <- system.file(package="CNVrd2", "extdata",

"chr17.34800000.34830000.vcf.gz")

##Set populations we would like to identify tagSNPs

allPops <- c("TSI", "CEU", "GBR", "FIN", "IBS")

##Identify tag SNPs/INDELs

tagSNPandINDELofCCL3L1 <- calculateLDSNPandCNV(sampleCNV = ccl3l1data,

vcfFile = vcfFileCCL3L1, cnvColumn = 4,

population = allPops, popColumn = 2,

nChunkForVcf = 5, chr = "17",

st = 34800000, en = 34830000)

Reading the VCF file 17:34800000-34830000 with 5 blocks each

VCF file: 34800000 to 34807500

VCF file: 34807501 to 34815000

VCF file: 34815001 to 34822500

VCF file: 34822501 to 34830000

Calculating p and r2 values for TSI population.

Calculating p and r2 values for CEU population.

Calculating p and r2 values for GBR population.

Calculating p and r2 values for FIN population.

Calculating p and r2 values for IBS population.

Take a quick look some significant results (multiple populations: the return value
of calculateLDSNPandCNV is a list of populations).
lapply(tagSNPandINDELofCCL3L1, head)

[[1]]

0CN_(n=5) 1CN_(n=32) 2CN_(n=41) 3CN_(n=16) 4CN_(n=4)

rs8064426 80 87.50 12.20 18.75 0

rs113877493 60 71.88 2.44 6.25 0

rs11316723 80 84.38 12.20 18.75 0

rs8072769 80 78.12 12.20 12.50 0

rs9911791 80 87.50 17.07 18.75 25

rs113435750 80 78.12 12.20 12.50 25

21

p.values r p.valuesAdjusted r2 POP

rs8064426 3.2e-12 -0.64 5.8e-10 0.40 TSI

rs113877493 6.7e-12 -0.63 6.2e-10 0.39 TSI

rs11316723 3.1e-11 -0.62 1.9e-09 0.38 TSI

rs8072769 5.3e-10 -0.61 1.9e-08 0.37 TSI

rs9911791 2.5e-10 -0.58 1.1e-08 0.34 TSI

rs113435750 1.4e-09 -0.57 3.8e-08 0.33 TSI

##

[[2]]

0CN_(n=2) 1CN_(n=20) 2CN_(n=39) 3CN_(n=14) 4CN_(n=3)

rs8072769 0 75 2.56 0.00 0

rs113435750 0 75 5.13 0.00 0

rs138153523 0 75 5.13 0.00 0

rs11316723 0 80 5.13 7.14 0

rs8064426 0 80 5.13 7.14 0

rs9911791 0 85 10.26 7.14 0

5CN_(n=1) p.values r p.valuesAdjusted r2 POP

rs8072769 0 7.6e-10 -0.61 1.4e-07 0.37 CEU

rs113435750 0 6.4e-09 -0.60 2.4e-07 0.35 CEU

rs138153523 0 6.4e-09 -0.60 2.4e-07 0.35 CEU

rs11316723 0 3.7e-09 -0.57 2.3e-07 0.33 CEU

rs8064426 0 3.7e-09 -0.57 2.3e-07 0.33 CEU

rs9911791 0 8.8e-09 -0.58 2.7e-07 0.33 CEU

##

[[3]]

1CN_(n=18) 2CN_(n=37) 3CN_(n=11) 4CN_(n=4) p.values r

rs11316723 72.22 2.70 0 0 1.2e-08 -0.65

rs8064426 72.22 2.70 0 0 1.2e-08 -0.65

rs9911791 72.22 8.11 0 0 5.6e-07 -0.62

rs113877493 50.00 0.00 0 0 3.8e-06 -0.54

rs8072769 50.00 2.70 0 0 5.1e-05 -0.52

rs113435750 50.00 2.70 0 0 5.1e-05 -0.52

p.valuesAdjusted r2 POP

rs11316723 1.1e-06 0.43 GBR

rs8064426 1.1e-06 0.43 GBR

rs9911791 3.4e-05 0.38 GBR

rs113877493 1.8e-04 0.29 GBR

rs8072769 1.6e-03 0.27 GBR

rs113435750 1.6e-03 0.27 GBR

##

[[4]]

0CN_(n=2) 1CN_(n=19) 2CN_(n=28) 3CN_(n=18) 4CN_(n=6)

rs113877493 100 73.68 7.14 0.00 0

rs6607368 100 84.21 21.43 5.56 0

rs8067765 100 63.16 7.14 0.00 0

rs60952743 100 63.16 7.14 0.00 0

rs8070238 100 63.16 7.14 0.00 0

rs8072238 100 63.16 7.14 0.00 0

5CN_(n=1) p.values r p.valuesAdjusted r2 POP

rs113877493 0 2.7e-09 -0.67 4.9e-07 0.45 FIN

rs6607368 0 4.7e-08 -0.66 2.8e-06 0.43 FIN

rs8067765 0 2.3e-07 -0.61 4.2e-06 0.38 FIN

rs60952743 0 2.3e-07 -0.61 4.2e-06 0.38 FIN

rs8070238 0 2.3e-07 -0.61 4.2e-06 0.38 FIN

rs8072238 0 2.3e-07 -0.61 4.2e-06 0.38 FIN

##

[[5]]

1CN_(n=2) 2CN_(n=1) 3CN_(n=1) 4CN_(n=2) p.values r

rs4796217 100 100 100 0 2.0e-01 -0.85

rs28856610 0 0 0 100 2.0e-01 0.85

rs11651338 100 0 100 0 2.0e-01 -0.70

rs138347191 0 0 0 50 1.0e+00 0.54

rs4796216 50 100 100 100 1.0e+00 0.54

rs60520102 0 0 0 50 1.0e+00 0.54

22

p.valuesAdjusted r2 POP

rs4796217 1e+00 0.73 IBS

rs28856610 1e+00 0.73 IBS

rs11651338 1e+00 0.49 IBS

rs138347191 1e+00 0.29 IBS

rs4796216 1e+00 0.29 IBS

rs60520102 1e+00 0.29 IBS

The output above provides evidence that rs113877493 may be a tagSNP for CCL3L1 deletions in the

FIN (p = 1.1e-07, r2 = 0.44) and GBR (p = 2.6e-04, r2 = 0.27) populations.

##Notice: these results are in a list

for (ii in 1:length(allPops))

write.table(tagSNPandINDELofCCL3L1[[ii]],

paste("TagSNPforPop", ii, ".csv", sep = ""),

quote = FALSE, sep = ",")

Note: All TagSNP results for DEFB103A, CCL3L1 and FCGR3B CNV will be uploaded on https:

//github.com/hoangtn/CNVrd2

4 Indentifying poplymorphic regions

CNVrd2 can also be used to identity CN polymorphic regions and the putative boundaries of these regions.

We reuse the data from the FCGR3 locus to investigate the polymorphic region around the two genes.

fcgr3PolymorphicRegion <- identifyPolymorphicRegion(Object = objectCNVrd2,

segmentObject = resultSegment,

plotLegend = FALSE)

Calculate segmentation scores for polymorphic regions

23

https://github.com/hoangtn/CNVrd2
https://github.com/hoangtn/CNVrd2

3B

0.0

0.2

0.4

0.6

0.8

161250000 161500000 161750000 162000000
chr1:161100001−162100000

S
D

3B

0.0
0.5
1.0

161250000 161500000 161750000 162000000
chr1:161100001−162100000

Q
ua

nt
ile

Quantile 10% 50% 90%

3B

5

10

15

20

161250000 161500000 161750000 162000000
chr1:161100001−162100000

po
si

tiv
e

S
um

3B

−7.5

−5.0

−2.5

161250000 161500000 161750000 162000000
chr1:161100001−162100000

ne
ga

tiv
e

S
um

To plot a small region around the gene, we use the funtion plotPolymorphicRegion. Users can change

typePlot to only plot SDs or percentiles.

plotPolymorphicRegion(Object = objectCNVrd2, polymorphicRegionObject = fcgr3PolymorphicRegion,

xlim = c(161300000, 161800000), drawThresholds = TRUE,

typePlot = "SD")

IRanges of length 5

start end width

[1] 161392001 161394000 2000

[2] 161424001 161426000 2000

[3] 161542001 161544000 2000

24

3B

0.0

0.2

0.4

0.6

0.8

161300000 161400000 161500000 161600000 161700000 161800000
chr1:161300000−161800000

S
D

Figure 8: CN polymorphic region at FCGR3 locus, represented by quantiles of the distribution of
segmentation scores across samples.

25

[4] 161564001 161602000 38000

[5] 161633001 161634000 1000

plotPolymorphicRegion(Object = objectCNVrd2, polymorphicRegionObject = fcgr3PolymorphicRegion,

xlim = c(161300000, 161800000), sdThreshold = 0.05, drawThresholds = TRUE,

typePlot = "SD")

IRanges of length 4

start end width

[1] 161392001 161394000 2000

[2] 161424001 161426000 2000

[3] 161564001 161565000 1000

[4] 161573001 161602000 29000

Here, we are using standard deviations to identify polymorphic regions. Therefore, the putative bound-

aries of these regions rely on the parameter sdThreshold. Alternatively, users can use different percentiles

to identify these regions. In that case, two parameters quantileValue and thresholdForPolymorphicRegions

can be used to adjust the boundaries of regions. For example, here we can set small sdThreshold values to

obtain only high-polymorphic regions (e.g., CCL3L1), but it can omit some medium-polymorphic regions

(e.g., FCGR3A/3B). Figure ?? and ?? depicts two different thresholds resulting in different polymorphic

regions.

In the function identifyPolymorphicRegion, if we would like to obtain only polymorphic regions which

differentiate between populations (e.g., to detect evidence of selection) then we can use the option

VstTest=TRUE. This option will calculate the Vst statistics (?). Users have to supply a vector which

includes population information in popName. The returned putative boundaries will be the intersection

of polymorphic regions and regions having maxVst >= thresholdVST.

5 Note

If we use the option entireGene = TRUE in the step segmentation then the pipeline will not refine the

segmentation results (the results will be the same as the pipeline used in ?).

6 Session information

26

3B

0.0

0.2

0.4

0.6

0.8

161300000 161400000 161500000 161600000 161700000 161800000
chr1:161300000−161800000

S
D

Figure 9: CN polymorphic region at FCGR3 locus, represented by quantiles of the distribution of
segmentation scores across samples.

27

sessionInfo()

R version 3.2.3 (2015-12-10)

Platform: x86_64-apple-darwin13.4.0 (64-bit)

Running under: OS X 10.9.5 (Mavericks)

##

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

attached base packages:

[1] stats4 parallel stats graphics grDevices utils

[7] datasets methods base

##

other attached packages:

[1] CNVrd2_1.8.1 gridExtra_2.0.0

[3] ggplot2_2.0.0 rjags_4-5

[5] coda_0.18-1 VariantAnnotation_1.16.4

[7] Rsamtools_1.22.0 Biostrings_2.38.3

[9] XVector_0.10.0 SummarizedExperiment_1.0.2

[11] Biobase_2.30.0 GenomicRanges_1.22.4

[13] GenomeInfoDb_1.6.3 IRanges_2.4.6

[15] S4Vectors_0.8.11 BiocGenerics_0.16.1

[17] knitr_1.12.3

##

loaded via a namespace (and not attached):

[1] Rcpp_0.12.3 plyr_1.8.3

[3] formatR_1.2.1 futile.logger_1.4.1

[5] highr_0.5.1 GenomicFeatures_1.22.12

[7] bitops_1.0-6 futile.options_1.0.0

[9] tools_3.2.3 zlibbioc_1.16.0

[11] digest_0.6.9 biomaRt_2.26.1

[13] evaluate_0.8 RSQLite_1.0.0

[15] gtable_0.1.2 BSgenome_1.38.0

[17] lattice_0.20-33 DBI_0.3.1

[19] rtracklayer_1.30.1 stringr_1.0.0

[21] grid_3.2.3 DNAcopy_1.44.0

28

[23] AnnotationDbi_1.32.3 XML_3.98-1.3

[25] BiocParallel_1.4.3 lambda.r_1.1.7

[27] magrittr_1.5 scales_0.3.0

[29] GenomicAlignments_1.6.3 colorspace_1.2-6

[31] labeling_0.3 stringi_1.0-1

[33] RCurl_1.95-4.7 munsell_0.4.2

29

